Download Student Reading
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Canada GREENLAND 80°W
DO NOT EDIT--Changes must be made through “File info” CorrectionKey=NL-B Module 7 70°N 30°W 20°W 170°W 180° 70°N 160°W Canada GREENLAND 80°W 90°W 150°W 100°W (DENMARK) 120°W 140°W 110°W 60°W 130°W 70°W ARCTIC Essential Question OCEANDo Canada’s many regional differences strengthen or weaken the country? Alaska Baffin 160°W (UNITED STATES) Bay ic ct r le Y A c ir u C k o National capital n M R a 60°N Provincial capital . c k e Other cities n 150°W z 0 200 400 Miles i Iqaluit 60°N e 50°N R YUKON . 0 200 400 Kilometers Labrador Projection: Lambert Azimuthal TERRITORY NUNAVUT Equal-Area NORTHWEST Sea Whitehorse TERRITORIES Yellowknife NEWFOUNDLAND AND LABRADOR Hudson N A Bay ATLANTIC 140°W W E St. John’s OCEAN 40°W BRITISH H C 40°N COLUMBIA T QUEBEC HMH Middle School World Geography A MANITOBA 50°N ALBERTA K MS_SNLESE668737_059M_K.ai . S PRINCE EDWARD ISLAND R Edmonton A r Canada legend n N e a S chew E s kat Lake a as . Charlottetown r S R Winnipeg F Color Alts Vancouver Calgary ONTARIO Fredericton W S Island NOVA SCOTIA 50°WFirst proof: 3/20/17 Regina Halifax Vancouver Quebec . R 2nd proof: 4/6/17 e c Final: 4/12/17 Victoria Winnipeg Montreal n 130°W e NEW BRUNSWICK Lake r w Huron a Ottawa L PACIFIC . t S OCEAN Lake 60°W Superior Toronto Lake Lake Ontario UNITED STATES Lake Michigan Windsor 100°W Erie 90°W 40°N 80°W 70°W 120°W 110°W In this module, you will learn about Canada, our neighbor to the north, Explore ONLINE! including its history, diverse culture, and natural beauty and resources. -
Dream Merchants
DREAM MERCHANTS I N V E S T I G A T I N G T H E M Y S T E R I O U S D E A T H S O F T H R E E J A P A N E S E C L I M B E R S ON DENALI IN 1989 BY JON WATERMAN Kahiltna Pass, 10,000 feet, lower left with trail to 11,200-foot camp and up West Buttress; Denali Pass visible upper left. TOM FALLEY 22 ASCENT 2020 ASCENT 2020 23 This photograph and another shot from the The 17-man rescue team hauls the bodies of air show that none of the deceased climbers Yamada, Saegusa and Komatsu to a waiting helicopter. Cyclonic winds delayed the body recovery held their knees or burrowed or assumed for over a month. The three climbers were found just the fetal position of those trying to shelter 15 minutes from their last camp. from the extreme cold. Nor had they begun removing their clothing in the frequent final act of “paradoxical undressing” by translated), were weirdly incomplete. It was hypothermic victims flushed by dilated blood as if Yamada’s deferential Japanese supporters vessels that cause a burning sensation. could not dig up or divulge how the men really From my experience as a Denali perished. WHEN NORBORU YAMADA and his two mountaineering ranger performing scores of Several accounts of successful winter Japanese companions didn’t return from searches for climbers, rescues or recoveries— climbs on Denali serve as noteworthy and theW West Buttress, Denali’s easiest route, in along with a study of accident victims for even inspirational models, such as the book February 1989, no one could understand my book Surviving Denali—I wanted Minus 148 (detailing how three climbers what had happened. -
Climate and Vegetation • Almost Every Type of Climate Is Found in the 50 United States Because They Extend Over Such a Large Area North to South
123-126-Chapter5 10/16/02 10:16 AM Page 123 Main Ideas Climate and Vegetation • Almost every type of climate is found in the 50 United States because they extend over such a large area north to south. • Canada’s cold climate is related to its location in the far northern latitudes. A HUMAN PERSPECTIVE A little gold and bitter cold—that is what Places & Terms thousands of prospectors found in Alaska and the Yukon Territory dur- permafrost ing the Klondike gold rushes of the 1890s. Most of these fortune prevailing westerlies hunters were unprepared for the harsh climate and inhospitable land of Everglades the far north. Winters were long and cold, the ground frozen. Ice fogs, blizzards, and avalanches were regular occurrences. You could lose fin- Connect to the Issues gers and toes—even your life—in