ECLAT D600.1 Report and “Lessons Learned” from the 1St ECLAT Scientific Workshop October 22 – 24, FMI, Helsinki, Finland Hermann Opgenoorth, IRF

Total Page:16

File Type:pdf, Size:1020Kb

ECLAT D600.1 Report and “Lessons Learned” from the 1St ECLAT Scientific Workshop October 22 – 24, FMI, Helsinki, Finland Hermann Opgenoorth, IRF ECLAT D600.1 ECLAT D600.1 Report and “Lessons Learned” from the 1st ECLAT Scientific Workshop October 22 – 24, FMI, Helsinki, Finland Hermann Opgenoorth, IRF The workshop was the first in a sequence of four topically organised ECLAT workshops and it was dedicated to initiate the scientific quality control of the delivered ECLAT data products, in particular the reliability of Cluster footprint mapping using various models during various level of magnetospheric activities, including substorms and localised field aligned currents. The workshop was attended by 30 persons, stemming mainly from the teams of the participating ECLAT partners, CAA and ESA staff, and members of the ECLAT Advisory Board. The program/agenda of the workshop can be found in a separate appendix. All presentations during the workshop have been placed in a dedicated workshop folder on the Internet. In the following we will summarise the discussions under the various agenda items and point out “Lessons Learned” and decisions for “Action Items” for the next ECLAT workshop. Workshop Introductory Talks Steve Milan opened the workshop with a general introduction to the ECLAT project. Rumi Nakamura and Pete Boakes gave a status update on the OEAW region identification product and event finding activities. • The defined and characterised regions are: Lobe, boundary region, outer plasma sheet, inner plasma sheet, the neutral sheet and the plasma sheet boundary layer. • In addition to the identification of such boundaries there will be event lists addressing in particular dynamic features like wavy current sheet, depolarization events and occurrences of thin current sheets and large FACs. • In the following discussion the issue of a difference between OPS (being a region dominated by currents) and PSBL (being dominated by flows) was raised and discussed. It was deferred to closer inspection by working groups in their activities for report back to ECLAT at the next workshop. Steve Milan gave an overview of the SuperDARN data products. • A common grid has now been developed for SuperDARN and MIRACLE data sets (to be used even for the IMAGE dataset). • A first publication (Grocott et al., 2012), and several ongoing papers have already emerged from this activity. Harri Laakso reported on the Cluster Active Archive (CAA) status. • CAA has presently 1400 registered users compared to 240 official Cluster scientists. The Cluster Final Archive (CFA) is now being developed, with a full transfer from CAA to CFA by early to mid 2013. CFA will then become the sole user interface. • ECLAT data can now be found for restricted access at: http://caa.estec.esa.int/caa_stage_search/search.xml • Whenever ECLAT decides so, the data may be released to a wider community. Hermann Opgenoorth · 1 ECLAT D600.1 Olaf Amm reported on the various MIRACLE data analysis tools, which have been further developed and optimised for use by both MIRACLE (densest network) and THEMIS (widest network). • The next step in MIRACLE development is MIRACLE-3D, which could be optimised by more magnetometers in central Scandinavia, particularly Sweden, and a new bi- static radar system (TBC). Minna Palmroth gave a general introduction to the GUMICS code, high-lighting advantages of GUMICS over other models, e.g. including a realistic ionosphere and its coupling to the magnetosphere. The planned Work Packages and consequent submissions to CAA were presented. • GUMICS provides global MHD simulations with realistic assumptions for ionosphere- magnetosphere coupling. • A parallel version of GUMICS is coming soon. Workshop Session 1 (second day of workshop) In contrast to the first day, which consisted of mainly overview presentations, this day was dedicated to more result-based discussions of present and future ECLAT products. Initial ECLAT results were reported, for instance: Steve Milan presented a new method of using spherical harmonic coefficients in quantitative analysis, further interpretation and characterisation of SuperDARN flow patterns. Mark Lester illustrated how SuperDARN data could be used to monitor the variability of the equator-ward edge of the ionospheric convection (the Heppner-Maynard boundary), the main auroral latitude and solar cycle variations in size of convection patterns. Gabor Facsko discussed footprint mapping with GUMICS, and presented some initial results from the GUMICS library runs and first test runs in preparations of the ECLAT full year run project. A long discussion evolved about the exact form and format (e.g., coordinate system, colour code, etc) of the GUMICS ECLAT-CAA products, which the workshop decided to return to in a later session (see for the results of this discussion and consequent decisions below). Nikolai Tsyganenko discussed the different magnetospheric models from St Petersburg State University. • A new model containing a more refined modular structure is under construction and a beta-version is