A Debate on Substorm Expansion Onset Mechanism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Magnetic Storms and Substorms
ILWS WORKSHOP 2006, GOA, FEBRUARY 19-24, 2006 On magnetic storms and substorms G. S. Lakhina, S. Alex, S. Mukherjee and G. Vichare Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai-410218, India Abstract. Magnetospheric substorms and storms are indicators of geomagnetic activity. Whereas the geomagnetic index AE (auroral electrojet) is used to study substorms, it is common to characterize the magnetic storms by the Dst (disturbance storm time) index of geomagnetic activity. This talk discusses briefly the storm-substorms relationship, and highlights some of the characteristics of intense magnetic storms, including the events of 29-31 October and 20-21 November 2003. The adverse effects of these intense geomagnetic storms on telecommunication, navigation, and on spacecraft functioning will be discussed. Index Terms. Geomagnetic activity, geomagnetic storms, space weather, substorms. _____________________________________________________________________________________________________ 1. Introduction latitude magnetic fields are significantly depressed over a Magnetospheric storms and substorms are indicators of time span of one to a few hours followed by its recovery geomagnetic activity. Where as the magnetic storms are which may extend over several days (Rostoker, 1997). driven directly by solar drivers like Coronal mass ejections, solar flares, fast streams etc., the substorms, in simplest terms, are the disturbances occurring within the magnetosphere that are ultimately caused by the solar wind. The magnetic storms are characterized by the Dst (disturbance storm time) index of geomagnetic activity. The substorms, on the other hand, are characterized by geomagnetic AE (auroral electrojet) index. Magnetic reconnection plays an important role in energy transfer from solar wind to the magnetosphere. Magnetic reconnection is very effective when the interplanetary magnetic field is directed southwards leading to strong plasma injection from the tail towards the inner magnetosphere causing intense auroras at high-latitude nightside regions. -
Space Weather and Real-Time Monitoring
Data Science Journal, Volume 8, 30 March 2009 SPACE WEATHER AND REAL-TIME MONITORING S Watari National Institute of Information and Communications Technology, 4-2-1 Nukuikita, Koganei, Tokyo 184-8795, Japan Email: [email protected] ABSTRACT Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES) in association with the International Geophysical Year (IGY) and importance of real-time monitoring in space weather. Keywords: Space Weather, Real-time Monitoring, International Space Environment Service (ISES) 1 INTRODUCTION The International Geophysical Year (IGY) took place between 1957 and 1958. In the IGY, the first artificial satellite, Sputnik 1, was launched on 4 October, 1957. After approximately 50 years since the Sputnik, now we use many satellites for communication, broadcast, navigation, meteorological observation, and so on. After several failures of satellites, we notice that we can not neglect the space environment, which affects manmade technology systems. It is called “space weather.” Researches of space weather are on going all over the world now. During the IGY, the information of Alert and Special World Interval (SWI) was exchanged among participated institutes for coordinated observations of the Sun and geophysical environment. The Alert was distributed whenever solar activity is unusually high and significant geomagnetic, auroral, ionospheric or cosmic ray effects are probable. The SWI was distributed whenever a possibility of an outstanding geomagnetic storm is high during the period of the Alert. -
Ring Current Coupling: a Comparison of Isolated and Compound Substorms
