Chapter 9 the Global Scope of Climate

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 9 the Global Scope of Climate ChapterChapter 99 TheThe GlobalGlobal ScopeScope ofof ClimateClimate ClimaticClimatic ClassificationClassification ` Latitude – Pole-to-Equator temperature gradient ` Continentality – Proximity to large bodies of water ` Seasonality – Changes in patterns during the annual cycle ClimaticClimatic ClassificationClassification ` A scheme for dividing the world into characteristic climate types ` Begun with the Ancient Greeks Frigid Zone (60°-90°N) Temperate Zone (30°-60°N) Torrid Zone ( 0°-30°N) ClimaticClimatic ClassificationClassification ` Köppen-Geiger-Pohl System Air temperature and precipitation Vegetation regimes ` Thornthwaite System Air temperature and precipitation Climatic water balance ` Terjung System Net radiation Energy balance KöppenKöppen--GeigerGeiger--PohlPohl SystemSystem TheThe ClimaticClimatic WaterWater BalanceBalance A system of water accounting Input: Precipitation TheThe ClimaticClimatic WaterWater BalanceBalance A system of water accounting Output: Evaporation TheThe ClimaticClimatic WaterWater BalanceBalance A system of water accounting ` Evaporation – process by which water becomes a gas TheThe ClimaticClimatic WaterWater BalanceBalance A system of water accounting Output: Transpiration TheThe ClimaticClimatic WaterWater BalanceBalance A system of water accounting ` Evaporation – process by which water becomes a gas ` Transpiration – evaporative loss of water to the atmosphere through the stomata of leaves TheThe ClimaticClimatic WaterWater BalanceBalance A system of water accounting ` Evapotranspiration – combined loss of water to the atmosphere by evaporation from the soil and transpiration from plants TheThe ClimaticClimatic WaterWater BalanceBalance A system of water accounting Output: Evapotranspiration TheThe ClimaticClimatic WaterWater BalanceBalance A system of water accounting Output: Runoff/Streamflow TheThe ClimaticClimatic WaterWater BalanceBalance A system of water accounting PP == ETET ++ RR TheThe ClimaticClimatic WaterWater BalanceBalance PotentialPotential EvapotranspirationEvapotranspiration Ideal rate of evapotranspiration that occurs when a complete canopy of growing plants is continuously supplied with all the soil water they need. TheThe ClimaticClimatic WaterWater BalanceBalance PotentialPotential EvapotranspirationEvapotranspiration ` Is largely a function of air temperature ` Greatest in the tropics; Least at the poles TheThe ClimaticClimatic WaterWater BalanceBalance PrecipitationPrecipitation MoistureMoisture SupplySupply vs.vs. PotentialPotential EvapotranspirationEvapotranspiration MoistureMoisture DemandDemand TheThe ClimaticClimatic WaterWater BalanceBalance ClassificationClassification ofof ClimateClimate ` Latitude Low-latitude Climates ( 0°-30°N) – 4 Mid-latitude Climates (30°-60°N) – 6 High-latitude Climates (60°-90°N) – 3 ` Seasonal Supply vs. Demand Seasonality Continentality ChapterChapter 1010 LowLow--LatitudeLatitude ClimatesClimates LowLow--LatitudeLatitude ClimatesClimates ` Dominated by the circulation of the Hadley Cells LowLow--LatitudeLatitude ClimatesClimates ` Dominated by the circulation of the Hadley Cells seasonal migration of the ITCZ LowLow--LatitudeLatitude ClimatesClimates ` Dominated by the circulation of the Hadley Cells seasonal migration of the ITCZ prevailing easterly trade winds LowLow--LatitudeLatitude ClimatesClimates ` Dominated by the circulation of the Hadley Cells seasonal migration of the ITCZ prevailing easterly trade winds ` Characterized by a relatively uniform air temperature regime all year long Consequently, potential evapotranspiration is nearly constant all year long Potential Evapotranspiration – Low-Latitudes 1)1) WetWet