planned for the first quarter of 2013. • In particular the present work concentrates on: a) The IMF control of the boundary shape, and not only solar wind pressure b) The flexibility of the inclusion of an equatorial current sheet c) Dipole tilt effects d) Increase in the validity region of the model e) Inclusion of a partial ring current f) Field aligned currents A question was raised in the discussion whether or not it would be possible to provide a user guide of the various relative benefits of the models, i.e. to advise potential users which Hermann Opgenoorth · 2 ECLAT D600.1 model to use for what purpose. For the next workshop the group from St Petersburg were asked to give a presentation to that end. Another question concerned the possibility to predetermine the open flux in the model, but it appears to be necessary to assimilate such a new model result via multiple model adaptations to data. Alexander Nikolaev showed ECLAT results of footprint mapping for the models TS05 and T96. Results are located at: • http://geo.phys.spbu.ru/~tsyganenko/TS05_data_and_stuff • FTP area: http://geo.phys.spbu.ru Marina Kubyshkina showed examples of mapping the Cluster and GOES via various “Tsyganenko”- codes to the ionosphere • T96, TS05 and AM02 (Adaptive Model) were compared for two spacecraft (Cluster and GOES) • The mapping accuracy was around 1 degree or better for most models, with a higher error for Cluster at higher activity level (3 deg) • However, generally there was no clear correlation between overall mapping accuracy and activity level • The mapping accuracy decreased with radial distance for most cases. • It might not be possible to derive a definite “accuracy map”, as there are too many parameters feeding into the observed uncertainties. Nevertheless, it was proposed by Harri Laakso that one should include the list of identified uncertainties as an ancillary information document to the CAA deliverables. In addition, Steve Milan pointed out that not only latitudinal error, but also MLT shift must be considered in the derived mapping uncertainties. Hermann Opgenoorth presented two example studies (Zivkovic et al., 2012, Cully et al., 2013) of meaningful and exact mapping of field aligned currents in the vicinity of the dayside magnetospheric cusp between CHAMP and Cluster, and ground-based deep tail data- coordination in the case of substorm onset reconnection, respectively. Alexander Nikolaev gave a talk on the testing of an updated substorm current wedge model (SCW2L), where wire type SCW model parameters and R1/R2 current sheets can be added to a model, using dipolarisation amplitudes determined by actual Themis and GOES data. It was found that double current loops systems might become necessary to reproduce the observed magnetic field changes, and suggestions for future Cluster based studies are now required for further validation of the model. Hermann Opgenoorth proposed three potential event studies for field line mapping tests during different levels of substorm activity, all of them located overhead or close to the MIRACLE ground based network, with the footprint of Cluster (and in one case even CHAMP) at a region of central substorm activity. His event examples were: • 20.04.2002 late afternoon sector 1700-2100 UT– Growth phase and westward travelling surge, originating from substorm onset to the east of MIRACLE • 08.09.2002 midnight sector 2000-2200 UT – Overhead substorm onset • 04.09.2005 midnight sector 2000-2200 UT– 2nd Substorm intensification at higher latitudes over Svalbard Workshop session 2 Hermann Opgenoorth · 3 ECLAT D600.1 Gabor Facsko gave a more detailed review concerning the development and distribution of the ECLAT GUMICS static run library. It was found a.o. that the GUMICS runs were not stable for some chosen parameter-values of exactly 0, and that therefore some minute deviations had to be introduced to stabilise the calculations and avoiding zero-divisions. The results of the library runs can now be found under • http://hwa.fmi.fi • eclat.fmi.fi/dev/login2.php (requires username and passwd) Evgenij Gordeev showed a test of the GUMICS-4 against empirical data, pointing out several critical facts: • Different dynamics of the real magnetosphere during the same SW conditions, as the real magnetosphere often has a memory of previous solar wind conditions, while models start from the present value as chosen by the user. • Lobe magnetic field: Gumics < 20% than empirical (Fairfield Jones) • Magnetotail radius: 10% less than Shue model • Plasma sheet pressure: ~OK (agrees in average but with large scatter) • Plasma sheet geometry: typically very good agreement • Cross polar cap potential: GUMICS typically lower value and much wider distribution • Less magnetic flux in GUMICS magnetotail (especially for southward IMF) • In summary: Generally GUMICS-4 satisfactorily simulates the magnetospheric system (in a statistical sense) In the following discussion proposals were made to include the coefficient method of Grocott et al., for a more quantitative assessment of the GUMICS results concerning convection. A general finding is that GUMICS appears to perform better in “real data” simulations than for these “synthetic” library runs, where fixed values were chosen.