manuscript submitted to JGR: Space Physics 1 Substorm - Ring Current Coupling: A comparison of 2 isolated and compound substorms 1 1 2 3 1 3 J. K. Sandhu , I. J. Rae ,M.P.Freeman , M. Gkioulidou , C. Forsyth ,G. 4 5 6 4 D. Reeves ,K.R.Murphy , M.-T. Walach 1 5 Department of Space and Climate Physics, Mullard Space Science Laboratory, University College 6 London, Dorking, RH5 6NT, UK. 2 7 British Antarctic Survey, Cambridge, CB3 0ET, UK. 3 8 Applied Physics Laboratory, John Hopkins University, Maryland, USA. 4 9 Los Alamos National Laboratory, Los Alamos, USA. 5 10 University of Maryland, USA. 6 11 Lancaster University, LA1 4YW, UK. 12 Key Points: 13 • Quantitative estimates of ring current energy for compound and isolated substorms 14 are shown. 15 • The energy content and post-onset enhancement is larger for compound compared 16 to isolated substorms. 17 • Solar wind coupling is a key driver for di↵erences in the ring current between iso- 18 lated and compound substorms. Corresponding author: Jasmine K. Sandhu, [email protected] –1– manuscript submitted to JGR: Space Physics 19 Abstract 20 Substorms are a highly variable process, which can occur as an isolated event or as part 21 of a sequence of multiple substorms (compound substorms). In this study we identify 22 how the low energy population of the ring current and subsequent energization varies 23 for isolated substorms compared to the first substorm of a compound event. Using ob- + + 24 servations of H and O ions (1 eV to 50 keV) from the Helium Oxygen Proton Elec- 25 tron instrument onboard Van Allen Probe A, we determine the energy content of the ring 26 current in L-MLT space. -
Localized Fast Flow Disturbance Observed in the Plasma Sheet And
Annales Geophysicae (2005) 23: 553–566 SRef-ID: 1432-0576/ag/2005-23-553 Annales © European Geosciences Union 2005 Geophysicae Localized fast flow disturbance observed in the plasma sheet and in the ionosphere R. Nakamura1, O. Amm2, H. Laakso3, N. C. Draper4, M. Lester4, A. Grocott4, B. Klecker5, I. W. McCrea6, A. Balogh7, H. Reme` 8, and M. Andre´9 1Inst. fur¨ Weltraumforschung der Osterreichischen¨ Akademie der Wissenschaften, A-8042, Graz, Austria 2Finnish Meteorological Institute, Space Research, FIN-00101 Helsinki, Finland 3Solar and Solar Terrestrial Missions Div., ESTEC, 2200 AG Noordwijk, The Netherlands 4Radio and Space Plasma Physics Group, Dept. of Phys. and Astron., Leicester LE17RH, UK 5Max-Planck Inst. fur¨ Extraterrestrische Physik, D-85748 Garching, Germany 6Space Science and Technology Dept., Rutherford Appleton Lab., Chilton, Didcot, Oxon OX11QX, UK 7Space and Atmospheric Phys. Group, Blackett Lab., Imperial College, London SW72BZ, UK 8Centre d’Etude Spatiale des Rayonnements, F-31028 Toulouse Cedex 4, France 9Swedish Institute of Space Physics, SE-75121 Uppsala, Sweden Received: 22 June 2004 – Revised: 10 November 2004 – Accepted: 19 November 2004 – Published: 28 February 2005 Abstract. An isolated plasma sheet flow burst took Key words. Ionosphere (Electric fields and currents) – Mag- place at 22:02 UT, 1 September 2002, when the Clus- netosphere (Magnetosphere-ionosphere interactions; Plasma ter footpoint was located within the area covered by the convection) Magnetometers-Ionospheric Radars-All-sky Cameras Large Experiment (MIRACLE). The event was associated with a clear but weak ionospheric disturbance and took place during 1 Introduction a steady southward IMF interval, about 1 h preceding a ma- jor substorm onset. -
1. State of the Magnetosphere
VOL. 78, NO. 16 3OURNAL OF GEOPHYSICAL RESEARCH 3UNE 1, 1973 SatelliteStudies of MagnetosphericSubstorms on August15, 1968 1. Stateof the Magnetosphere R. L. M CPHERRON Department o] Planetary and SpaceScience and Institute o] Geophysicsand Planetary Physics University o] California, Los Angeles,California 90024 The sequenceof eventsoccurring throughou.t the magnetosphereduring a substormhas not been precisely determined. This paper introduces a collection.of papers that attempts to establish this sequencefor two substormson August 15, 1968. Data from a wide variety of sourcesare used, the major emphasisbeing changesin the magnetic field. In this paper we use ground magnetograms to determine the onset times of two substorms that occurred while the Ogo 5 satellite was inbound on the midnight meridian through the cusp region of the geomagnetictail (the region of rapid changefrom taillike to dipolar field). We concludethat at least two worldwide substormexpansions were precededby growth phases.Probable begin- nings of these phaseswere at 0330 and 0640 UT. However, the onset of the former growth phase was partially obscuredby the effects of a preceding expansionphase around 0220 and a possible localized event in the auroral zone near 0320 UT. The onsets of the cor- respondingexpansion phases were 0430 and 0714 UT. Further support for these determina- tions is provided by data discussedin the subsequentnotes. The precise sequenceof events that occurs Ogo 5 in the near tail, and ATS I at syn- during a magnetosphericsubstorm has not been chronousorbit. Solar wind plasma parameters established.Among the reasons for this are were measured by Vela 4A. Magnetospheric lack of consistencyin the definition of sub- convection is inferred from a combination of storm onset and the wide variability of suc- plasmapauseobservations on Ogo 4 and 5 in cessivesubstorms. -
