Design and Fabrication of a Micro-Strip Antenna for Wi-Max Applications

Total Page:16

File Type:pdf, Size:1020Kb

Design and Fabrication of a Micro-Strip Antenna for Wi-Max Applications MEE08:29 DESIGN AND FABRICATION OF A MICRO-STRIP ANTENNA FOR WI-MAX APPLICATIONS Tulha Moaiz Yazdani Munawar Islam This thesis is presented as part of Degree of Master of Science in Electrical Engineering Blekinge Institute of Technology October 2008 Blekinge Institute of Technology School of Engineering Department: Signal Processing Supervisor: Dr. Mats Pettersson Examiner: Dr. Mats Pettersson - ii - UAbstract Worldwide Interoperability for Microwave Access (Wi-Max) is a broadband technology enabling the delivery of last mile (final leg of delivering connectivity from a communication provider to customer) wireless broadband access (alternative to cable and DSL). It should be easy to deploy and cheaper to user compared to other technologies. Wi-Max could potentially erase the suburban and rural blackout areas with no broadband Internet access by using an antenna with high gain and reasonable bandwidth Microstrip patch antennas are very popular among Local Area Network (LAN), Metropolitan Area Network (MAN), Wide Area Network (WAN) technologies due to their advantages such as light weight, low volume, low cost, compatibility with integrated circuits and easy to install on rigid surface. The aim is to design and fabricate a Microstrip antenna operating at 3.5GHz to achieve maximum bandwidth for Wi-Max applications. The transmission line model is used for analysis. S-parameters (S11 and S21) are measured for the fabricated Microstrip antenna using network analyzer in a lab environment. The fabricated single patch antenna brings out greater bandwidth than conventional high frequency patch antenna. The developed antenna also is found to have reasonable gain. - iii - - iv - UAcknowledgement It is a great pleasure to express our deep and sincere gratitude to our supervisor Dr. Mats Pettersson, Ph.D, Senior Lecturer of Blekinge Institute of Technology. Whose extreme patience made this dissertation possible His wide knowledge and his logical way of thinking have been great value for us. He provided us always energetic and devoted supervision and guidance throughout the thesis work. He always very much cooperative and helped us whenever we needed, in spite of his busy schedule. We would also like to thanks our colleagues for whom we have regard, and wish to extend our warmest thanks to all those who have helped us with our work. And finally special dedication to our families whom help and support for us in these years. We simply could not done it without them and hope that someday we can make it up to them. - v - UContents Chapter 1 Wireless communication Technology 1.1 Introduction 1.2 History 1.3 Basic Communication System 1.4 Different Mobiles Generation 1.5 WLAN(Wireless Local Area Network) 1.6 Bluetooth 1.7 Wi-Max 1.8 Importance of Antenna in Wireless System 1.9 Future of Wireless Technology Chapter 2 Antenna Essentials 2.1 Antenna Definition 2.2 Antenna Radiation 2.3 Friis Transmission Equation 2.4 Radiation Field Region around Antenna 2.5 Antenna Parameters 2.6 Far Field Radiation from Hertzian dipole Chapter 3 Microstrip Patch Antenna 3.1 Introduction 3.2 Feeding Methods 3.3 Comparison of Different Feed Methods 3.4 Methods of Analysis 3.5 Bandwidth & Quality Factor of Microstrip Antenna 3.6 Advantages & Disadvantages Chapter 4 Result and Measurement 4.1 Design Procedure 4.2 Measurement and Result 4.3 Conclusion - vi - UAcronyms CDMA Code Division Multiple Access EDGE Enhanced Data for GSM Evolution FCC Federal Communication Commission FR-4 Flame Resistance-4 GSM Global Systems for Mobile iDEN integrated Digital Enhanced Network IEEE Institute of Electrical and Electronic Engineering ISM Industrial, Scientific and Medical LAN Local Area Network MAN Metropolitan Area Network MBWA Mobile Broadband Wireless Access MMIC Monolithic Microwave Integrated Circuit NLOS Non Line of Sight OFDM Orthogonal Frequency Division Multiplexing PAN Personal Area Network PCMCIA Personal Computer Memory Card International Association PDA Personal Digital Assistance R.L Return Loss SCDMA Synchronous CDMA SMA Sub Miniature version A TACS Total Access Communication System UMTS Universal Mobile Telecommunication System VoIP Voice over Internet Protocol WAN Wide Area Network WCDMA Wideband CDMA WiDEN Wideband iDEN WLAN Wireless Local Area Network WMAN Wireless Metropolitan Area Network - vii - Chapter 1 Wireless Communication Chapter 1 Wireless Communication 1.1 Introduction Telecommunication is assisted transmission of signals over a distance for the purpose of communication. In early time this may involve the use of smoke signals, drums, semaphore (an apparatus for conveying information by means of visual signals, as a light whose position may be changed), flags or heliograph (a device for signaling by means of a movable mirror that reflects beam of light, esp. sunlight, to a distance). In modern times, telecommunication typically involves the use of electronic transmitters such as the telephone, television, radio or computer [1]. Radio or wireless communication means to transfer information over long or short distance without using any wires. Million of people exchange information every day using pager, cellular, telephones, laptops, various types of personal digital assistants (PDAS) and other wireless communication product [2]. The thesis aims to design an antenna model using IEEE given frequency band and to determine its various parameters, that how we can improve it using the frequency of 3.5GHz. This thesis investigates the use and design of a rectangular patch antenna having a thin metallic strip placed a fraction of wavelength above the ground surface with coaxial feed system. This antenna is found to be suitable for IEEE 802.16d Wi- Max application. 