Recommended publications
  • Localized Fast Flow Disturbance Observed in the Plasma Sheet And
    Annales Geophysicae (2005) 23: 553–566 SRef-ID: 1432-0576/ag/2005-23-553 Annales © European Geosciences Union 2005 Geophysicae Localized fast flow disturbance observed in the plasma sheet and in the ionosphere R. Nakamura1, O. Amm2, H. Laakso3, N. C. Draper4, M. Lester4, A. Grocott4, B. Klecker5, I. W. McCrea6, A. Balogh7, H. Reme` 8, and M. Andre´9 1Inst. fur¨ Weltraumforschung der Osterreichischen¨ Akademie der Wissenschaften, A-8042, Graz, Austria 2Finnish Meteorological Institute, Space Research, FIN-00101 Helsinki, Finland 3Solar and Solar Terrestrial Missions Div., ESTEC, 2200 AG Noordwijk, The Netherlands 4Radio and Space Plasma Physics Group, Dept. of Phys. and Astron., Leicester LE17RH, UK 5Max-Planck Inst. fur¨ Extraterrestrische Physik, D-85748 Garching, Germany 6Space Science and Technology Dept., Rutherford Appleton Lab., Chilton, Didcot, Oxon OX11QX, UK 7Space and Atmospheric Phys. Group, Blackett Lab., Imperial College, London SW72BZ, UK 8Centre d’Etude Spatiale des Rayonnements, F-31028 Toulouse Cedex 4, France 9Swedish Institute of Space Physics, SE-75121 Uppsala, Sweden Received: 22 June 2004 – Revised: 10 November 2004 – Accepted: 19 November 2004 – Published: 28 February 2005 Abstract. An isolated plasma sheet flow burst took Key words. Ionosphere (Electric fields and currents) – Mag- place at 22:02 UT, 1 September 2002, when the Clus- netosphere (Magnetosphere-ionosphere interactions; Plasma ter footpoint was located within the area covered by the convection) Magnetometers-Ionospheric Radars-All-sky Cameras Large Experiment (MIRACLE). The event was associated with a clear but weak ionospheric disturbance and took place during 1 Introduction a steady southward IMF interval, about 1 h preceding a ma- jor substorm onset.
    [Show full text]
  • Cluster 5 Years
    1 TAIL RECONNECTION AND PLASMA SHEET FAST FLOWS Rumi Nakamura, Wolfgang Baumjohann, Andrei Runov, and Yoshihiro Asano Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A–8042 Graz, Austria, Email: [email protected] ABSTRACT and energy transport in the magnetotail. These fast flows are considered to take place as a consequence of recon- nection. The flows near the boundary of the plasma sheet The present state of understanding the process of tail re- consist of field-aligned beams, whereas the flows in the connection and plasma sheet fast flows obtained from central plasma sheet tend to have a large bulk-flow com- Cluster measurements is reviewed. Being a constellation ponent. The latter flows organize themselves in 10-min of four identical spacecraft, Cluster allows discrimination timescale flow enhancements, which are called bursty of spatial and temporal variations in magnetic field and bulk flow (BBF) events, embedding velocity peaks of 1- plasma parameters. Thus it is ideal to study the structure min duration, which are called flow bursts, and have char- and dynamics of plasma and fields relevant to reconnec- acteristics distinctly different from plasma sheet bound- tion, which is a highly dynamic system. Observations of ary layer flows (1; 2). current sheet crossings near the X-line obtained the ge- ometry of reconnection region and confirmed the effects Cluster traversed the magnetotail covering regions Earth- of unmagnetized ions including the Hall-current and its ward of 19 RE during the past four summer seasons since closure currents. Cluster multi-point observations iden- July 2001. The tetrahedron scale was between 250 km tified three dimensional structures and dynamics of the and 4000 km, which were changed every year, so that fast flows in the plasma sheet, which could be ascribed to characteristics at different scales could be identified.