EquatorialEquatorial ClimateClimate ` Associated with the ITCZ all year long ` mE air mass dominates, some mT ` Rainfall is plentiful during the entire year Annual total exceeds 250 cm ` Air temperature is relatively uniform Mean air temperature near 27°C WetWet EquatorialEquatorial ClimateClimate WetWet EquatorialEquatorial ClimateClimate Iquitos, Peru – 3°S 2)2) DryDry TropicalTropical ClimateClimate ` Descending air of the Hadley Cell ` Sub-tropical High Pressure dominates ` Little rainfall during the entire year Desert environment ` Air temperature has a slight seasonal trend Greatest air temperatures during the high-sun season DryDry TropicalTropical ClimateClimate DryDry TropicalTropical ClimateClimate Wadi Halfa, Sudan -- 22°N 3)3) TropicalTropical WetWet && DryDry ClimateClimate ` Seasonal migration of the ITCZ ` Sub-tropical High Pressure in low-sun season; mE in high-sun season ` Marked seasonal cycle to precipitation Precipitation “follows the sun” ` Air temperature has a slight seasonal trend Greatest air temperatures during the high-sun season TropicalTropical WetWet && DryDry ClimateClimate (N.H.)(N.H.) TropicalTropical WetWet && DryDry ClimateClimate (S.H.)(S.H.) TropicalTropical WetWet && DryDry ClimateClimate Timbo, Guinea -- 10°N TropicalTropical WetWet && DryDry ClimateClimate 4)4) TradeTrade--WindWind CoastalCoastal ClimateClimate ` East coasts – windward side of the continent ` Monsoon climate – wind shift during year ` Marked seasonal cycle to precipitation Precipitation “follows the sun” ` Air temperature has a slight seasonal trend Greatest air temperatures during the high-sun season TradeTrade--WindWind CoastalCoastal ClimateClimate (N.H.)(N.H.) TradeTrade--WindWind CoastalCoastal ClimateClimate (S.H.)(S.H.) TradeTrade--WindWind CoastalCoastal ClimateClimate Belize City, Belize, Sudan -- 17°N TradeTrade--WindWind CoastalCoastal ClimateClimate Cochin, India -- 10°N LowLow--LatitudeLatitude ClimatesClimates ChapterChapter 1111 MidMid--LatitudeLatitude andand HighHigh--LatitudeLatitude ClimatesClimates TheThe ClimaticClimatic WaterWater BalanceBalance ClassificationClassification ofof ClimateClimate ` Latitude Low-latitude Climates ( 0°-30°N) – 4 Mid-latitude Climates (30°-60°N) – 6 High-latitude Climates (60°-90°N) – 3 ` Seasonal Supply vs. Demand Seasonality Continentality MidMid--LatitudeLatitude ClimatesClimates MidMid--LatitudeLatitude ClimatesClimates ` Dominated by the prevailing westerlies Primarily Northern Hemisphere climates West-to-east movement of cyclones and fronts ` Latitude is a secondary factor ` Consists of six climate types Three in the lower mid-latitudes – subtropics Three in the upper mid-latitudes MidMid--LatitudeLatitude ClimatesClimates Potential Evapotranspiration – Subtropics 1)1) DryDry SubtropicalSubtropical ClimateClimate ` Extension of the Dry Tropical climate into mid- latitudes ` Source region for cT air masses ` Distinct cool season occurs during winter ` Low precipitation all year long DryDry SubtropicalSubtropical ClimateClimate DryDry SubtropicalSubtropical ClimateClimate DryDry SubtropicalSubtropical ClimateClimate Yuma, Arizona – 33°N 2)2) MoistMoist SubtropicalSubtropical ClimateClimate ` Flow of air from mT from the western edge of the subtropical High pressure ` Strong annual air temperature cycle with no winter month averaging below freezing ` Abundant rainfall all year long; cyclonic in winter, convectional in summer ` High humidity ` “Hurricane Coast” MoistMoist SubtropicalSubtropical ClimateClimate MoistMoist SubtropicalSubtropical ClimateClimate MoistMoist SubtropicalSubtropical ClimateClimate MoistMoist SubtropicalSubtropical ClimateClimate, Charleston, South Carolina – 33°N MoistMoist SubtropicalSubtropical ClimateClimate EffectEffect ofof thethe SubtropicalSubtropical HighHigh 