Overview and Analysis of Legal Documents and Technical Regulations on Safe Management of Radioisotope Thermoelectric Generators

Total Page:16

File Type:pdf, Size:1020Kb

Overview and Analysis of Legal Documents and Technical Regulations on Safe Management of Radioisotope Thermoelectric Generators Overview and Analysis of Legal Documents and Technical Regulations on Safe Management of Radioisotope Thermoelectric Generators S.G.Testov, Department of State Supervision over Nuclear and Radiation Safety, Ministry of Defense of the Russian Federation 1. Background Presently there are about 900 radioisotope thermoelectric generators (RTG) in operation in the Russian Federation. RTGs are used by the Ministry of Defense of the Russian Federation, by the Federal Agency for Maritime and River Transportation (Rosmorrechflot), by the Federal Agency for Hydrometeorology and Environment Monitoring (Roshydromet) as autonomous sources of electric power supply of different technical devices located far off settlements and stationary power transmission lines. The majority of RTGs (about 90 %) are operated by the Russian Navy and Rosmorrechflot to supply power to navigation equipment (lighthouses and different light beacons). RTG is a rather reliable power source (Figs. 1 – 3) which retains its operability for 15 – 20 years with minimum maintenance. Till recently the use of RTGs was considered to be the optimal solution in providing reliable operation of navigation means. However, the cases of unauthorized access to RTGs, their damaging, withdrawal of thermal radioisotope sources (TRS) have obviously demonstrated that, being highly reliable devices, RTGs are a huge potential hazard both for the people and the environment. TRSs are characterized by very high radioactivity – initial Sr-90 activity in a RTG is about from 1,3*10+12 to 2*10+13 Bq (35 to 540 kCi) depending on RTG type with relatively small dimensions and weight. In case of dispersion of the above radioactivity on the surface, the area of the territory subject to alienation will constitute from several to tens of square kilometers. It is significant that the area of the contaminated territory is rather determined by the method of dispersion than by TRS radioactivity. The practical experience of the group of specialists in radiation, chemical and biological protection of the Northern Fleet of RF Navy working jointly with the experts of the Main Administration for Navigation and Oceanography of the Ministry of Defense of the Russian Federation, who have repeatedly mitigated the consequences of unauthorized disassembling and vandalism in relation to several RTGs in Murmansk region, brought rather alerting indirect result. With sufficient special training of the supervisor of the works a small well organized and disciplined group can dismantle RTG and withdraw the TRS rather quickly without any serious hazard to their health. The readiness of the members of the group to definite self-sacrifice increases its chances for success immeasurably. Fortunately, the goal of the above facts of disassembling and vandalism was to steal non-ferrous metals and not the use of radioactivity for the purposes of terrorism. The awareness of these factors has resulted in making a decision on planned replacement of RTGs with alternative safe power sources (Fig. 4). This work has started several years ago. However, the dramatic changes in the situation in the country as well as worldwide necessitates the acceleration of the process of the replacement of RTGs with alternative power sources as well as taking technical and organizational measures to reduce the probability of theft of TRSs from RTGs in operation. 1 Testov-eng Figure 1 Figure 2 2 Testov-eng Figure 3 Figure 4 3 Testov-eng The Ministry of Defense of the Russian Federation has performed definite work to establish conditions for safe management of RTGs, and the agenda of the workshop envisages further presentations devoted to this work, while my task is to make the review and analysis of existing legal documents and technical regulations on providing safety in RTG management. II. The structure, the list and brief overview of legal documents and technical regulations on providing radiation safety and physical protection of radioactive substances and radiation sources The structure of legal documents and technical regulations on safe management of radioactive substances and radiation sources is presented below: 1. Constitution of the Russian Federation 2. Federal Laws of the Russian Federation 3. Decrees and Orders of the President of the Russian Federation 4. Decrees and Orders of the Government of the Russian Federation 5. Federal Regulations and Rules 6. State Standards, Directions and Methodological Guidelines of Safety Regulatory Authorities 7. Interdepartmental and Departmental Normative Documents The principal documents and relevant comments are given below. 1. Constitution of the Russian Federation Article 71 proclaims: «The following is under the jurisdiction of the Russian Federation: i) federal power grids, nuclear power generation, fissile materials, federal transport, communication routes, information and communication, activities in space». Article 72. «The following is under the joint jurisdiction of the Russian Federation and 4 Testov-eng the Subjects of the Russian Federation: e) nature management; protection of the environment and ensuring ecological safety; specially protected natural territories; protection of the monuments of history and culture; j) coordination of the issues of public health; protection of family, motherhood, fatherhood and childhood; social care including social security; h) implementation of measures of struggling with catastrophes, natural disasters, epidemics, elimination of the consequences thereof.». 