1.2 History Guglielmo Marconi invented the wireless Technology in 1896 (The actual invention of radio communications more properly should be attributed to Nikola Tesla, who gave a public demonstration in 1893. Marconi’s patents were overturned in favor of Tesla in 1943 [ENGE00]) [3]. In 1901 Guglielmo Marconi sent telegraphic signals across the Atlantic Ocean from Cornwall to St.Johan’s Newfoundland, it covers a distance of 1800 miles. His invention allowed two parties to communicate by sending each other alphanumeric characters encoded in an analog signal [3]. Over the last century, wireless technologies have led towards the radio, television, Paging system, Cordless phone, Mobile telephone, Satellite and wireless networks. This advancement in wireless communication is widely deployed and used through out the world in last four decades [4]. The first practical standard of cellular communication named first Generation (1G) was deployed and used in 1980. 1G uses the analog signal for communication of voice calls only. In the beginning of nineteen’s century this standard changed to digital second Generation (2G) and to the end of nineteen’s century it was still digital but better bandwidth and good quality of signal in third Generation (3G), Now a days industries are working on fourth Generation (4G) [5]. In 1994, Ericsson Telecomm Company introduces a portable device named Bluetooth. The aim of this device was to unite the computer and telecommunication industry [6]. After this invention, Ericsson realized that product had huge potential worldwide, and from the Bluetooth special Interest group, which now a days includes over thousand of companies from around the world [6]. Chapter 1 Wireless Communication 1.3 Basic Communication System The block diagram of communication system is shown below, Fig: 1.1 Block diagram of digital communication system [7] I. The input data which can be any shape like voice, video, images. II. The input data is applied to the channel encoder, this portion changing the data into very suitable manners like A-D converter and then transmit the data. III. Channel is actually a medium (wired or wireless) between transmitter and receiver. In channel part there are two inputs one is coming from transmitter and other is channel noise (unwanted signal or information is called noise). Thus the resultant data at the output of channel is altered. IV. The altered data at the output of channel is received by the receiver. The received data is decoded to reconstruct an original data transmitted by transmitter. V. Finally the reconstructed data is forward to the destination. 1.3.1 Concept of Cellular System A cellular telephone system provides a wireless connection to the Public Switch Telephone Network (PSTN) for any user location within the radio range of the system [8].The limited capacity of the first mobile radio-telephone services was related to the spectrum used, not much sharing and a lot of bandwidth dedicated to a single call [9]. It provided the good coverage but impossible to reuse the same frequency due to interference. The cellular concept addressed many of the shortcomings of first mobile telephones like frequency reuse and wasted spectrum allocated to a single user. Fig: 1.2 Cellular Network Architecture [9] Chapter 1 Wireless Communication In 1968 Bell Labs proposed the cellular telephone concept to the Federal Communications Commission (FCC). Then it was approved, it used the spectrum frequency of 845MHz to 870-890MHz band [9]. In 1960 to 1970’s Bell working on mobile system give the concept of dividing the coverage area into small cells, each of reused portions of spectrum. This leads to greater system infrastructure. It is the hexagon [4] geometry cell shape. Fig: 1.3 Frequency Reuse in cellular Networks [4] In above Fig 1.3 shows cellular frequency reuse concept. Cells with the same letter use the same set of frequencies. A cell cluster is outlined in bold and replicated over the coverage area. In the example, cluster size, N, is equal to seven, and the frequency reuse factor is 1/7 since each cell contains one-seventh of the total number of available channels [4]. FCC finally allocated the 40MHz spectrum in the 800MHz band, where a signal channels occupies 30 KHz bandwidth for Advance Mobile Phone System (AMPS) [10]. Cellular system is widely popular across the world due to its portability, flexibility, quality, bandwidth, and specially user friendly.