Sign-Singularity Analysis of Field-Aligned Currents in the Ionosphere
atmosphere Article Sign-Singularity Analysis of Field-Aligned Currents in the Ionosphere Giuseppe Consolini 1,* , Paola De Michelis 2 , Igino Coco 2 , Tommaso Alberti 1 , Maria Federica Marcucci 1 , Fabio Giannattasio 2 and Roberta Tozzi 2 1 INAF-Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Rome, Italy; [email protected] (T.A.); [email protected] (M.F.M.) 2 Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italy; [email protected] (P.D.M.); [email protected] (I.C.); [email protected] (F.G.); [email protected] (R.T.) * Correspondence: [email protected] Abstract: Field-aligned currents (FACs) flowing in the auroral ionosphere are a complex system of upward and downward currents, which play a fundamental role in the magnetosphere–ionosphere coupling and in the ionospheric heating. Here, using data from the ESA-Swarm multi-satellite mission, we studied the complex structure of FACs by investigating sign-singularity scaling features for two different conditions of a high-latitude substorm activity level as monitored by the AE index. The results clearly showed the sign-singular character of FACs supporting the complex and filamentary nature of these currents. Furthermore, we found evidence of the occurrence of a topological change of these current systems, which was accompanied by a change of the scaling features at spatial scales larger than 30 km. This change was interpreted in terms of a sort of Citation: Consolini, G.; De Michelis, P.; Coco, I.; Alberti, T.; Marcucci, M.F.; symmetry-breaking phenomenon due to a dynamical topological transition of the FAC structure as a Giannattasio, F.; Tozzi, R. -
A Profile of Space Weather
A Profile of Space Weather Space weather describes the conditions in space that affect Earth and its technological systems. Space weather is a consequence of the behavior of the Sun, the nature of Earth’s magnetic field and atmosphere, and our location in the solar system. The active elements of space weather are particles, electromagnetic energy, and magnetic field, rather than the more commonly known weather contributors of water, temperature, and air. The Space Weather Prediction Center (SWPC) forecasts space weather to assist users in avoiding or mitigating severe space weather. Most disruptions caused by space weather storms affect technology, With the rising sophistication of our technologies, and the number of people that rely on this technology, vulnerability to space weather events has increased dramatically. Geomagnetic Storms Induced Currents in the atmosphere and on the ground Electric Power Grid systems suffer (black-outs) Pipelines carrying oil, for instance, can be damaged by the high currents. Electric Charges in Space Solar Radiation Storms Satellites may encounter problems with the on- board components and electronic systems. Hazard to Humans Geomagnetic disruption in the upper atmosphere High radiation hazard to astronauts HF (high frequency) radio interference Less threathening, but can effect high-flying aircraft at high latitudes Satellite navigation (like GPS receivers) may be degraded Damage to Satellites Satellites can slow and even change orbit. High-energy particles can render satellites useless (either temporarily or permanently) The Aurora can be seen in high latitudes Impact on Communications HF communications as well as Low Frequency Navigation Signals are susceptible to radiation storms. HF communication at high latitudes is often impossible for several days during radiation storms Space Weather Prediction Center The Space Weather Prediction Center (SWPC) Forecast Center is jointly operated by NOAA and the U.S. -
A Global View of Storms and Substorms