2. Laws of the Russian Federation 1. Federal Law «On Public Radiation Safety» The Law determines the legal basis of ensuring radiation safety of the public with the aim to protect its health. The law establishes the system of the bodies of executive authorities, state regulation and licensing of activities in the area of ensuring radiation safety (RTG management inclusive). The law also sets forth the general requirements to ensure radiation safety in the basic industrial activities (including the use of such powerful radiation sources as RTGs) and to ensure radiation safety in case of radiological accidents involving radiation sources. «Public radiation safety – is the state of protection of the present and future generations of people against ionizing radiation effects harmful to their health (Article 1). «The citizens of the Russian Federation, the citizens of foreign states and persons without citizenship residing on the territory of the Russian Federation have the right for radiation safety. This right is ensured by implementing the set of measures to prevent the impact of ionizing radiation upon human organism beyond the established norms, rules and standards» (Article 22). 2. Federal Law «On the Uses of Atomic Energy» The Law determines the legal basis and principles for regulating the relations arising from the use of atomic energy and is aimed at the protection of human health and life, protection of the environment, protection of property while using atomic energy and urges to promote the development of nuclear science and technology, to facilitate strengthening of the international regime of safe use of atomic energy. The principal objectives of legal regulation of the relations are: to establish legal basis of state management and state regulation of safety in the use of atomic energy; to fix the rights, duties and responsibilities of citizens, officials, enterprises and organizations as well as those of federal executive authorities in the sphere of relations pertaining to the use of atomic energy. The objects of application of the Law are nuclear facilities, radiation sources (RTGs inclusive), storage facilities for nuclear material and radioactive substances (RTGs storage facilities), radioactive waste storage facilities, nuclear material, radioactive substances, radioactive waste. 3. Federal Law «On Public Sanitary and Epidemiological Well-Being» The Law sets forth sanitary and epidemiological rules and standards, determining the safety criteria, non-compliance to which creates hazard to human life or health as well as the hazard of appearing and dissemination of diseases. «Production, use, storage, transportation and disposal of radioactive substances, other sources of ionizing radiation (RTG) is allowed only on the permission for these kinds of 5 Testov-eng activities by the authorities or institutions of the State Sanitary and Epidemiological Service of Russia» (Article 21). «Production and consumption waste (decommissioned RTG) are subject to collection, use, rendering safe, transportation, storage and disposal, the conditions and methods of which should be safe for public health and the biotope and which should be performed in compliance with sanitary and other normative legal documents of RF » (Article 22). «Following sanitary rules is compulsory for individuals, individual entrepreneurs and legal entities» (Article 39). «Violation of the sanitary legislation is subject to disciplinary liability or administrative or criminal responsibility» (Article 55). 4. Federal Law «On the Protection of the Natural Environment» The Law determines the legal basis for the state policy in the area of environment protection to ensure balanced solution of social and economic problems, preservation of favourable environment, biological diversity and natural resources to satisfy the demands of the present and future generations, strengthening law and order in the area of environment protection and ensuring ecological safety. «The governmental authorities in the Russian Federation in the sphere of
Recommended publications
  • Nuclear Energy in Everyday Life Nuclear Energy in Everyday Life
    Nuclear Energy in Everyday Life Nuclear Energy in Everyday Life Understanding Radioactivity and Radiation in our Everyday Lives Radioactivity is part of our earth – it has existed all along. Naturally occurring radio- active materials are present in the earth’s crust, the floors and walls of our homes, schools, and offices and in the food we eat and drink. Our own bodies- muscles, bones and tissues, contain naturally occurring radioactive elements. Man has always been exposed to natural radiation arising from earth as well as from outside. Most people, upon hearing the word radioactivity, think only about some- thing harmful or even deadly; especially events such as the atomic bombs that were dropped on Hiroshima and Nagasaki in 1945, or the Chernobyl Disaster of 1986. However, upon understanding radiation, people will learn to appreciate that radia- tion has peaceful and beneficial applications to our everyday lives. What are atoms? Knowledge of atoms is essential to understanding the origins of radiation, and the impact it could have on the human body and the environment around us. All materi- als in the universe are composed of combination of basic substances called chemical elements. There are 92 different chemical elements in nature. The smallest particles, into which an element can be divided without losing its properties, are called atoms, which are unique to a particular element. An atom consists of two main parts namely a nu- cleus with a circling electron cloud. The nucleus consists of subatomic particles called protons and neutrons. Atoms vary in size from the simple hydro- gen atom, which has one proton and one electron, to large atoms such as uranium, which has 92 pro- tons, 92 electrons.