    [Show full text]
  • Evolution of Dipolarization in the Near-Earth Current Sheet Induced by Earthward Rapid flux Transport
    Ann. Geophys., 27, 1743–1754, 2009 www.ann-geophys.net/27/1743/2009/ Annales © Author(s) 2009. This work is distributed under Geophysicae the Creative Commons Attribution 3.0 License. Evolution of dipolarization in the near-Earth current sheet induced by Earthward rapid flux transport R. Nakamura1, A. Retino`1, W. Baumjohann1, M. Volwerk1, N. Erkaev2, B. Klecker3, E. A. Lucek4, I. Dandouras5, M. Andre´6, and Y. Khotyaintsev6 1Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria 2Institute of Computation Modelling, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russia 3Max-Planck-Institut fur¨ extraterrestrische Physik, P.O. Box 1312, Garching, 85741, Germany 4Imperial College, London, SW7 2BZ, UK 5CESR/CNRS, 9 Ave. du Colonel Roche, B.P. 4346, 31028 Toulouse Cedex 4, France 6Swedish Institute of Space Physics, P.O. Box 537, 75121 Uppsala, Sweden Received: 6 October 2008 – Revised: 5 February 2009 – Accepted: 18 February 2009 – Published: 9 April 2009 Abstract. We report on the evolution of dipolarization dipolarization pulses could differ, depending on the configu- and associated disturbances of the near-Earth current sheet ration of the current sheet. during a substorm on 27 October 2007, based upon Clus- Keywords. Magnetospheric physics (Plasma convection; ter multi-point, multi-scale observations of the night-side Plasma sheet; Storms and substorms) plasma sheet at X∼−10 RE. Three dipolarization events were observed accompanied by activations on ground mag- netograms at 09:07, 09:14, and 09:22 UT. We
    [Show full text]
  • A Space Plasma Physics Data Resource for the ESA Cluster Active Archive
    1 ECLAT European Cluster Assimilation Technology A space plasma physics data resource for the ESA Cluster Active Archive 2 Contents 1. Scientific and technical description 3 1.1 Concepts and objectives 3 1.1.1 Micro-scale, in situ fundamental plasma physics 5 1.1.2 Meso-scale ionospheric observations for coordinated space- and ground-based studies of magnetosphere-ionosphere coupling 6 1.1.3 Global scale observations for system-level studies of magnetospheric dynamics and solar wind-magnetosphere-ionosphere coupling 8 1.1.4 Physics-based modelling of the magnetosphere 9 1.1.5 Assimilation and “reanalysis” of observation data and model simulation 10 1.2 Progress beyond the state-of-the-art 11 1.2.1 Present state-of-the-art 11 1.2.2 Anticipated achievements of ECLAT 13 1.3 Methodology and work plan 14 1.3.1 Overall strategy of the work plan 14 1.3.2 Detailed work package descriptions 16 1.4 References 18 2. Implementation 20 2.1 Management structure 20 2.1.1 Executive board, management support team, advisory panel, and work-package leaders 20 2.1.3 Project meetings and workshops 21 2.2 Individual participants 22 2.2.1 University of Leicester, UK 22 2.2.2 Oesterreichische Akademie der Wissenschaften, Austria 23 2.2.3 Finnish Meteorological Institute, Finland 24 2.2.4 St. Petersburg State University, Russia 25 2.2.5 Institutet för rymdfysik, Sweden 27 3. Impact 28 3.1 Expected impacts listed in the work programme 28 3 European Cluster Assimilation Technology (ECLAT) Principle proponents: Steve MILAN, Mark LESTER (ULEIC, UK); Rumi NAKAMURA (OEAW, Austria); Kirsti KAURISTIE, Minna PALMROTH (FMI, Finland); Victor SERGEEV (SPSU, Russia); and Hermann OPGENOORTH (IRF, Sweden).