Recommended publications
  • Chapter 22 Fundamentalfundamental Propertiesproperties Ofof Antennasantennas
    ChapterChapter 22 FundamentalFundamental PropertiesProperties ofof AntennasAntennas ECE 5318/6352 Antenna Engineering Dr. Stuart Long 1 .. IEEEIEEE StandardsStandards . Definition of Terms for Antennas . IEEE Standard 145-1983 . IEEE Transactions on Antennas and Propagation Vol. AP-31, No. 6, Part II, Nov. 1983 2 ..RadiationRadiation PatternPattern (or(or AntennaAntenna Pattern)Pattern) “The spatial distribution of a quantity which characterizes the electromagnetic field generated by an antenna.” 3 ..DistributionDistribution cancan bebe aa . Mathematical function . Graphical representation . Collection of experimental data points 4 ..QuantityQuantity plottedplotted cancan bebe aa . Power flux density W [W/m²] . Radiation intensity U [W/sr] . Field strength E [V/m] . Directivity D 5 . GraphGraph cancan bebe . Polar or rectangular 6 . GraphGraph cancan bebe . Amplitude field |E| or power |E|² patterns (in linear scale) (in dB) 7 ..GraphGraph cancan bebe . 2-dimensional or 3-D most usually several 2-D “cuts” in principle planes 8 .. RadiationRadiation patternpattern cancan bebe . Isotropic Equal radiation in all directions (not physically realizable, but valuable for comparison purposes) . Directional Radiates (or receives) more effectively in some directions than in others . Omni-directional nondirectional in azimuth, directional in elevation 9 ..PrinciplePrinciple patternspatterns . E-plane . H-plane Plane defined by H-field and Plane defined by E-field and direction of maximum direction of maximum radiation radiation (usually coincide with principle planes of the coordinate system) 10 Coordinate System Fig. 2.1 Coordinate system for antenna analysis. 11 ..RadiationRadiation patternpattern lobeslobes . Major lobe (main beam) in direction of maximum radiation (may be more than one) . Minor lobe - any lobe but a major one . Side lobe - lobe adjacent to major one .
    [Show full text]
  • W5GI MYSTERY ANTENNA (Pdf)
    W5GI Mystery Antenna A multi-band wire antenna that performs exceptionally well even though it confounds antenna modeling software Article by W5GI ( SK ) The design of the Mystery antenna was inspired by an article written by James E. Taylor, W2OZH, in which he described a low profile collinear coaxial array. This antenna covers 80 to 6 meters with low feed point impedance and will work with most radios, with or without an antenna tuner. It is approximately 100 feet long, can handle the legal limit, and is easy and inexpensive to build. It’s similar to a G5RV but a much better performer especially on 20 meters. The W5GI Mystery antenna, erected at various heights and configurations, is currently being used by thousands of amateurs throughout the world. Feedback from users indicates that the antenna has met or exceeded all performance criteria. The “mystery”! part of the antenna comes from the fact that it is difficult, if not impossible, to model and explain why the antenna works as well as it does. The antenna is especially well suited to hams who are unable to erect towers and rotating arrays. All that’s needed is two vertical supports (trees work well) about 130 feet apart to permit installation of wire antennas at about 25 feet above ground. The W5GI Multi-band Mystery Antenna is a fundamentally a collinear antenna comprising three half waves in-phase on 20 meters with a half-wave 20 meter line transformer. It may sound and look like a G5RV but it is a substantially different antenna on 20 meters.