    [Show full text]
  • 1 Potential Influences on the Prospect of Renewable Energy Development in OPEC Members Hanan Alsadi1 1. Introduction the Global
    1 Potential Influences on the Prospect of Renewable Energy Development in OPEC Members Hanan Alsadi1 1. Introduction The global energy transitioning trend escalates due to the continuous growth of energy consumption and advancing climate change. While the total fossil fuel consumption is increasing twice as fast as the average rate over the last decade, making 70% of the global energy demand, the reckless use of fossil fuel is causing substantial damage to the environment (International Energy Agency, 2018; Šolc, 2013). An effective fix to the problem while dubious is to replace the energy source by alternatives. The renewable energy (RE) offers the most definite prospect for producing clean, sustainable power in substantial quantities, which arouses interest around the world. According to Gielen and Colleagues (2019), the RE’s share of global consumption energy would rise from 15% in 2015 to 63% in 2050. However, if this increasing trend in renewable energies would also prevail among Organization of Petroleum Exporting Countries (OPEC), is subject to debate. They all have abundant potential to invest in renewable energy sources. Yet, some of the Middle Eastern and Arab Gulf OPEC members do not have or have a small amount of renewable energy sources. In contrast, other members have significant renewable energy sources. Researchers have studied some aspects of renewable energy and its relationship to the OPEC countries. For example, Wittmann (2013) looked at the potential for transitioning from petroleum exportation to renewable energy exportation among the OPEC countries. Still, Wittmann does not explain any specific transition strategies or plans for the Middle Eastern OPEC countries.
    [Show full text]
  • Commercialization and Deployment at NREL: Advancing Renewable
    Commercialization and Deployment at NREL Advancing Renewable Energy and Energy Efficiency at Speed and Scale Prepared for the State Energy Advisory Board NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Management Report NREL/MP-6A42-51947 May 2011 Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S.
    [Show full text]
  • Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism
    OCS Study BOEM 2018-013 Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism US Department of the Interior Bu reau of Ocean Energy Management Office of Renewable Energy Programs OCS Study BOEM 2018-013 Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism March 2018 Authors: George Parsons Jeremy Firestone Prepared under M12AC00017 By University of Delaware 210 Hullihen Hall, Newark, DE 19716-0099 US Department of the Interior Bu reau of Ocean Energy Management Office of Renewable Energy Programs DISCLAIMER Study collaboration and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management (BOEM), Environmental Studies Program, Washington, DC, under Agreement Number M12AC00017. This report has been technically reviewed by BOEM, and it has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management Data and Information Systems webpage (http://www.boem.gov/Environmental-Studies- EnvData/), click on the link for the Environmental Studies Program Information System (ESPIS), and search on 2018-013. The report is also available at the National Technical Reports Library at https://ntrl.ntis.gov/NTRL/. CITATION Parsons, G. Firestone, J. 2018. Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism.