    [Show full text]
  • Lowaltitude Electron Acceleration Due to Multiple Flow Bursts in The
    GeophysicalResearchLetters RESEARCH LETTER Low-altitude electron acceleration due to multiple flow 10.1002/2013GL058982 bursts in the magnetotail Key Points: R. Nakamura1, T. Karlsson2, M. Hamrin3, H. Nilsson4, O. Marghitu5,O.Amm6, C. Bunescu5, • First observation of multiple flow V. Constantinescu5,H.U.Frey7, A. Keiling7, J. Semeter8, E. Sorbalo9,J.Vogt9, signatures on near-conjugate 10 11 flux tubes C. Forsyth , and M. V. Kubyshkina • Low-energy electron profile suggests Alfvénic acceleration due to fast flow 1Space Research Institute, Austrian Academy of Sciences, Graz, Austria, 2Space and Plasma Physics, Royal Institute of • Multiple flow bursts are obtained Technology, Stockholm, Sweden, 3Department of Physics, Umeå University, Umeå, Sweden, 4Swedish Institute of Space to extend over large radial distance Physics, Kiruna, Sweden, 5Institute for Space Sciences, Bucharest, Romania, 6Finnish Meteorological Institute, Helsinki, in tail Finland, 7Space Sciences, Laboratory, University of California, Berkeley, California, USA, 8Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts, USA, 9School of Engineering and Science, Jacobs Supporting Information: University Bremen, Bremen, Germany, 10UCL Mullard Space Science Laboratory, Dorking, UK, 11Earth Physics • Readme Department, St. Petersburg State University, St. Petersburg, Russia • Figure S1 • Figure S2 Abstract At 10:00 UT on 25 February 2008, Cluster 1 spacecraft crossed the near-midnight auroral zone, Correspondence to: at about 2 RE altitude, while two of the Time History of Events and Macroscale Interactions During R. Nakamura, Substorms (THEMIS) spacecraft, THD and THE, observed multiple flow bursts on the near-conjugate [email protected] plasma sheet field lines. The flow shear pattern at THEMIS was consistent with the vortical motion at duskside of a localized flow channel.
    [Show full text]
  • Near-Earth Plasma Sheet Boundary Dynamics During Substorm
    Nakamura et al. Earth, Planets and Space (2017) 69:129 DOI 10.1186/s40623-017-0707-2 FRONTIER LETTER Open Access Near‑Earth plasma sheet boundary dynamics during substorm dipolarization Rumi Nakamura1* , Tsugunobu Nagai2, Joachim Birn3, Victor A. Sergeev4, Olivier Le Contel5, Ali Varsani1, Wolfgang Baumjohann1, Takuma Nakamura1, Sergey Apatenkov4, Anton Artemyev6, Robert E. Ergun7, Stephen A. Fuselier8, Daniel J. Gershman9, Barbara J. Giles9, Yuri V. Khotyaintsev10, Per‑Arne Lindqvist11, Werner Magnes1, Barry Mauk12, Christopher T. Russell6, Howard J. Singer13, Julia Stawarz14, Robert J. Strangeway6, Brian Anderson12, Ken R. Bromund9, David Fischer1, Laurence Kepko9, Guan Le9, Ferdinand Plaschke1, James A. Slavin15, Ian Cohen12, Allison Jaynes7 and Drew L. Turner16 Abstract We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL ~ 1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 RE were present− in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) Bz disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Mul‑ tiscale were located in the southern hemisphere plasma sheet and observed fast fow disturbances associated with this dipolarization. The high-time-resolution measurements from MMS enable us to detect the rapid motion of the feld structures and fow disturbances separately. A distinct pattern of the fow and feld disturbance near the plasma boundaries was found. We suggest that a vortex motion created around the localized fows resulted in another feld- aligned current system at the of-equatorial side of the BBF-associated R1/R2 systems, as was predicted by the MHD simulation of a localized reconnection jet.