3)3) MediterraneanMediterranean ClimateClimate MediterraneanMediterranean ClimateClimate ` Dominated by the influence of cT air in summer, mT air in winter ` Strong High pressure offshore in summer deflects storm tracks to the north ` Moderate temperature range with warm to hot summers and mild winters ` Wet winter and dry summer Æ Seasonal MediterraneanMediterranean ClimateClimate MediterraneanMediterranean ClimateClimate Monterey, Californa – 36°N MediterraneanMediterranean ClimateClimate SubtropicalSubtropical ClimatesClimates Potential Evapotranspiration – Upper Mid-latitudes UpperUpper MidMid--LatitudeLatitude ClimatesClimates 4)4) MarineMarine WestWest CoastCoast ClimateClimate ` Dominated by mP air masses and onshore flow of moist air from the westerlies ` Temperature cycle moderated by marine influence of warm, offshore ocean current – cool summers, mild winters ` Abundant precipitation, often with a winter maximum and usually accentuated by orographic effects MarineMarine WestWest CoastCoast ClimateClimate MarineMarine WestWest CoastCoast ClimateClimate MarineMarine WestWest CoastCoast ClimateClimate, Vancouver, British Columbia – 49°N UpperUpper MidMid--LatitudeLatitude ClimatesClimates 5)5) DryDry MidlatitudeMidlatitude ClimateClimate ` Dominated by dry cP air masses ` Strong air temperature cycle with large annual range – summers are warm to hot, winters are cold and snowy ` Little precipitation due to the rainshadow effect and interior continental location – slight summer maximum DryDry MidlatitudeMidlatitude ClimateClimate DryDry MidlatitudeMidlatitude ClimateClimate DryDry MidlatitudeMidlatitude ClimateClimate, Pueblo, Colorado – 38°N UpperUpper MidMid--LatitudeLatitude ClimatesClimates 6)6) MoistMoist ContinentalContinental ClimateClimate ` Dominated by frontal interactions between dry cP and moist mT air masses ` Summers warm, winters cold; relatively large annual air temperature range ` Ample precipitation with a slight summer maximum – convective in summer; cyclonic in winter MoistMoist ContinentalContinental
Recommended publications
  • Dairy Technology in the Tropics and Subtropics / J.C.T
    Dairytechnolog yi nth etropic s and subtropics J.C.T. van den Berg Pudoc Wageningen 1988 J.C.T.va n den Berg graduated as a dairy technologist from Wageningen Agricultural University in 1946,an d then worked for the Royal Netherlands Dairy Federation (FNZ). From 1954t o 1970 he was dairy advisor for milk and milk products at the Ministry of Agriculture and Fisheries. Thereafter, he worked for the International Agricultural Centre, Wageningen, on assignments concerning dairy development and dairy technology in many countries inAfrica , Asia and Latin America; heha s lived and worked inCost a Rica, Pakistan and Turkey. From 1982unti l his retire­ ment, he was a guest worker at Wageningen Agricultural University, where he lectured on production, marketing and processing of milk in tropical and subtropical countries. CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG Berg, J.C.T. van den Dairy technology in the tropics and subtropics / J.C.T. van den Berg. - Wageningen : PUDOC. - 111. With index, ref. ISBN 90-220-0927-0 bound SISO 633.9 UDC 637.1(213) NUGI 835 Subject headings: dairy technology ; tropics / dairy technology ; subtropics. ISBN 90 220 0927 0 NUGI 835 © Centre for Agricultural Publishing and Documentation (Pudoc), Wageningen, the Nether­ lands, 1988. No part of this publication, apart from bibliographic data and brief quotations embodied in critical reviews,ma y bereproduced , re-recorded or published inan y form including print, photo­ copy, microfilm, electronic or electromagnetic record without written permission from the pub­ lisher Pudoc, P.O. Box 4, 6700 AA Wageningen, the Netherlands. Printed in the Netherlands.
