SUN ET AL. | 1751 Received: 14 November 2017 1 | | INTRODUCTION DOI: 10.1002/mop.31240 With the rapid development of mobile communication, the Tightly arranged orthogonal demand for the capacity of wireless communication is strong. To satisfy the demand, multiple-input multiple-output mode antenna for 5G MIMO (MIMO) technology, as a key technology of fifth-generation (5G) communication, provides a promising solution for mobile terminal enhancing the communication channel capacity. And there are an increasing number of commercial mobile phones used Libin Sun1 | Haigang Feng2 | MIMO technology to improve the performance of mobile communication. Although MIMO technology can provide a Yue Li1 | Zhijun Zhang1 pleasing performance for mobile communication, how to integrate a lot of antennas in a limited region with good iso- 1 State Key Laboratory on Microwave and Communications, Tsinghua lation is a challenging task. It has been noted that the fre- National Laboratory for Information Science and Technology, Tsinghua quency spectrum 3.5 GHz has become one of the 5G bands University, Beijing 100084, China in the World Radio-communication Conference 2015.1 And 2 Graduate school at Shenzhen, Tsinghua University, Shenzhen 518055, very recently, the frequency spectrum 3.3–3.6 GHz has been China identified preliminarily for 5G mobile communication by 2 Correspondence China ministry of industry and information technology. Zhijun Zhange, State Key Laboratory on Microwave and Communications, Recently, a number of publications presented the mobile Tsinghua National Laboratory for Information Science and Technology, phone antenna for 5G MIMO application.3-9 The first 8 3 8 Tsinghua University, Beijing 100084, China. MIMO mobile phone antenna operating at 3.5 GHz is pro- Email:
[email protected] posed in3 with 8 capacitive coupling elements; however, the Funding information mutual coupling across the required band of the MIMO National Natural Science Foundation of China, Grant/Award Number antenna is not presented in this paper.