    [Show full text]
  • China's Energy Situation and Its Future and the New Energy Security Concept
    ThirdThird OPECOPEC InternationalInternational SeminarSeminar ChinaChina’’ss EnergyEnergy SituationSituation andand itsits FutureFuture aandnd thethe NewNew EnergyEnergy SecuritySecurity ConceptConcept Ambassador TANG Guoqiang Permanent Mission of the People’s Republic of China to the United Nations and other International Organizations in Vienna Vienna September 12th, 2006 OutlinesOutlines I.I. TheThe CurrentCurrent EnergyEnergy SituationSituation inin ChinaChina II.II. ChinaChina’’ss FutureFuture EnergyEnergy PolicyPolicy III.III. ChinaChina’’ss NewNew EnergyEnergy SecuritySecurity ConceptConcept I.I. CurrentCurrent EnergyEnergy SituationSituation inin ChinaChina China has become one of the world largest energy producers and consumers and in 2005 Primary energy production: equivalent to 2.06 billion tons of standard coal, increased 9.5% over the previous year Coal production: 38 % of the world the 1st largest producer Crude oil production: 180 million tons ranking the 6th in the world Hydro-electricity: 401 billion kw hours ranking 1st in the world 93% Consumption: equivalent to 2.22 billion tons of standard coal Energy self-sufficiency rate: 93 % Energy self-sufficiency rate: 93 % Energy Self-sufficiency Rate HugeHuge exploitativeexploitative potentialpotential inin ChinaChina By the end of 2005 Total conventional energy recourses: 823 billion standard tons of coal Proven recoverable deposits : 139.2 billion standard tons of coal 10.1 % of the world Proven coal deposit: 12 % of the world No. 1 rank the 3rd of the world No.
    [Show full text]
  • Sources, Effects and Risks of Ionizing Radiation
    SOURCES, EFFECTS AND RISKS OF IONIZING RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2016 Report to the General Assembly, with Scientific Annexes UNITED NATIONS New York, 2017 NOTE The report of the Committee without its annexes appears as Official Records of the General Assembly, Seventy-first Session, Supplement No. 46 and corrigendum (A/71/46 and Corr.1). The report reproduced here includes the corrections of the corrigendum. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The country names used in this document are, in most cases, those that were in use at the time the data were collected or the text prepared. In other cases, however, the names have been updated, where this was possible and appropriate, to reflect political changes. UNITED NATIONS PUBLICATION Sales No. E.17.IX.1 ISBN: 978-92-1-142316-7 eISBN: 978-92-1-060002-6 © United Nations, January 2017. All rights reserved, worldwide. This publication has not been formally edited. Information on uniform resource locators and links to Internet sites contained in the present publication are provided for the convenience of the reader and are correct at the time of issue. The United Nations takes no responsibility for the continued accuracy of that information or for the content of any external website.
    [Show full text]
  • GGGI Technical Guideline No.4 – Green Energy Development
    1 GGGI Technical Guideline No.4 Green Energy Development NOVEMBER 2017 2 Acknowledgment The Green Energy Development Guidelines were developed under the guidance and leadership of Per Olof Bertilsson, Assistant Director-General of the Planning and Implementation Division at the Global Green Growth Institute (GGGI). Dereje Senshaw, Principal Specialist at GGGI, prepared the guidelines. The report benefited considerably from the review and input of GGGI experts, namely Katerina Syngellakis, Carol Litwin, Dagmar Zwebe, Pheakdey Heng, Jisu Min, Walelign Girma Teka, Gulshan Vashistha, Ahmed Alamra, Karolien Casaer, Chan Ho Park, Srabani Roy, and Inhee Chung. The final draft benefited from valuable editorial and design support by Darren Karjama, Eric Plunkett, Jeong Won Kim, Feelgeun Song, Eliza Villarino, Julie Robles, and Miguel Laranjo. 3 Contents LIST OF BOXES 5 LIST OF FIGURES 6 LIST OF TABLES 6 ABBREVIATIONS AND ACRONYMS 7 CHAPTER 1: INTRODUCTION 8 1.1 PURPOSE OF THE GUIDELINES 9 1.2 DEFINITIONS OF KEYWORDS AND PHRASES 9 1.3 HOW TO USE THE GUIDELINES 12 1.4 TARGET USERS OF THE GUIDELINES 12 1.5 WHY GREEN ENERGY DEVELOPMENT? 