    [Show full text]
  • Canada GREENLAND 80°W
    DO NOT EDIT--Changes must be made through “File info” CorrectionKey=NL-B Module 7 70°N 30°W 20°W 170°W 180° 70°N 160°W Canada GREENLAND 80°W 90°W 150°W 100°W (DENMARK) 120°W 140°W 110°W 60°W 130°W 70°W ARCTIC Essential Question OCEANDo Canada’s many regional differences strengthen or weaken the country? Alaska Baffin 160°W (UNITED STATES) Bay ic ct r le Y A c ir u C k o National capital n M R a 60°N Provincial capital . c k e Other cities n 150°W z 0 200 400 Miles i Iqaluit 60°N e 50°N R YUKON . 0 200 400 Kilometers Labrador Projection: Lambert Azimuthal TERRITORY NUNAVUT Equal-Area NORTHWEST Sea Whitehorse TERRITORIES Yellowknife NEWFOUNDLAND AND LABRADOR Hudson N A Bay ATLANTIC 140°W W E St. John’s OCEAN 40°W BRITISH H C 40°N COLUMBIA T QUEBEC HMH Middle School World Geography A MANITOBA 50°N ALBERTA K MS_SNLESE668737_059M_K.ai . S PRINCE EDWARD ISLAND R Edmonton A r Canada legend n N e a S chew E s kat Lake a as . Charlottetown r S R Winnipeg F Color Alts Vancouver Calgary ONTARIO Fredericton W S Island NOVA SCOTIA 50°WFirst proof: 3/20/17 Regina Halifax Vancouver Quebec . R 2nd proof: 4/6/17 e c Final: 4/12/17 Victoria Winnipeg Montreal n 130°W e NEW BRUNSWICK Lake r w Huron a Ottawa L PACIFIC . t S OCEAN Lake 60°W Superior Toronto Lake Lake Ontario UNITED STATES Lake Michigan Windsor 100°W Erie 90°W 40°N 80°W 70°W 120°W 110°W In this module, you will learn about Canada, our neighbor to the north, Explore ONLINE! including its history, diverse culture, and natural beauty and resources.
    [Show full text]
  • Seasonal Variations of Subtropical Precipitation Associated with the Southern Annular Mode
    3446 JOURNAL OF CLIMATE VOLUME 27 Seasonal Variations of Subtropical Precipitation Associated with the Southern Annular Mode HARRY H. HENDON,EUN-PA LIM, AND HANH NGUYEN Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Australia (Manuscript received 10 September 2013, in final form 20 January 2014) ABSTRACT Seasonal variations of subtropical precipitation anomalies associated with the southern annular mode (SAM) are explored for the period 1979–2011. In all seasons, high-polarity SAM, which refers to a poleward- shifted eddy-driven westerly jet, results in increased precipitation in high latitudes and decreased pre- cipitation in midlatitudes as a result of the concomitant poleward shift of the midlatitude storm track. In addition, during spring–autumn, high SAM also results in increased rainfall in the subtropics. This subtropical precipitation anomaly is absent during winter. This seasonal variation of the response of subtropical pre- cipitation to the SAM is shown to be consistent with the seasonal variation of the eddy-induced divergent meridional circulation in the subtropics (strong in summer and weak in winter). The lack of an induced divergent meridional circulation in the subtropics during winter is attributed to the presence of the wintertime subtropical jet, which causes a broad latitudinal span of eddy momentum flux divergence due primarily to higher phase speed eddies breaking poleward of the subtropical jet and lower speed eddies not breaking until they reach the equatorward flank of the subtropical jet. During the other seasons, when the subtropical jet is less distinctive, the critical line for both high and low speed eddies is on the equatorward flank of the single jet and so breaking in the subtropics occurs over a narrow range of latitudes.