    [Show full text]
  • Space Plasma Introduction Rumi Nakamura
    INSTITUT FÜR WELTRAUMFORSCHUNG VOYAGE 2050 WORKSHOP, OCTOBER 29-31 2019, MADRID The Sun, planets, magnetosphere and plasma physics: Space Plasma Introduction Rumi Nakamura Space Research Institute, Austrian Academy of Sciences IWF.OEAW.AC.AT (Moore, Burch et al., 2017) INSTITUT FÜR WELTRAUMFORSCHUNG IN-SITU PLASMA MEASUREMENTS Earth magnetosphere Heliosphere IWF.OEAW.AC.AT INSTITUT FÜR WELTRAUMFORSCHUNG Space Plasma White Papers Solar & “Heliospheric” plasma • S. Matthews: Solar Particle Acceleration, Radiation & Kinetics • I. McCrea:"The Grand European Heliospheric Observatory" • R. Wimmer-Schweingruber: In-situ Investigations of the Local Interstellar Medium Near Earth plasma • J. Rae: What are the fundamental modes of energy transfer and partitioning in the coupled Magnetosphere-Ionosphere system? • A. Retino: Particle Energization in Space Plasmas: Towards a Multi-Point, Multi-Scale Plasma Observatory • D. Verscharen/R. Wicks: A Case for Electron-Astrophysics • G. Branduardi-Raymont: Exploring Solar-Terrestrial Interactions via Multiple Observers Planetary plasma • E. Roussos: The in-situ exploration of Jupiter's radiation belts • B. Sanchez-Cano: Mars' plasma system, Scientific potential of coordinated multi-point missions, 'The next generation‘ • M. Yamauchi: Plasma-neutral gas interactions in various space environments IWF.OEAW.AC.AT INSTITUT FÜR WELTRAUMFORSCHUNG White papers with also interest in space plasma Solar plasma • V. Krasnoselskikh: In situ studies of the solar corona after Parker Solar Probe and Solar Orbiter Planets & Moons • L. Fletcher: Ice Giant Systems: Scientific Potential of Missions to Uranus and Neptune • A. Sulaiman: Enceladus and Titan: Emerging worlds of the solar system • G. Choblet: Enceladus as a potential oasis for life: Science goals and investigations for future explorations • S. Rodriguez: Science goals and mission concepts for a future orbital and in situ exploration of Titan • M.
    [Show full text]
  • Program Booklet (Pdf)
    Monday 27 Nov Tuesday 28 Nov Wednesday 29 Nov Thursday 30 Nov Friday 1 Dec 09:00 Keynote & Live Keynote & Live Keynote & Live Keynote & Live Registration Programme Overview Forecast 9:00-9:45 Forecast 9:00-9:45 Forecast 9:00-9:45 Forecast 9:00-9:45 09:30 Coffee 10:00 Sessions 4,5,6 Sessions 7,8,9 Sessions 10,11,12 Sessions 13,14,15 Tutorial 10:00-12:00 9:45-11:00 9:45-11:00 9:45-11:00 9:45-11:00 10:30 & 11:00 Topical Discussions Posters 1-9 Posters 1-9 Posters 10-15 Posters 10-15 10:45-12:00 11:00-11:45 11:00-11:45 11:00-11:45 11:00-11:45 11:30 12:00 Lunch Sessions 4,5,6 Sessions 7,8,9 Sessions 10,11,12 Sessions 13,14,15 11:45-13:00 11:45-13:00 11:45-13:00 11:45-13:00 12:30 12:00-13:00 13:00 Opening Lunch 13:00-13:45 Lunch Lunch Lunch 13:30 13:00-14:00 Keynote 13:45-14:15 13:00-14:30 13:00-14:30 13:00-14:30 14:00 Round Table Sessions 1,2,3 14:00-15:00 1 14:30 Keynote 14:30-15:00 Keynote 14:30-15:00 Keynote 14:30-15:00 14:15-15:30 15:00 Topical Discussions SWWT Topical Discussions Topical Discussions 15:30 Posters 1-9 15:00-16:15 15:00-16:30 15:00-16:15 15:00-16:15 16:00 Sessions 1,2,3 Posters 1-9 Posters 10-15 Coffee 16:15-16:45 16:30 Coffee 16:00-17:15 16:15-17:15 16:15-17:15 17:00 Fair 17:30 Topical Discussions Topical Discussions Topical Discussions 17:15-18:30 17:15-18:30 17:00-18:30 17:15-18:30 18:00 —- 18:30 —- Medal Ceremony —- 19:00 —- 18:45-19:45 Beer after work 19:30 18:30-20:30 Dinner 20:00 Welcome reception Music evening 19:45-21:15 19:30-22:30 20:30 20:00-22:00 —- Floor Plan 2 Monday, 27 November 2017 09:00 Registration desk
    [Show full text]