    [Show full text]
  • A Polarization Approach to Determining Rotational Angles of a Mortar
    A POLARIZATION APPROACH TO DETERMINING ROTATIONAL ANGLES OF A MORTAR by Muhammad Hassan Chishti A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering Summer 2010 Copyright 2010 Muhammad Chishti All Rights Reserved A POLARIZATION APPROACH TO DETERMINING ROTATIONAL ANGLES OF A MORTAR by Muhammad Hassan Chishti Approved: __________________________________________________________ Daniel S. Weile, Ph.D Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Kenneth E. Barner, Ph.D Chair of the Department Electrical and Computer Engineering Approved: __________________________________________________________ Michael J. Chajes, Ph.D Dean of the College of Engineering Approved: __________________________________________________________ Debra Hess Norris, M.S Vice Provost for Graduate and Professional Education This thesis is dedicated to, My Sheikh Hazrat Maulana Mufti Muneer Ahmed Akhoon Damat Barakatuhum My Father Muhammad Hussain Chishti My Mother Shahida Chishti ACKNOWLEDGMENTS First and foremost, my all praise and thanks be to the Almighty Allah, The Beneficent, Most Gracious, and Most Merciful. Without His mercy and favor I would have been an unrecognizable speck of dust. I am exceedingly thankful to my advisor Professor Daniel S. Weile. It is through his support, guidance, generous heart, and mentorship that steered me through this Masters Thesis. Definitely one of the smartest people I have ever had the fortune of knowing and working. I am really indebted to him for all that. I would like to thank the Army Research Labs (ARL) in Aberdeen, MD for providing me the funding support to perform the research herein.
    [Show full text]
  • Smith Chart Calculations
    The following material was extracted from earlier edi- tions. Figure and Equation sequence references are from the 21st edition of The ARRL Antenna Book Smith Chart Calculations The Smith Chart is a sophisticated graphic tool for specialized type of graph. Consider it as having curved, rather solving transmission line problems. One of the simpler ap- than rectangular, coordinate lines. The coordinate system plications is to determine the feed-point impedance of an consists simply of two families of circles—the resistance antenna, based on an impedance measurement at the input family, and the reactance family. The resistance circles, Fig of a random length of transmission line. By using the Smith 1, are centered on the resistance axis (the only straight line Chart, the impedance measurement can be made with the on the chart), and are tangent to the outer circle at the right antenna in place atop a tower or mast, and there is no need of the chart. Each circle is assigned a value of resistance, to cut the line to an exact multiple of half wavelengths. The which is indicated at the point where the circle crosses the Smith Chart may be used for other purposes, too, such as the resistance axis. All points along any one circle have the same design of impedance-matching networks. These matching resistance value. networks can take on any of several forms, such as L and pi The values assigned to these circles vary from zero at the networks, a stub matching system, a series-section match, and left of the chart to infinity at the right, and actually represent more.
    [Show full text]
  • Optimum Partitioning of a Phased-MIMO Radar Array Antenna
    Optimum Partitioning of a Phased-MIMO Radar Array Antenna Ahmed Alieldin, Student Member, IEEE; Yi Huang, Senior Member, IEEE; and Walid M. Saad as it can significantly improve system identification, target Abstract—In a Phased-Multiple-Input-Multiple-Output detection and parameters estimation performance when (Phased-MIMO) radar the transmit antenna array is divided into combined with adaptive arrays. It can also enhance transmit multiple sub-arrays that are allowed to be overlapped. In this beam pattern design and use available space efficiently which paper a mathematical formula for optimum partitioning scheme is most suitable for airborne or ship-borne radars [7]. is derived to determine the optimum division of an array into sub-arrays and number of elements in each sub-array. The main However, because the antennas are collocated, the main concept of this new scheme is to place the transmit beam pattern drawback is the loss of space diversity that is needed to nulls at the diversity beam pattern peak side lobes and place the mitigate the effect of target fluctuations. This problem could diversity beam pattern nulls at the transmit beam pattern peak be solved using phased-MIMO radar [3]. But the main side lobes. This is compared with other equal and unequal question is how to divide array elements into sub-arrays to schemes. It is shown that the main advantage of this optimum achieve the optimum performance. partitioning scheme is the improvement of the main-to-side lobe levels without reduction in beam pattern directivity. Also signal- This paper proposes an optimum partitioning scheme for to-noise ratio is improved using this optimum partitioning phased-MIMO radar and is organized as follows: Section II scheme.