12 CHAPTER 2: GGGI AND GREEN ENERGY 13 DEVELOPMENT 2.1 ENERGY’S DESIRED STRATEGIC OUTCOMES 13 2.2 GGGI’S GUIDING PRINCIPLES ON SERVICE DELIVERY 14 2.3 GGGI’S MAJOR ACTIVITIES IN ENERGY SERVICE DELIVERY TO ACHIEVE 14 ENERGY OUTCOMES 2.4 INTERVENTION APPROACHES AND MAJOR SERVICE OFFERINGS 15 2.4.1 GGGI intervention approach: Inclusive green energy investment 15 2.4.2 GGGI’s major service offerings in the energy thematic area 16 CHAPTER 3: HOW TO PLAN AND DEVELOP GREEN 19 ENERGY PROGRAMS AND PROJECTS 3.1 PHASE I: DIAGNOSIS 20 3.1.1 Macroeconomic review 20 3.1.2 Policy framework assessment and strengthening 20 3.1.3 Institutional assessment 21 4 3.2 PHASE II: GREEN IMPACT ASSESSMENT 21 3.3 PHASE III: ENERGY SECTOR/SUBSECTOR STRATEGY AND PLANNING 23 3.3.1 Step 1.
    [Show full text]
  • Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation Volume 1
    About the Cover The images on the cover represent regional capabilities and resources of energy technology innovation across the United States from nuclear energy to solar and photovoltaics, and smart grid electricity to clean coal and carbon capture. Disclaimer This volume is one of two volumes and was written by the Department of Energy. This volume summarizes the results of university-hosted regional forums on regional clean energy technology innovation. The report draws on the proceedings and reports produced by the universities noted in Volume 2 for some of its content; as a result, the views expressed do not necessarily represent the views of the Department or the Administration. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. Message from the Secretary of Energy The U.S. Department of Energy (Department or DOE) is pleased to present this report, Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation. The report represents DOE’s summary of the insights gained through fourteen university-hosted workshop events held nationwide during the spring and summer of 2016. These events brought together members of Congress, governors, other federal, state, tribal, and local officials, academic leaders, private sector energy leaders, DOE officials, and other stakeholders from economic development organizations and nongovernmental organizations to examine clean energy technology innovation from a regional perspective.
    [Show full text]
  • Renewable Energy Technologies for Rural Development
    U N I T E D N ATIONS CONFEREN C E O N T R A D E A N D D EVELOPMENT Renewable Energy Technologies for Rural Development U N C T A D C U RRE nt S tud IE S O N S C IE nc E , T E C H N OLOGY and I nn OV at IO N . N º 1 UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT UNCTAD CURRENT STUDIES ON SCIENCE, TECHNOLOGY AND INNOVATION Renewable Energy Technologies for Rural Development UNITED NATIONS New York and Geneva, 2010 UNCTAD CURRENT STUDIES ON SCIENCE, TECHNOLOGY AND INNOVATION. NO.1 Notes The United Nations Conference on Trade and Development (UNCTAD) serves as the lead entity within the United Nations Secretariat for matters related to science and technology as part of its work on the integrated treatment of trade and development, investment and finance. The current work programme of UNCTAD is based on the mandates set at UNCTAD XII, held in 2008 in Accra, Ghana, as well as on the decisions by the United Nations Commission on Science and Technology for Development (CSTD), which is served by the UNCTAD secretariat. UNCTAD’s work programme is built on its three pillars of research analysis, consensus-building and technical cooperation, and is carried out through intergovernmental deliberations, research and analysis, technical assistance activities, seminars, workshops and conferences. This series of publications seeks to contribute to exploring current issues in science, technology and innovation, with particular emphasis on their impact on developing countries. The term “country” as used in this study also refers, as appropriate, to territories or areas; the designations employed and the presentation of the material do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delineation of its frontiers or boundaries.