  • On the Basis of All-Sky TV Records of Auroras, Faint Auroral
    J. Geomag. Geoelectr., 39, 609-624,1987 Oscillations in Drifts of Auroral Patches Takasi OGUTI,Rumi NAKAMURA,and Tatsundo YAMAMOTO GeophysicsResearch Laboratory, Universityof Tokyo, Tokyo, Japan (ReceivedJune 11,1987; Revised August 3, 1987) On the basis of all-sky TV records of auroras, faint auroral patches (non- pulsating in luminosity) are found to oscillatorily drift associated with concurrent magneticpulsations on the ground. These oscillationsin the drifts of auroral patches are found to be consistent with the oscillations in the electrostatic electric field associatedwith the concurrent magneticpulsations. This impliesthat these magnetic pulsations are brought forth by ionospheric electric currents which are produced by electrostaticelectric fieldsassociated with shear Alfven waves in the magnetosphere. The result, therefore, indicates that the simultaneous measurement of the drifts of auroral structures at the time of ground magneticpulsations is a convenient method of examining whether the magneticpulsations are really ascribedto HM wavefields propagating down from the magnetosphere,or if they are essentiallycaused by the change in conductivity inhomogeneity in the ionosphere. It is also shown that the azimuthal phase speed (wave length), as well as the oscillation amplitude, highly varies from the dayside to the evening, i.e., it is larger in the dayside and becomes much smaller toward the evening sectors. Theory must take this steep longitudinal non-uniformityinto consideration. 1. Introduction Faint auroral patches (non-pulsating in luminosity) were seen above La Ronge, Saskatchewan, Canada, in the evening on February 17, 1980 during the period of the joint University of Tokyo-University of British Columbia Aurora-ULF-VLF campaign, coordinated with the Canadian Pulsating Aurora Campaign (MCEWEN and DUNCAN,1981).
    [Show full text]
  • A Debate on Substorm Expansion Onset Mechanism
    Updating the Near-Earth Neutral Line Model Wolfgang Baumjohann & Rumi Nakamura Institut für Weltraumphysik der Österreichischen Akademie der Wissenschaften Schmiedlstrasse 6, A-8042 Graz, Austria Email: [email protected], [email protected] Abstract In the past thirty years the Near-Earth Neutral Line model for substorms has been proven to be correct in its ba- sic assumption, i.e., that a new neutral line is created near the Earth during substorm onset. Yet there have also been numerous changes and additions to this model, which were necessary to give a more complete and deeper understanding of the substorm process. This process is still continuing. 1. Introduction More than three decades ago, the first phenomenological description of substorm in terms of auroral activity was introduced (Akasofu, 1964). The auroral substorm concept was extended soon after to encompass disturbances throughout the entire magnetosphere-ionosphere system. The energy for substorms was attributed to a physical process known as magnetic reconnection, envisioned to convert energy between magnetic field and charged particles by cutting magnetic field lines and rejoining them with different ones. Thirty years ago, McPherron et al. (1970) and Hones et al. (1970) have put together the first aspects of a phe- nomenological substorm model, which had as key ingredient the development of a new magnetic neutral line closer to the Earth (than the distant neutral line at about 80-100 RE) during substorm onset, and was subsequently called Near-Earth Neutral Line model, or short NENL model. This model has now been around for more than 25 years. During these years, it has been evolved considerably.