    [Show full text]
  • Climate and Vegetation • Almost Every Type of Climate Is Found in the 50 United States Because They Extend Over Such a Large Area North to South
    123-126-Chapter5 10/16/02 10:16 AM Page 123 Main Ideas Climate and Vegetation • Almost every type of climate is found in the 50 United States because they extend over such a large area north to south. • Canada’s cold climate is related to its location in the far northern latitudes. A HUMAN PERSPECTIVE A little gold and bitter cold—that is what Places & Terms thousands of prospectors found in Alaska and the Yukon Territory dur- permafrost ing the Klondike gold rushes of the 1890s. Most of these fortune prevailing westerlies hunters were unprepared for the harsh climate and inhospitable land of Everglades the far north. Winters were long and cold, the ground frozen. Ice fogs, blizzards, and avalanches were regular occurrences. You could lose fin- Connect to the Issues gers and toes—even your life—in the cold. But hardy souls stuck it out. urban sprawl The rapid Legend has it that one miner, Bishop Stringer, kept himself alive by boil- spread of urban sprawl has led US & CANADA ing his sealskin and walrus-sole boots and then drinking the broth. to the loss of much vegetation in both the United States and Canada. Shared Climates and Vegetation The United States and Canada have more in common than just frigid winter temperatures where Alaska meets northwestern Canada. Other shared climate and vegetation zones are found along their joint border at the southern end of Canada and the northern end of the United States. If you look at the map on page 125, you will see that the United MOVEMENT The snowmobile States has more climate zones than Canada.
    [Show full text]
  • Challenges in the Paleoclimatic Evolution of the Arctic and Subarctic Pacific Since the Last Glacial Period—The Sino–German
    challenges Concept Paper Challenges in the Paleoclimatic Evolution of the Arctic and Subarctic Pacific since the Last Glacial Period—The Sino–German Pacific–Arctic Experiment (SiGePAX) Gerrit Lohmann 1,2,3,* , Lester Lembke-Jene 1 , Ralf Tiedemann 1,3,4, Xun Gong 1 , Patrick Scholz 1 , Jianjun Zou 5,6 and Xuefa Shi 5,6 1 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung Bremerhaven, 27570 Bremerhaven, Germany; [email protected] (L.L.-J.); [email protected] (R.T.); [email protected] (X.G.); [email protected] (P.S.) 2 Department of Environmental Physics, University of Bremen, 28359 Bremen, Germany 3 MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany 4 Department of Geosciences, University of Bremen, 28359 Bremen, Germany 5 First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; zoujianjun@fio.org.cn (J.Z.); xfshi@fio.org.cn (X.S.) 6 Pilot National Laboratory for Marine Science and Technology, Qingdao 266061, China * Correspondence: [email protected] Received: 24 December 2018; Accepted: 15 January 2019; Published: 24 January 2019 Abstract: Arctic and subarctic regions are sensitive to climate change and, reversely, provide dramatic feedbacks to the global climate. With a focus on discovering paleoclimate and paleoceanographic evolution in the Arctic and Northwest Pacific Oceans during the last 20,000 years, we proposed this German–Sino cooperation program according to the announcement “Federal Ministry of Education and Research (BMBF) of the Federal Republic of Germany for a German–Sino cooperation program in the marine and polar research”. Our proposed program integrates the advantages of the Arctic and Subarctic marine sediment studies in AWI (Alfred Wegener Institute) and FIO (First Institute of Oceanography).
