DIGITHÈQUE Université Libre De Bruxelles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The HERACLES View of the H -To-HI Ratio in Galaxies
The HERACLES View of the H2-to-HI Ratio in Galaxies Adam Leroy (NRAO, Hubble Fellow) Fabian Walter, Frank Bigiel, the HERACLES and THINGS teams The Saturday Morning Summary • Star formation rate vs. gas relation on ~kpc scales breaks apart into: A relatively universal CO-SFR relation in nearby disks Systematic environmental scalings in the CO-to-HI ratio • The CO-to-HI ratio is a strong function of radius, total gas, and stellar surface density correlated with ISM properties: dust-to-gas ratio, pressure harder to link to dynamics: gravitational instability, arms • Interpretation: the CO-to-HI ratio traces the efficiency of GMC formation Density and dust can explain much of the observed behavior heracles Fabian Walter Erik Rosolowsky MPIA UBC Frank Bigiel Eva Schinnerer UC Berkeley THINGS plus… MPIA Elias Brinks Antonio Usero Gaelle Dumas U Hertfordshire OAN, Madrid MPIA Erwin de Blok Andreas Schruba Helmut Wiesemeyer U Cape Town IRAM … MPIA Rob Kennicutt Axel Weiss Karl Schuster Cambridge MPIfR IRAM Barry Madore Carsten Kramer Karin Sandstrom Carnegie IRAM MPIA Michele Thornley Daniela Calzetti Kelly Foyle Bucknell UMass MPIA Collaborators The HERA CO-Line Extragalactic Survey First maps Leroy et al. (2009) • IRAM 30m Large Program to map CO J = 2→1 line • Instrument: HERA receiver array operating at 230 GHz • 47 galaxies: dwarfs to starbursts and massive spirals -2 • Very wide-field (~ r25) and sensitive (σ ~ 1-2 Msun pc ) NGS The HI Nearby Galaxy Survey HI Walter et al. (2008), AJ Special Issue (2008) • VLA HI maps of 34 galaxies: -
Luminous Blue Variables
Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs. -
Star Systems in the Solar Neighborhood up to 10 Parsecs Distance
Vol. 16 No. 3 June 15, 2020 Journal of Double Star Observations Page 229 Star Systems in the Solar Neighborhood up to 10 Parsecs Distance Wilfried R.A. Knapp Vienna, Austria [email protected] Abstract: The stars and star systems in the solar neighborhood are for obvious reasons the most likely best investigated stellar objects besides the Sun. Very fast proper motion catches the attention of astronomers and the small distances to the Sun allow for precise measurements so the wealth of data for most of these objects is impressive. This report lists 94 star systems (doubles or multiples most likely bound by gravitation) in up to 10 parsecs distance from the Sun as well over 60 questionable objects which are for different reasons considered rather not star systems (at least not within 10 parsecs) but might be if with a small likelihood. A few of the listed star systems are newly detected and for several systems first or updated preliminary orbits are suggested. A good part of the listed nearby star systems are included in the GAIA DR2 catalog with par- allax and proper motion data for at least some of the components – this offers the opportunity to counter-check the so far reported data with the most precise star catalog data currently available. A side result of this counter-check is the confirmation of the expectation that the GAIA DR2 single star model is not well suited to deliver fully reliable parallax and proper motion data for binary or multiple star systems. 1. Introduction high proper motion speed might cause visually noticea- The answer to the question at which distance the ble position changes from year to year. -
HOW to CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, and RADIUS Andrew W