the cold. But hardy souls stuck it out. urban sprawl The rapid Legend has it that one miner, Bishop Stringer, kept himself alive by boil- spread of urban sprawl has led US & CANADA ing his sealskin and walrus-sole boots and then drinking the broth. to the loss of much vegetation in both the United States and Canada. Shared Climates and Vegetation The United States and Canada have more in common than just frigid winter temperatures where Alaska meets northwestern Canada. Other shared climate and vegetation zones are found along their joint border at the southern end of Canada and the northern end of the United States. If you look at the map on page 125, you will see that the United MOVEMENT The snowmobile States has more climate zones than Canada. -
Challenges in the Paleoclimatic Evolution of the Arctic and Subarctic Pacific Since the Last Glacial Period—The Sino–German
challenges Concept Paper Challenges in the Paleoclimatic Evolution of the Arctic and Subarctic Pacific since the Last Glacial Period—The Sino–German Pacific–Arctic Experiment (SiGePAX) Gerrit Lohmann 1,2,3,* , Lester Lembke-Jene 1 , Ralf Tiedemann 1,3,4, Xun Gong 1 , Patrick Scholz 1 , Jianjun Zou 5,6 and Xuefa Shi 5,6 1 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung Bremerhaven, 27570 Bremerhaven, Germany; [email protected] (L.L.-J.); [email protected] (R.T.); [email protected] (X.G.); [email protected] (P.S.) 2 Department of Environmental Physics, University of Bremen, 28359 Bremen, Germany 3 MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany 4 Department of Geosciences, University of Bremen, 28359 Bremen, Germany 5 First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; zoujianjun@fio.org.cn (J.Z.); xfshi@fio.org.cn (X.S.) 6 Pilot National Laboratory for Marine Science and Technology, Qingdao 266061, China * Correspondence: [email protected] Received: 24 December 2018; Accepted: 15 January 2019; Published: 24 January 2019 Abstract: Arctic and subarctic regions are sensitive to climate change and, reversely, provide dramatic feedbacks to the global climate. With a focus on discovering paleoclimate and paleoceanographic evolution in the Arctic and Northwest Pacific Oceans during the last 20,000 years, we proposed this German–Sino cooperation program according to the announcement “Federal Ministry of Education and Research (BMBF) of the Federal Republic of Germany for a German–Sino cooperation program in the marine and polar research”. Our proposed program integrates the advantages of the Arctic and Subarctic marine sediment studies in AWI (Alfred Wegener Institute) and FIO (First Institute of Oceanography). -
Chapter Four
Chapter Four South Denali Visitor Center Complex: Interpretive Master Plan Site Resources Tangible Natural Site Features 1. Granite outcroppings and erratic Resources are at the core of an boulders (glacial striations) interpretive experience. Tangible resources, those things that can be seen 2. Panoramic views of surrounding or touched, are important for connecting landscape visitors physically to a unique site. • Peaks of the Alaska Range Intangible resources, such as concepts, (include Denali/Mt. McKinley, values, and events, facilitate emotional Mt. Foraker, Mt. Hunter, Mt. and meaningful experiences for visitors. Huntington, Mt. Dickey, Moose’s Effective interpretation occurs when Erratic boulders on Curry Ridge. September, 2007 Tooth, Broken Tooth, Tokosha tangible resources are connected with Mountains) intangible meanings. • Peters Hills • Talkeetna Mountains The visitor center site on Curry Ridge maximizes access to resources that serve • Braided Chulitna River and valley as tangible connections to the natural and • Ruth Glacier cultural history of the region. • Curry Ridge The stunning views from the visitor center site reveal a plethora of tangible Mt. McKinley/Denali features that can be interpreted. This Mt. Foraker Mt. Hunter Moose’s Tooth shot from Google Earth shows some of the major ones. Tokosha Ruth Glacier Mountains Chulitna River Parks Highway Page 22 3. Diversity of habitats and uniquely 5. Unfettered views of the open sky adapted vegetation • Aurora Borealis/Northern Lights • Lake 1787 (alpine lake) • Storms, clouds, and other weather • Alpine Tundra (specially adapted patterns plants, stunted trees) • Sun halos and sun dogs • High Brush (scrub/shrub) • Spruce Forests • Numerous beaver ponds and streams Tangible Cultural Site Features • Sedge meadows and muskegs 1. -