    [Show full text]
  • Tropical & Subtropical Perennial Vegetables
    TROPICAL & SUBTROPICAL PERENNIAL VEGETABLES Compiled by Eric Toensmeier for ECHO Conference 2011 TREES Genus Species Common Name Origin Part Used Region Humidity Leaves, Adansonia digitata baobab Africa Lowlands Mesic to arid fruit, nuts Artocarpus altilis breadfruit Pacific Fruit Lowlands Humid Low, high, Bambusa spp. bamboos Asia Shoots Humid to mesic subtropics Lowlands, Dendrocalamus spp. bamboos Asia Shoots Humid to mesic subtropics Tuber & Ensete ventricosum enset Africa trunk Highlands Mesic to semi-arid starch Erythrina edulis chachafruto Andes Beans Highlands Mesic to semi-arid Leucaena esculenta guaje Mesoamerica Beans Lowlands Mesic to semi-arid Lowlands, Moringa oleifera moringa India Leaf, pods Humid to semi-arid subtropics Lowlands, Moringa stenopetala moringa East Africa Leaf, pods subtropics Humid to semi-arid Leaves Low, high, Morus alba white mulberry Asia Humid to semi-arid cooked subtropics Low, high, Musa acuminata banana, plantain Asia, Africa Fruit Humid to semi-arid subtropics SHRUBS Genus Species Common Name Origin Part Used Region Humidity Leaves Abelmoschus manihot edible hibiscus Pacific Low tropics Humid to mesic cooked Low, high Cajanus cajan pigeon pea South Asia Beans Humid to arid subtropics Carica papaya papaya Americas Fruit Low, subtropics Humid to mesic Leaves Low, high Cnidoscolus chayamansa chaya Mesoamerica Humid to arid cooked subtropics Leaves Low, high, Crotolaria longirostrata chipilin Mesoamerica Humid to semi-arid cooked subtropics cranberry Leaves raw Hibiscus acetosella Africa Low, subtropics
    [Show full text]
  • Why Is the Mediterranean a Climate Change Hot Spot?
    VOLUME 33 JOURNAL OF CLIMATE 15JULY 2020 Why Is the Mediterranean a Climate Change Hot Spot? A. TUEL AND E. A. B. ELTAHIR Ralph M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts (Manuscript received 5 December 2019, in final form 20 April 2020) ABSTRACT Higher precipitation is expected over most of the world’s continents under climate change, except for a few specific regions where models project robust declines. Among these, the Mediterranean stands out as a result of the magnitude and significance of its winter precipitation decline. Locally, up to 40% of winter precipitation could be lost, setting strong limits on water resources that will constrain the ability of the region to develop and grow food, affecting millions of already water-stressed people and threatening the stability of this tense and complex area. To this day, however, a theory explaining the special nature of this region as a climate change hot spot is still lacking. Regional circulation changes, dominated by the development of a strong anomalous ridge, are thought to drive the winter precipitation decline, but their origins and potential con- tributions to regional hydroclimate change remain elusive. Here, we show how wintertime Mediterranean circulation trends can be seen as the combined response to two independent forcings: robust changes in large- scale, upper-tropospheric flow and the reduction in the regional land–sea temperature gradient that is characteristic of this region. In addition, we discuss how the circulation change can account for the magnitude and spatial structure of the drying. Our findings pave the way for better understanding and improved mod- eling of the future Mediterranean hydroclimate.