The Astrophysical Journal, 804:64 (38pp), 2015 May 1 doi:10.1088/0004-637X/804/1/64 © 2015. The American Astronomical Society. All rights reserved. HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS Andrew W. Mann1,2,8,9, Gregory A. Feiden3, Eric Gaidos4,5,10, Tabetha Boyajian6, and Kaspar von Braun7 1 University of Texas at Austin, USA; [email protected] 2 Institute for Astrophysical Research, Boston University, USA 3 Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden 4 Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822, USA 5 Max Planck Institut für Astronomie, Heidelberg, Germany 6 Department of Astronomy, Yale University, New Haven, CT 06511, USA 7 Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff, AZ, USA Received 2015 January 6; accepted 2015 February 26; published 2015 May 4 ABSTRACT Precise and accurate parameters for late-type (late K and M) dwarf stars are important for characterization of any orbiting planets, but such determinations have been hampered by these stars’ complex spectra and dissimilarity to the Sun. We exploit an empirically calibrated method to estimate spectroscopic effective temperature (Teff) and the Stefan–Boltzmann law to determine radii of 183 nearby K7–M7 single stars with a precision of 2%–5%. Our improved stellar parameters enable us to develop model-independent relations between Teff or absolute magnitude and radius, as well as between color and Teff. The derived Teff–radius relation depends strongly on [Fe/H],as predicted by theory. -
Can Stellar Winds Account for Temperature Fluctuations in H II
A&A 379, 1017–1023 (2001) Astronomy DOI: 10.1051/0004-6361:20011364 & c ESO 2001 Astrophysics Can stellar winds account for temperature fluctuations in H II regions? The case of NGC 2363 V. Luridiana1,2,M.Cervi˜no3, and L. Binette2 1 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching b. M¨unchen, Germany 2 Instituto de Astronom´ıa, Universidad Nacional Aut´onoma de M´exico, Ap. Postal 70-264, 04510 M´exico D.F., Mexico 3 Max-Planck-Institut f¨ur extraterrestrische Physik, Gießenbachstraße, 85748 Garching b. M¨unchen, Germany Received 13 August 2001 / Accepted 25 September 2001 Abstract. We compare the rate of kinetic energy injected by stellar winds into the extragalactic Hiiregion NGC 2363 to the luminosity needed to feed the observed temperature fluctuations. The kinetic luminosity asso- ciated to the winds is estimated by means of two different evolutionary synthesis codes, one of which takes into account the statistical fluctuations expected in the Initial Mass Function. We find that, even in the most favorable conditions considered by our model, such luminosity is much smaller than the luminosity needed to account for the observed temperature fluctuations. The assumptions underlying our study are emphasized as possible sources of uncertainty affecting our results. Key words. Hiiregions – ISM: individual (NGC 2366, NGC 2363) – stars: clusters 1. Introduction For a long time, the only way temperature fluctua- tions were accounted for in theoretical models was ac- The presence of temperature fluctuations in photoionized knowledging the impossibility to reproduce the observed regions has been a matter of debate since the pioneer- intensity of the most affected lines; see, e.g., Luridiana ing work by Peimbert (1967). -
Cold Gas and Baryon-Induced Dark Matter Cores in Nearby Galaxies
Cold gas and baryon-induced dark matter cores in nearby galaxies Flor Allaert Supervisors: Prof. Dr. Maarten Baes, Dr. Gianfranco Gentile A dissertation submitted to Ghent University in partial fulfilment of the requirements for the degree of Doctor of Science: Astronomy September 2017 Supervisors: Prof. Dr. Maarten Baes Vakgroep Fysica en Sterrenkunde Universiteit Gent Dr. Gianfranco Gentile Vakgroep Fysica en Sterrenkunde Vrije Universiteit Brussel Jury members: Prof. Dr. Dirk Poelman (President) Vakgroep Vastestofwetenschappen Universiteit Gent Dr. Karel Van Acoleyen (Secretary) Vakgroep Fysica en Sterrenkunde Universiteit Gent Prof. Dr. Sven De Rijcke Vakgroep Fysica en Sterrenkunde Universiteit Gent Prof. Dr. Herwig Dejonghe Vakgroep Fysica en Sterrenkunde Universiteit Gent Prof. Dr. Uli Klein Argelander-Institut fur¨ Astronomie Universitat¨ Bonn Prof. Dr. Erwin de Blok Netherlands Institute for Radio Astronomy Contents 1 Introduction1 1.1 Galaxies - building blocks of the Universe.................1 1.1.1 Classification............................2 1.1.2 Chemical evolution.........................4 1.1.3 Accretion and mergers.......................6 1.2 Observing the different components....................8 1.2.1 Stars................................8 1.2.2 Gas.................................9 1.2.3 Dust................................. 12 1.3 Panchromatic SED modelling and dust radiative transfer......... 