MEETING REPORT A global view of storms and substorms Downloaded from https://academic.oup.com/astrogeo/article-abstract/60/3/3.13/5497907 by Lancaster University user on 11 June 2019 Jasmine Kaur Sandhu, Maria- Theresia Walach, Hayley Allison and Clare Watt report on the RAS meeting The Global Response of the Terrestrial Magnetosphere during Storms and Substorms. xplorations into the geomagnetic field are thought to have begun around Ethe beginning of the 11th century in China, later extending to Asia and Europe (Mitchell 1932) and leading to the discovery of the global nature of the magnetic field reported by Gilbert (1600). Since then, we have identified the highly variable and dynamic nature of the global geomagnetic field in near-Earth space, specifically mag- netic storms and substorms (e.g. Graham 1724, Birkeland 1901). Ground-based data led to the proposal of key features of our space environment: the ring current (Stoer- mer 1910), the plasma-filled magnetosphere (Gold 1959, Chapman & Ferraro 1931) and the solar wind (Parker 1958). These were all 1 A schematic illustrating the large-scale structure of the magnetosphere and the key regions. The inset later confirmed with the advent of the space shows the structure of a trapped energetic particle population in the inner magnetosphere, known as age, which also brought the discovery of the Van Allen radiation belts. (Kivelson & Bagenal 2007) new features, such as our highly dynamic radiation belts (Van Allen 1958). electrical current in the inner magneto- Substorms In 1961, Jim Dungey proposed a new sphere produced by the net westward drift In contrast to storms, substorms have theory on how our magnetosphere interacts of ions, where increases in the energy and timescales of a few hours. -
Magnetic Field Configuration and Field-Aligned Acceleration Of
c Annales Geophysicae (2001) 19: 1089–1094 European Geophysical Society 2001 Annales Geophysicae Magnetic field configuration and field-aligned acceleration of energetic ions during substorm onsets A. Korth1 and Z. Y. Pu2 1Max-Planck-Institut fur¨ Aeronomie, D-37191 Katlenburg-Lindau, Germany 2Space Weather Laboratory, Center for Space Science and Application Research, Chinese Academy of Science, Beijing, China and Department of Geophysics, Peking University, Beijing, China Received: 1 March 2000 – Revised: 26 June 2001 – Accepted: 11 July 2001 Abstract. In this paper, we present an interpretation of potential drops. A good agreement between computed ion the observed field-aligned acceleration events measured by distributions and those measured at geosynchronous orbit GEOS-2 near the night-side synchronous orbit at substorm was put forward. Furthermore, by performing single-particle onsets (Chen et al., 2000). We show that field-aligned ac- simulations of ions during rapid dipolarization, Delcourt et celeration of ions (with pitch angle asymmetry) is closely al. (1990, 1991) and Delcourt (1993) demonstrated that the related to strong short-lived electric fields in the Ey direc- centrifugal mechanism has to be considered when the induc- tion. The acceleration is associated with either rapid dipo- tive electric field yields intense E × B drift and earthward larization or further stretching of local magnetic field lines. injection of plasma sheet populations. It is seen in their sim- Theoretical analysis suggests that a centrifugal mechanism is ulations that ions are accelerated and decelerated when they a likely candidate for the parallel energization. Equatorward are moving toward and away from the center plane of the or anti-equatorward energization occurs when the tail cur- plasma sheet, respectively, indicating that an equatorward rent sheet is thinner tailward or earthward of the spacecraft, parallel energization exits for ions along with their E × B respectively. -
Cluster 5 Years
1 TAIL RECONNECTION AND PLASMA SHEET FAST FLOWS Rumi Nakamura, Wolfgang Baumjohann, Andrei Runov, and Yoshihiro Asano Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A–8042 Graz, Austria, Email: [email protected] ABSTRACT and energy transport in the magnetotail. These fast flows are considered to take place as a consequence of recon- nection. The flows near the boundary of the plasma sheet The present state of understanding the process of tail re- consist of field-aligned beams, whereas the flows in the connection and plasma sheet fast flows obtained from central plasma sheet tend to have a large bulk-flow com- Cluster measurements is reviewed. Being a constellation ponent. The latter flows organize themselves in 10-min of four identical spacecraft, Cluster allows discrimination timescale flow enhancements, which