Thirteen Nations on Mount Everest John Cleare 9
Thirteen nations on Mount Everest John Cleare In Nepal the 1971 pre-monsoon season was notable perhaps for two things, first for the worst weather for some seventy years, and second for the failure of an attempt to realise a long-cherished dream-a Cordee internationale on the top of the world. But was it a complete failure? That the much publicised International Himalayan Expedition failed in its climbing objectives is fact, but despite the ill-informed pronouncements of the headline devouring sceptics, safe in their arm-chairs, those of us who were actually members of the expedition have no doubt that internationally we did not fail. The project has a long history, and my first knowledge of it was on a wet winter's night in 1967 at Rusty Baillie's tiny cottage in the Highlands when John Amatt explained to me the preliminary plans for an international expedi tion. This was initially an Anglo-American-Norwegian effort, but as time went by other climbers came and went and various objectives were considered and rejected. Things started to crystallise when Jimmy Roberts was invited to lead the still-embryo expedition, and it was finally decided that the target should be the great South-west face of Mount Everest. However, unaware of this scheme, Norman Dyhrenfurth, leader of the successful American Everest expedition of 1963-film-maker and veteran Himalayan climber-was also planning an international expedition, and he had actually applied for per mission to attempt the South-west face in November 1967, some time before the final target of the other party had even been decided. -
Description of the Ecoregions of the United States
(iii) ~ Agrl~:::~~;~":,c ullur. Description of the ~:::;. Ecoregions of the ==-'Number 1391 United States •• .~ • /..';;\:?;;.. \ United State. (;lAn) Department of Description of the .~ Agriculture Forest Ecoregions of the Service October United States 1980 Compiled by Robert G. Bailey Formerly Regional geographer, Intermountain Region; currently geographer, Rocky Mountain Forest and Range Experiment Station Prepared in cooperation with U.S. Fish and Wildlife Service and originally published as an unnumbered publication by the Intermountain Region, USDA Forest Service, Ogden, Utah In April 1979, the Agency leaders of the Bureau of Land Manage ment, Forest Service, Fish and Wildlife Service, Geological Survey, and Soil Conservation Service endorsed the concept of a national classification system developed by the Resources Evaluation Tech niques Program at the Rocky Mountain Forest and Range Experiment Station, to be used for renewable resources evaluation. The classifica tion system consists of four components (vegetation, soil, landform, and water), a proposed procedure for integrating the components into ecological response units, and a programmed procedure for integrating the ecological response units into ecosystem associations. The classification system described here is the result of literature synthesis and limited field testing and evaluation. It presents one procedure for defining, describing, and displaying ecosystems with respect to geographical distribution. The system and others are undergoing rigorous evaluation to determine the most appropriate procedure for defining and describing ecosystem associations. Bailey, Robert G. 1980. Description of the ecoregions of the United States. U. S. Department of Agriculture, Miscellaneous Publication No. 1391, 77 pp. This publication briefly describes and illustrates the Nation's ecosystem regions as shown in the 1976 map, "Ecoregions of the United States." A copy of this map, described in the Introduction, can be found between the last page and the back cover of this publication. -
Climbs and Expeditions, 1988