    [Show full text]
  • Exploiting Underutilised Waste Heat to Generate Environmental Friendly
    International Journal of M echanical Engineering (IJME) ISSN(P): 2319 - 2240; ISSN( E ): 2319 - 2259 Vol. 5, Issue 3, Apr - May 2016; 1 - 10 © IASET EXPLOITING UNDERUTILISEDWASTE HEAT TO GENERATE ENVIRONMENTAL FRIENDLY ENERGY OL AYODELE & MTE KAHN Cape Peninsula University of Technology , Cape Town, South Africa ABSTRACT The growing concern over the continued usage of fossil fuels for electrical energy generation and hence the need to sign ificantly reduce reliance on this non - renewable energy source as well as the requirement for long - lived power supplies have necessitated the pragmatic shift towards the realization of cleaner, safer, and renewable energy sources. The increasing interest in space exploration, satellite activities, structural health monitoring and terrestrial monitoring in harsh and inaccessible environments place a high demand for energy sources for autonomous systems . The existing battery technologies that can be utilized for autonomous systems are plagued by short - life, low energy storage density, associated unwanted maintenance burdens of recharging or replacement and disposal of unwanted batteries which poses a threa t to the environment. Autonomous energy sources from waste heat for home appliances and industrial machineries will also mitigate the effect of global warming which threatens the environment as a result of fossil fuel energy based sources that release unde sirable carbon - monoxide into the atmosphere. Thermoelectric energy generation, based on Seebeck effect, an innovative approach to convert heat energy into usable forms can significantly contribute towards sustainable energy development and meet the growing need for power in small scale applications due to its relative advantages over other sources of energy generation. This paper presents an insight into various ways by which underutilize waste heat can be exploited to meet the growing energy demand.
    [Show full text]
  • Iceland As a Case Study
    Sustainable Energy Development: Iceland as a Case Study Brynhildur Davidsdottir, Environment and Natural Resources, University of Iceland ABSTRACT Increasing energy prices, political unrest in the Middle East and climate change are only a few issues that have pushed planning for Sustainable energy development (SED) onto the political horizon. SED is broadly defined as ‘the provision of adequate energy services at affordable cost in a secure and environmentally benign manner, in conformity with social and economic development needs’. Planning for SED implies that we need to consider the three dimensions of sustainable development, where such movement should not have negative consequences for the economy, the public (social dimension), nor the environment. This paper presents the development of the Icelandic Energy System since the year 1900 in this context. Iceland has in the last 40 years gone from being mostly reliant on coal and oil, towards extracting 73% of its primary energy needs from renewable energy, and at the same time achieved impressive economic success. Only the transportation sector relies on fossil fuels, and various experiments are being conducted to significantly reduce the reliance on imported fossil fuels. Some of those experiments include planning for a hydrogen economy by 2050. A central question that is asked in this presentation is if Iceland’s path is indeed sustainable, if it is unique and if other countries possibly can do the same. Sustainable Development Introduction Since the publication of the Brundtland Report (WCED 1987), sustainable development (SD) has evolved from a vague concept into a somewhat coherent development framework. In the Brundland report sustainable development was defined as: “development that meets the needs of the present without compromising the ability of future generations to meet their own needs”.
    [Show full text]
  • Positron Emission Tomography
    Positron emission tomography A.M.J. Paans Department of Nuclear Medicine & Molecular Imaging, University Medical Center Groningen, The Netherlands Abstract Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology. 1 Introduction The idea of in vivo measurement of biological and/or biochemical processes was already envisaged in the 1930s when the first artificially produced radionuclides of the biological important elements carbon, nitrogen and oxygen, which decay under emission of externally detectable radiation, were discovered with help of the then recently developed cyclotron. These radionuclides decay by pure positron emission and the annihilation of positron and electron results in two 511 keV γ-quanta under a relative angle of 180o which are measured in coincidence. This idea of Positron Emission Tomography (PET) could only be realized when the inorganic scintillation detectors for the detection of γ-radiation, the electronics for coincidence measurements, and the computer capacity for data acquisition and image reconstruction became available. For this reason the technical development of PET as a functional in vivo imaging discipline started approximately 30 years ago.
    [Show full text]