are called bursty of spatial and temporal variations in magnetic field and bulk flow (BBF) events, embedding velocity peaks of 1- plasma parameters. Thus it is ideal to study the structure min duration, which are called flow bursts, and have char- and dynamics of plasma and fields relevant to reconnec- acteristics distinctly different from plasma sheet bound- tion, which is a highly dynamic system. Observations of ary layer flows (1; 2). current sheet crossings near the X-line obtained the ge- ometry of reconnection region and confirmed the effects Cluster traversed the magnetotail covering regions Earth- of unmagnetized ions including the Hall-current and its ward of 19 RE during the past four summer seasons since closure currents. Cluster multi-point observations iden- July 2001. The tetrahedron scale was between 250 km tified three dimensional structures and dynamics of the and 4000 km, which were changed every year, so that fast flows in the plasma sheet, which could be ascribed to characteristics at different scales could be identified. -
Is Substorm Occurrence a Necessary Condition for a Magnetic Storm?*
J. Geomag. Geoelectr., 44,109-117,1992 Is Substorm Occurrence a Necessary Condition for a Magnetic Storm?* Y. KAMIDE Solar-Terrestrial EnvironmentLaboratory, Nagoya University,Toyokawa 442, Japan (ReceivedNovember 28,1991) It is shown that "having substorms" is not a necessary condition for a magnetic storm. The main phase of magnetic storms develops because of sustained, southward interplanetary magnetic field (IMF), not because of frequent occurrence of intense substorms. 1. Introduction A geomagnetic storm is identified in general by the existence of a main phase during which the magnetic field on the earth's surface is depressed. This depression is caused by the ring current flowing westward in the magnetosphere, and can be monitored by the Dst index. It is commonly assumed that the intensity of magnetic storms can be defined by the minimum Dst value, or the maximum depressed Dst at the main phase. RUSSELL and MCPHERRON(1973) statistically showed the number of storms (per decade) as a function of Dst. Their diagram indicates that we can have more than 100 storms per year if we count the number of storms whose intensity is larger than 20nT in Dst. The statistics tell us that once a solar cycle a great magnetic storm of 600-700nT in Dst can occur, and every 100 years or so a storm having 2000nT in Dst should occur. More seriously, if we are allowed to extend the straight fitted line to the smaller Dst direction, we can see that this line intercepts at N=650 for Dst=-10nT. KAMIDE (1982) counted the total number of substorms (larger than 500nT in the AL magnitude) occurring in one year and found that there were 641 in 1978. -
Evolution of Dipolarization in the Near-Earth Current Sheet Induced by Earthward Rapid flux Transport
Ann. Geophys., 27, 1743–1754, 2009 www.ann-geophys.net/27/1743/2009/ Annales © Author(s) 2009. This work is distributed under Geophysicae the Creative Commons Attribution 3.0 License. Evolution of dipolarization in the near-Earth current sheet induced by Earthward rapid flux transport R. Nakamura1, A. Retino`1, W. Baumjohann1, M. Volwerk1, N. Erkaev2, B. Klecker3, E. A. Lucek4, I. Dandouras5, M. Andre´6, and Y. Khotyaintsev6 1Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria 2Institute of Computation Modelling, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russia 3Max-Planck-Institut fur¨ extraterrestrische Physik, P.O. Box 1312, Garching, 85741, Germany 4Imperial College, London, SW7 2BZ, UK 5CESR/CNRS, 9 Ave. du Colonel Roche, B.P. 4346, 31028 Toulouse Cedex 4, France 6Swedish Institute of Space Physics, P.O. Box 537, 75121 Uppsala, Sweden Received: 6 October 2008 – Revised: 5 February 2009 – Accepted: 18 February 2009 – Published: 9 April 2009 Abstract. We report on the evolution of dipolarization dipolarization pulses could differ, depending on the configu- and associated disturbances of the near-Earth current sheet ration of the current sheet. during a substorm on 27 October 2007, based upon Clus- Keywords. Magnetospheric physics (Plasma convection; ter multi-point, multi-scale observations of the night-side Plasma sheet; Storms and substorms) plasma sheet at X∼−10 RE. Three dipolarization events were observed accompanied by activations on ground mag- netograms at 09:07, 09:14, and 09:22 UT. We