    [Show full text]
  • Plasma Coupling in the Auroral Magnetosphere–Ionosphere System (POLARIS)
    Proposal for an ISSI International Team in Space Science Plasma Coupling in the Auroral Magnetosphere–Ionosphere System (POLARIS) Abstract Astrophysical context. Fundamental processes in the plasma universe are often organized by magnetic fields and accompanied by energetic particles. Examples range from planetary aurorae and solar activity to astrophysical shocks and pulsar magnetospheres (Fig. 1). Magnetic coupling works across very different plasma regimes and may yield complex interaction patterns. An ideal test-bed for studying this type of fundamental plasma coupling is the geospace environment where the collisionless magnetospheric plasma interacts with the collisional polar ionosphere through exchange of energetic particles, electromagnetic fields and currents. While the magnetosphere–ionosphere (M–I) coupling in the morning and evening sectors is often rather steady and can be well described by simplified current systems and electromagnetic fields, the transition region in the midnight sector (Fig. 2), known as the Harang region (HR), is much more dynamic. The current and field configuration is complex and essentially three-dimensional, and the HR is believed to play an important role in the substorm cycle. The auroral M–I system is typically far from equilibrium and the substorm phases correspond to different conditions of the large scale energy flux through this system, associated with loading / unloading of magnetic energy. Even if a direct connection is difficult to establish at present, similar systems may occur quite generally in magnetized astrophysical plasmas. Project objectives. The project aims to investigate the M–I coupling modes in the HR, by exploring the 3-D configuration and temporal evolution of the system during the various substorm phases.
    [Show full text]
  • Localized Fast Flow Disturbance Observed in the Plasma Sheet
    Annales Geophysicae (2005) 23: 553–566 SRef-ID: 1432-0576/ag/2005-23-553 Annales © European Geosciences Union 2005 Geophysicae Localized fast flow disturbance observed in the plasma sheet and in the ionosphere R. Nakamura1, O. Amm2, H. Laakso3, N. C. Draper4, M. Lester4, A. Grocott4, B. Klecker5, I. W. McCrea6, A. Balogh7, H. Reme` 8, and M. Andre´9 1Inst. fur¨ Weltraumforschung der Osterreichischen¨ Akademie der Wissenschaften, A-8042, Graz, Austria 2Finnish Meteorological Institute, Space Research, FIN-00101 Helsinki, Finland 3Solar and Solar Terrestrial Missions Div., ESTEC, 2200 AG Noordwijk, The Netherlands 4Radio and Space Plasma Physics Group, Dept. of Phys. and Astron., Leicester LE17RH, UK 5Max-Planck Inst. fur¨ Extraterrestrische Physik, D-85748 Garching, Germany 6Space Science and Technology Dept., Rutherford Appleton Lab., Chilton, Didcot, Oxon OX11QX, UK 7Space and Atmospheric Phys. Group, Blackett Lab., Imperial College, London SW72BZ, UK 8Centre d’Etude Spatiale des Rayonnements, F-31028 Toulouse Cedex 4, France 9Swedish Institute of Space Physics, SE-75121 Uppsala, Sweden Received: 22 June 2004 – Revised: 10 November 2004 – Accepted: 19 November 2004 – Published: 28 February 2005 Abstract. An isolated plasma sheet flow burst took Key words. Ionosphere (Electric fields and currents) – Mag- place at 22:02 UT, 1 September 2002, when the Clus- netosphere (Magnetosphere-ionosphere interactions; Plasma ter footpoint was located within the area covered by the convection) Magnetometers-Ionospheric Radars-All-sky Cameras Large Experiment (MIRACLE). The event was associated with a clear but weak ionospheric disturbance and took place during 1 Introduction a steady southward IMF interval, about 1 h preceding a ma- jor substorm onset.
    [Show full text]