Climbs and Expeditions, 1988 The Editorial Board expresses its deep gratitude to the many people who have done so much to make this section possible. We cannot list them all here, but we should like to give particular thanks to the following: Kamal K. Guha, Harish Kapadia, Soli S. Mehta, H.C. Sarin, P.C. Katoch, Zafarullah Siddiqui, Josef Nyka, Tsunemichi Ikeda, Trevor Braham, Renato More, Mirella Tenderini. Cesar Morales Arnao, Vojslav Arko, Franci Savenc, Paul Nunn, Do@ Rotovnik, Jose Manuel Anglada, Jordi Pons, Josep Paytubi, Elmar Landes, Robert Renzler, Sadao Tambe, Annie Bertholet, Fridebert Widder, Silvia Metzeltin Buscaini. Luciano Ghigo, Zhou Zheng. Ying Dao Shui, Karchung Wangchuk, Lloyd Freese, Tom Elliot, Robert Seibert, and Colin Monteath. METERS TO FEET Unfortunately the American public seems still to be resisting the change from feet to meters. To assist readers from the more enlightened countries, where meters are universally used, we give the following conversion chart: meters feet meters feet meters feet meters feet 3300 10,827 4700 15,420 6100 20,013 7500 24,607 3400 11,155 4800 15,748 6200 20,342 7600 24,935 3500 11,483 4900 16,076 6300 20,670 7700 25,263 3600 11,811 5000 16,404 6400 20,998 7800 25,591 3700 12,139 5100 16,733 6500 21,326 7900 25,919 3800 12,467 5200 17.061 6600 21,654 8000 26,247 3900 12,795 5300 7,389 6700 21,982 8100 26,575 4000 13,124 5400 17,717 6800 22,3 10 8200 26,903 4100 13,452 5500 8,045 6900 22,638 8300 27,231 4200 13,780 5600 8,373 7000 22,966 8400 27,560 4300 14,108 5700 8,701 7100 23,294 8500 27,888 4400 14,436 5800 19,029 7200 23,622 8600 28,216 4500 14,764 5900 9,357 7300 23,951 8700 28,544 4600 15,092 6000 19,685 7400 24,279 8800 28,872 NOTE: All dates in this section refer to 1988 unless otherwise stated. -
Subarctic Passive House Study
July 11, 2013 Subarctic Passive House Case Study: A Superinsulated Foundation and Vapor Diffusion‐ Open Walls Cold Climate Housing Research Center Written by Bruno Grunau, PE July 11, 2013 Disclaimer: The research conducted or products tested used the methodologies described in this report. CCHRC cautions that different results might be obtained using different test methodologies. CCHRC suggests caution in drawing inferences regarding the research or products beyond the circumstances described in this report. i Subarctic Passive House Case Study: A Superinsulated Foundation and Vapor Diffusion‐Open Walls CONTENTS Summary .................................................................................................................................................................................................... 1 Introduction ............................................................................................................................................................................................... 2 Overview ................................................................................................................................................................................................ 2 Description of Wall System .................................................................................................................................................................... 3 Properties of Cellulose ..................................................................................................................................................................... -
High-Latitude Climate Zones and Climate Types - E.I
ENVIRONMENTAL STRUCTURE AND FUNCTION: CLIMATE SYSTEM – Vol. II - High-Latitude Climate Zones and Climate Types - E.I. Khlebnikova HIGH-LATITUDE CLIMATE ZONES AND CLIMATE TYPES E.I. Khlebnikova Main Geophysical Observatory, St.Petersburg, Russia Keywords: annual temperature range, Arctic continental climate, Arctic oceanic climate, katabatic wind, radiation cooling, subarctic continental climate, temperature inversion Contents 1. Introduction 2. Climate types of subarctic and subantarctic belts 2.1. Continental climate 2.2. Oceanic climate 3. Climate types in Arctic and Antarctic Regions 3.1. Climates of Arctic Region 3.2. Climates of Antarctic continent 3.2.1. Highland continental region 3.2.2. Glacial slope 3.2.3. Coastal region Glossary Bibliography Biographical Sketch Summary The description of the high-latitude climate zone and types is given according to the genetic classification of B.P. Alisov (see Genetic Classifications of Earth’s Climate). In dependence on air mass, which is in prevalence in different seasons, Arctic (Antarctic) and subarctic (subantarctic) belts are distinguished in these latitudes. Two kinds of climates are considered: continental and oceanic. Examples of typical temperature and precipitation regime and other meteorological elements are presented. 