    [Show full text]
  • Description of the Ecoregions of the United States
    (iii) ~ Agrl~:::~~;~":,c ullur. Description of the ~:::;. Ecoregions of the ==-'Number 1391 United States •• .~ • /..';;\:?;;.. \ United State. (;lAn) Department of Description of the .~ Agriculture Forest Ecoregions of the Service October United States 1980 Compiled by Robert G. Bailey Formerly Regional geographer, Intermountain Region; currently geographer, Rocky Mountain Forest and Range Experiment Station Prepared in cooperation with U.S. Fish and Wildlife Service and originally published as an unnumbered publication by the Intermountain Region, USDA Forest Service, Ogden, Utah In April 1979, the Agency leaders of the Bureau of Land Manage­ ment, Forest Service, Fish and Wildlife Service, Geological Survey, and Soil Conservation Service endorsed the concept of a national classification system developed by the Resources Evaluation Tech­ niques Program at the Rocky Mountain Forest and Range Experiment Station, to be used for renewable resources evaluation. The classifica­ tion system consists of four components (vegetation, soil, landform, and water), a proposed procedure for integrating the components into ecological response units, and a programmed procedure for integrating the ecological response units into ecosystem associations. The classification system described here is the result of literature synthesis and limited field testing and evaluation. It presents one procedure for defining, describing, and displaying ecosystems with respect to geographical distribution. The system and others are undergoing rigorous evaluation to determine the most appropriate procedure for defining and describing ecosystem associations. Bailey, Robert G. 1980. Description of the ecoregions of the United States. U. S. Department of Agriculture, Miscellaneous Publication No. 1391, 77 pp. This publication briefly describes and illustrates the Nation's ecosystem regions as shown in the 1976 map, "Ecoregions of the United States." A copy of this map, described in the Introduction, can be found between the last page and the back cover of this publication.
    [Show full text]
  • Recent Advances in the Historical Climatology of the Tropics and Subtropics
    RECENT ADVANCES IN THE HISTORICAL CLIMATOLOGY OF THE TROPICS AND SUBTROPICS BY DAVID J. NASH And GEORGE C. D. ADAMSON Historical documents from tropical regions contain weather information that can be used to reconstruct past climate variability, the occurrence of tropical storms, and El Niño and La Niña episodes. n comparison with the Northern Hemisphere midlatitudes, the nature of long-term climatic I variability in the tropics and subtropics is poorly understood. This is due primarily to a lack of meteo- rological data. Few tropical countries have continuous records extending back much further than the late nineteenth century. Within Africa, for example, re- cords become plentiful for Algeria in the 1860s and for South Africa in the 1880s (Nicholson et al. 2012a,b). In India, a network of gauging stations was established by the 1870s (Sontakke et al. 2008). However, despite the deliberations of the Vienna Meteorological Congress of 1873, for many other nations, systematic meteo- rological data collection began only in the very late nineteenth or early twentieth century. To reconstruct climate parameters for years prior to the instrumental period, it is necessary to use proxy indicators, either “manmade” or natural. The most important of these for the recent his- FIG. 1. Personal journal entry describing heavy rain torical past are documents such as weather diaries and cold conditions in coastal eastern Madagascar (Fig. 1), newspapers (Fig. 2), personal correspondence, on 9 and 10 Dec 1817, written by the British Agent to government records, and ships’ logs (Bradley 1999; Madagascar, Mr. James Hastie (Mauritius National Carey 2012). These materials, often housed in archival Archive HB 10-01, Journal of Mr Hastie, from 14 Nov collections, are unique sources of climate informa- 1817 to 26 May 1818).