    [Show full text]
  • Resolving Interference Issues at Satellite Ground Stations
    Application Note Resolving Interference Issues at Satellite Ground Stations Introduction RF interference represents the single largest impact to robust satellite operation performance. Interference issues result in significant costs for the satellite operator due to loss of income when the signal is interrupted. Additional costs are also encountered to debug and fix communications problems. These issues also exert a price in terms of reputation for the satellite operator. According to an earlier survey by the Satellite Interference Reduction Group (SIRG), 93% of satellite operator respondents suffer from satellite interference at least once a year. More than half experience interference at least once per month, while 17% see interference continuously in their day-to-day operations. Over 500 satellite operators responded to this survey. Satellite Communications Overview Satellite earth stations form the ground segment of satellite communications. They contain one or more satellite antennas tuned to various frequency bands. Satellites are used for telephony, data, backhaul, broadcast, community antenna television (CATV), internet, and other services. Depending on the application, each satellite system may be receive only or constructed for both transmit and receive operations. A typical earth station is shown in figure 1. Figure 1. Satellite Earth Station Each satellite antenna system is composed of the antenna itself (parabola dish) along with various RF components for signal processing. The RF components comprise the satellite feed system. The feed system receives/transmits the signal from the dish to a horn antenna located on the feed network. The location of the receiver feed system can be seen in figure 2. The satellite signal is reflected from the parabolic surface and concentrated at the focus position.
    [Show full text]
  • Two- and Three-Loop Superdirective Receiving Antennas Elwin W
    JOURNAL OF RESEARCH of the National Bureau of Standards-D. Radio Propagation Vol. 67D, No. 2, March- April 1963 Two- and Three-Loop Superdirective Receiving Antennas Elwin W. Seeley Contribution from U .S. Naval Ordnance Laboratory, Corona, California (R eceived June 11 , 1962; revised August 2, 1962) The characteristics of two- and three-loop superdirect ive a ntenn a arrays arc presenled . At VLF, t his type of array appears to h ave m any d esirab le qua li t ies, and the usua l dctr'i­ mental ch a racteristics associated wi th superdirectivity are less in evidence. It is shown that the beamwidth is n arrowest, the front-to-back voltage and power ratios m' e greatest, a nd the position of t he back lobes and nulls are most invaria nt whf'n closel.v spaeed loops are used . Inequalities in signals from the individua l loops tend to obscure t he fr ont a nd back lobe' and limit t he proxim ity of the loops. List of Symbols E q,= relalive volLtLge received frorn di rec tion </> compared to voltage Crolll one loop. </> = angle of received sign<Ll in the horizontal plane f!"om the vertical phtll e in ",hiclt th e loops are located. 2'/fD cos rf> 1/; =- A D = distal1ce beLween loops A= free space wavelength - il = phase delay between loop </>0 = null position </>l= position of side lobe maximum R1= ratio of front lobe to side lobe ampliLude Ro= ratio of Jront lobe to back lobe amplitud e Rp=ratio of power collected by the fronL lobe to thaL colleeled b ~- the back lobes I = current in the loop antenna 77 = 1207r, intrinsic impedance of space A = area of loop {3 = 27r/A 8= angle in the plane of the loop r = radius of loop ro = radius of wire used to maIm loop ZL= input impedance of loop VL = loop voltage E,=free space radiation field.
    [Show full text]
  • A THEORETICAL STUDY of LOW SIDE LOBE ANTENNA ARRAYS By
    A THEORETICAL STUDY OF LOW SIDE LOBE ANTENNA ARRAYS by Brian Robert Gladman A thesis submitted to the University of London for Examination for the degree of Doctor of Philosophy (September 1975)• Work carried out at the Admiralty Surface Weapons Establishment. -1- ABSTRACT This thesis presents theoretical work undertaken in support of a research programme on low side lobe antenna arrays. In particular it presents results on the effects of mutual coupling on the performance of microwave arrays that consist of a number of identical radiating elements fed by a wide-band power dividing network. Low side lobe distributions are reviewed and the effects of various types of distributional error are derived. A simplified but representative array geometry is described for which a detailed analysis of mutual coupling is possible. Results are given for the element patterns in a finite array which clearly show the influence of mutual coupling and also the distortion in the patterns for elements close to the array edges. Array patterns obtained from low side lobe distri- butions are given. In studying the effects of inter-action between the array and its feed network, a set of 'aperture modes' are discovered that are orthogonal and uncoupled. These modes have a number of interesting properties and are shown to provide a pattern synthesis technique that can take account of the effects of mutual coupling between the array elements. The synthesis of multiple beam networks for producing these modes is covered. A number of potential wide-band feed networks are considered using both directional couplers and shunt coaxial junctions for power division.