1. IntroductionUNESCO – EOLSS In the high latitudes of each hemisphere two climatic belts are distinguished: subarctic (subantarctic) andSAMPLE arctic (antarctic). CHAPTERS The regions with the prevalence of arctic (antarctic) air mass in winter, and polar air mass in summer, belong to the subarctic (subantarctic) belt. As a result of the peculiarities in distribution of continents and oceans in the northern hemisphere, two types of climate are distinguished in this belt: continental and oceanic. In the southern hemisphere there is only one type - oceanic. -
Climate and Vegetation
Name _____________________________ Class _________________ Date __________________ Physical Geography of the United States and Canada Section 2 Climate and Vegetation Terms and Names permafrost permanently frozen ground prevailing westerlies winds that blow from west to east in the middle latitudes Everglades huge swampland in southern Florida Before You Read In the last section, you read about the landforms and resources of the United States and Canada. In this section, you will learn how climate and vegetation affect life in the United States and Canada. As You Read Use a graphic organizer to take notes about the climate and vegetation of the United States and Canada. SHARED CLIMATES AND The north central and northeastern VEGETATION (Pages 123–124) United States and much of southern Where is the mildest shared climate Canada have a humid continental climate. found? Winters are cold and summers are warm. The Arctic coastlines of Alaska and Climate and soil make this one of the Canada have tundra climate and world’s most productive agricultural areas. vegetation. Winters here are long and It yields an abundance of dairy products, bitterly cold. Summers are brief and chilly. grain, and livestock. The land is a huge, treeless plain. In the upper part of this zone, summers Much of the rest of Canada and Alaska are short. There are mixed forests of have a subarctic climate. This climate has deciduous and needle-leafed evergreen very cold winters and short, mild trees. Most of the population of Canada is summers. A vast forest of needle-leafed located here. The lower part of the zone is evergreens covers the region. -
North America Summary, 1968
240 CLIMBS A~D REGIONAL ?\OTES North America Summary, 1968. Climbing activity in both Alaska and Canada subsided mar kedly from the peak in 1967 when both regions were celebrating their centen nials. The lessened activity seems also to have spread to other sections too for new routes and first ascents were considerably fewer. In Alaska probably the outstanding climb from the standpoint of difficulty was the fourth ascent of Mount Foraker, where a four-man party (Warren Bleser, Alex Birtulis, Hans Baer, Peter Williams) opened a new route up the central rib of the South face. Late in June this party flew in from Talkeetna to the Lacuna glacier. By 11 July they had established their Base Camp at the foot of the South face and started up the rib. This involved 10,000 ft of ice and rotten rock at an angle of 65°. In the next two weeks three camps were estab lished, the highest at 13,000 ft. Here, it was decided to make an all-out push for the summit. On 24 July two of the climbers started ahead to prepare a route. In twenty-eight hours of steady going they finally reached a suitable spot for a bivouac. The other two men who started long after them reached the same place in ten hours of steady going utilising the steps, fixed ropes and pitons left by the first party. After a night in the bivouac, the two groups then contin ued together and reached the summit, 17,300 ft, on 25 July. They were forced to bivouac another night on the return before reaching their high camp.