    [Show full text]
  • Pepino (Solanum Muricatum Ait.): a Potential Future Crop for Subtropics
    ISSN (E): 2349 – 1183 ISSN (P): 2349 – 9265 4(3): 514–517, 2017 DOI: 10.22271/tpr.201 7.v4.i3 .067 Mini review Pepino (Solanum muricatum Ait.): A potential future crop for subtropics Ashok Kumar*, Tarun Adak and S. Rajan ICAR-Central Institute for Subtropical Horticulture, Rehman Khera, P.O. Kakori, Lucknow-226101, Uttar Pradesh, India *Corresponding Author: [email protected] [Accepted: 26 December 2017] Abstract: Pepino (Solanum muricatum) is an Andean region’s crop, originated from South America. The crop has medicinal values and underutilized for its cultivation. It has a wider adaptability across the different locations of Spain, New Zealand, Turkey, Israel, USA, Japan etc. The crop can be grown under diverse soil and climatic conditions in India also. Its fruits are juicy, mild-sweet, sub-acidic and aromatic berry which are rich in antiglycative, antioxidant, dietary fibres and low calorific energy. Fruit is visually attractive with golden yellow colour with purple stripes. The crop was evaluated for its growth and development at ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, Lucknow, Uttar Pradesh, India (planted in the month of October, 2014). The results of the study exhibited its adaptation to climatic conditions of subtropics with higher yield and acceptable fruit quality. Keywords: Solanum muricatum - Pepino - Subtropic - Adaptation. [Cite as: Kumar A, Adak T & Rajan S (2017) Pepino (Solanum muricatum Ait.): A potential future crop for subtropics. Tropical Plant Research 4(3): 514–517] INTRODUCTION Introduced crops have a vital role in the progress of mankind; on any region of the world, many most important crops did not originate there but were new crops at the time of their introduction.
    [Show full text]
  • Subarctic Passive House Study
    July 11, 2013 Subarctic Passive House Case Study: A Superinsulated Foundation and Vapor Diffusion‐ Open Walls Cold Climate Housing Research Center Written by Bruno Grunau, PE July 11, 2013 Disclaimer: The research conducted or products tested used the methodologies described in this report. CCHRC cautions that different results might be obtained using different test methodologies. CCHRC suggests caution in drawing inferences regarding the research or products beyond the circumstances described in this report. i Subarctic Passive House Case Study: A Superinsulated Foundation and Vapor Diffusion‐Open Walls CONTENTS Summary .................................................................................................................................................................................................... 1 Introduction ............................................................................................................................................................................................... 2 Overview ................................................................................................................................................................................................ 2 Description of Wall System .................................................................................................................................................................... 3 Properties of Cellulose .....................................................................................................................................................................
    [Show full text]
  • Rainforest Restoration Activities in Australia's Tropics and Subtropics
    Rainforest Restoration Activities in Australia’s Tropics and Subtropics Tropics Rainforest Restoration Activities in Australia’s RESEARCH REPORT Rainforest Restoration Activities in Australia’s Tropics and Subtropics Carla P. Catterall and Debra A. Harrison Catterall and Harrison Rainforest CRC Headquarters at James Cook University, Smithfield, Cairns Postal address: PO Box 6811, Cairns, QLD 4870, AUSTRALIA Phone: (07) 4042 1246 Fax: (07) 4042 1247 Email: [email protected] http://www.rainforest-crc.jcu.edu.au The Cooperative Research Centre for Tropical Rainforest Ecology and Management (Rainforest CRC) is a research partnership involving the Cooperative Research Centre for Tropical Rainforest Ecology and Management Commonwealth and Queensland State Governments, the Wet Tropics Management Authority, the tourism industry, Aboriginal groups, the CSIRO, James Cook University, Griffith University and The University of Queensland. RAINFOREST RESTORATION ACTIVITIES IN AUSTRALIA'S TROPICS AND SUBTROPICS Carla P. Catterall and Debra A. Harrison Rainforest CRC and Environmental Sciences, Griffith University Established and supported under the Australian Cooperative Research Centres Program © Cooperative Research Centre for Tropical Rainforest Ecology and Management. ISBN 0 86443 769 2 This work is copyright. The Copyright Act 1968 permits fair dealing for study, research, news reporting, criticism or review. Selected passages, tables or diagrams may be reproduced for such purposes provided acknowledgment of the source is included. Major extracts of the entire document may not be reproduced by any process without written permission of the Chief Executive Officer, Cooperative Research Centre for Tropical Rainforest Ecology and Management. Published by the Cooperative Research Centre for Tropical Rainforest Ecology and Management. Further copies may be requested from the Cooperative Research Centre for Tropical Rainforest Ecology and Management, James Cook University, PO Box 6811 Cairns QLD, Australia 4870.
    [Show full text]