    [Show full text]
  • Log Periodic Antenna (LPA)
    Log Periodic Antenna (LPA) Dr. Md. Mostafizur Rahman Professor Department of Electronics and Communication Engineering (ECE) Khulna University of Engineering & Technology (KUET) Frequency Independent Antenna : may be defined as the antenna for which “the impedance and pattern (and hence the directivity) remain constant as a function of the frequency” Antenna Theory - Log-periodic Antenna The Yagi-Uda antenna is mostly used for domestic purpose. However, for commercial purpose and to tune over a range of frequencies, we need to have another antenna known as the Log-periodic antenna. A Log-periodic antenna is that whose impedance is a logarithmically periodic function of frequency. Not only this all the electrical properties undergo similar periodic variation, particularly radiation pattern, directive gain, side lobe level, beam width and beam direction. These are broadband antenna. Bandwidth of 10:1 is achieved easily and even 100:1 is feasible if the theoretical design closely approximated. Radiation pattern may be bidirectional and unidirectional of low to moderate gain. Frequency range The frequency range, in which the log-periodic antennas operate is around 30 MHz to 3GHz which belong to the VHF and UHF bands. Construction & Working of Log-periodic Antenna The construction and operation of a log-periodic antenna is similar to that of a Yagi-Uda antenna. The main advantage of this antenna is that it exhibits constant characteristics over a desired frequency range of operation. It has the same radiation resistance and therefore the same SWR. The gain and front-to-back ratio are also the same. The image shows a log-periodic antenna.
    [Show full text]
  • The DBJ-1: a VHF-UHF Dual-Band J-Pole
    By Edison Fong, WB6IQN The DBJ-1: A VHF-UHF Dual-Band J-Pole Searching for an inexpensive, high-performance dual-band base antenna for VHF and UHF? Build a simple antenna that uses a single feed line for less than $10. wo-meter antennas are small com- dipole because it is end fed; this results antenna on my roof since 1992 and it has pared to those for the lower fre- in virtually no disruption to the radiation been problem-free in the San Francisco Tquency bands, and the availability pattern by the feed line. fog. of repeaters on this band greatly extends The basic configuration of the ribbon the range of lightweight low power The Conventional J-Pole J-Pole is shown in Figure 1. The dimen- handhelds and mobile stations. One of the I was introduced to the twinlead ver- sions are shown for 2 meters. This design most popular VHF and UHF base station sion of the J-Pole in 1990 by my long-time was also discussed by KD6GLF in QST.1 antennas is the J-Pole. friend, Dennis Monticelli, AE6C, and I That antenna presented dual-band reso- The J-Pole has no ground radials and was intrigued by its simplicity and high nance, operating well at 2 meters but with it is easy to construct using inexpensive performance. One can scale this design to a 6-7 dB deficit in the horizontal plane at materials. For its simplicity and small size, one-third size and also use it on UHF. UHF when compared to a dipole.
    [Show full text]
  • Measurement Techniques and New Technologies for Satellite Monitoring
    Report ITU-R SM.2424-0 (06/2018) Measurement techniques and new technologies for satellite monitoring SM Series Spectrum management ii Rep. ITU-R SM.2424-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Electronic Science Electrodynamics and Microwaves 17. Stub Matching
    1 Module 17 Stub Matching Technique in Transmission Lines 1. Introduction 2. Concept of matching stub 3. Mathematical Basis for Single shunt stub matching 4 .Designing of single stub using Smith chart 5. Series single stub 6. Concept of Double stub matching 7. Mathematical Basis for Double Stub Matching 8. Design of Double stub using Smith Chart: 9. Summary Objectives After completing this module, you will be able to 1. Understand the concept of matching stub and different types of it. 2. Understand the mathematical principle behind the stub matching technique. 3. Design single stub and double stub using Smith chart. 4. Know about advantages and limitations of stub matching technique. Electrodynamics and Microwaves Electronic Science 17. Stub Matching Technique in Transmission Lines 2 1. Introduction In the earlier modules , we have discussed about how matching networks and QWT can be used for matching the load impedance with the lossless transmission line. Both these techniques suffer from some drawbacks .Especially the losses like, insertion loss, mismatch loss are of much more prominent losses. There is another technique known as “Stub Matching Technique” to match the load impedance with the Characteristic impedance of the given transmission line so as to have zero reflection coefficient. The technique is marvelous and the designing can be done using Smith chart in a very simple way. Let us discuss it with adequate details rather qualitatively avoiding mathematical rigor in it. 2. Concept of Matching Stub A section of a transmission line having small length is called as a stub. Two types’ namely single stub and double stub comprising of one or two stubs are in common use.
    [Show full text]