13 1.3.1 SED fitting............................. 13 1.3.2 Dust radiative transfer....................... 14 1.3.3 The energy balance problem.................... 15 1.4 FRIEDL, HEROES and NHEMESES................... 17 1.4.1 The energy balance problem revisited............... 18 1.5 Dark matter................................. 18 1.5.1 History............................... 19 1.5.2 Dark matter in cosmology..................... 21 1.5.3 Cosmological simulations..................... 23 1.5.4 The cusp-core controversy..................... 24 1.5.5 Baryons to the rescue?...................... -
Arxiv:Astro-Ph/0104091V1 4 Apr 2001 B .J Asnrsac Etr Obx28 Okonheight Yorktown 218, Box PO Center, Research Watson J
Neutral Hydrogen and Star Formation in the Irregular Galaxy NGC 2366 Deidre A. Hunter Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, Arizona 86001 USA; [email protected] Bruce G. Elmegreen IBM T. J. Watson Research Center, PO Box 218, Yorktown Heights, New York 10598 USA; [email protected] and Hugo van Woerden Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, The Netherlands; [email protected] ABSTRACT We present deep UBVJHKHα images and HI maps of the irregular galaxy NGC 2366. Optically, NGC 2366 is a boxy-shaped exponential disk seen at high inclination angle. The scale length and central surface brightness of the disk are normal for late-type galaxies. Although NGC 2366 has been classified as a barred Im galaxy, we do not see any unambiguous observational signature of a bar. There is an asymmetrical extension of stars along one end of the major axis of the galaxy, and this is where the furthest star-forming regions are found, at a radius of 1.3 times the Holmberg radius. The star formation activity of the galaxy is dominated by the supergiant H ii complex NGC 2363, but the global star formation rate for NGC 2366 is only moderately elevated relative to other Im galaxies. The star formation activity drops off with radius arXiv:astro-ph/0104091v1 4 Apr 2001 approximately as the starlight in the inner part of the galaxy but it drops faster in the outer part. There are some peculiar features of the HI distribution and kinematics. First, the integrated HI shows two ridges running parallel to the major axis that when deprojected appear as a large ring. -
Galaxy Data Name Constell
Galaxy Data name constell. quadvel km/s z type width ly starsDist. Satellite Milky Way many many 0 0.0000 SBbc 106K 200M 0 M31 Andromeda NQ1 -301 -0.0010 SA 220K 1T 2.54Mly M32 Andromeda NQ1 -200 -0.0007 cE2 Sat. 5K 2.49Mly M31 M110 Andromeda NQ1 -241 -0.0008 dE 15K 2.69M M31 NGC 404 Andromeda NQ1 -48 -0.0002 SA0 no 10M NGC 891 Andromeda NQ1 528 0.0018 SAb no 27.3M NGC 680 Aries NQ1 2928 0.0098 E pec no 123M NGC 772 Aries NQ1 2472 0.0082 SAb no 130M Segue 2 Aries NQ1 -40 -0.0001 dSph/GC?. 100 5E5 114Kly MW NGC 185 Cassiopeia NQ1 -185 -0.0006dSph/E3 no 2.05Mly M31 Dwingeloo 1 Cassiopeia NQ1 110 0.0004 SBcd 25K 10Mly Dwingeloo 2 Cassiopeia NQ1 94 0.0003Iam no 10Mly Maffei 1 Cassiopeia NQ1 66 0.0002 S0pec E3 75K 9.8Mly Maffei 2 Cassiopeia NQ1 -17 -0.0001 SABbc 25K 9.8Mly IC 1613 Cetus NQ1 -234 -0.0008Irr 10K 2.4M M77 Cetus NQ1 1177 0.0039 SABd 95K 40M NGC 247 Cetus NQ1 0 0.0000SABd 50K 11.1M NGC 908 Cetus NQ1 1509 0.0050Sc 105K 60M NGC 936 Cetus NQ1 1430 0.0048S0 90K 75M NGC 1023 Perseus NQ1 637 0.0021 S0 90K 36M NGC 1058 Perseus NQ1 529 0.0018 SAc no 27.4M NGC 1263 Perseus NQ1 5753 0.0192SB0 no 250M NGC 1275 Perseus NQ1 5264 0.0175cD no 222M M74 Pisces NQ1 857 0.0029 SAc 75K 30M NGC 488 Pisces NQ1 2272 0.0076Sb 145K 95M M33 Triangulum NQ1 -179 -0.0006 SA 60K 40B 2.73Mly NGC 672 Triangulum NQ1 429 0.0014 SBcd no 16M NGC 784 Triangulum NQ1 0 0.0000 SBdm no 26.6M NGC 925 Triangulum NQ1 553 0.0018 SBdm no 30.3M IC 342 Camelopardalis NQ2 31 0.0001 SABcd 50K 10.7Mly NGC 1560 Camelopardalis NQ2 -36 -0.0001Sacd 35K 10Mly NGC 1569 Camelopardalis NQ2 -104 -0.0003Ibm 5K 11Mly NGC 2366 Camelopardalis NQ2 80 0.0003Ibm 30K 10M NGC 2403 Camelopardalis NQ2 131 0.0004Ibm no 8M NGC 2655 Camelopardalis NQ2 1400 0.0047 SABa no 63M Page 1 2/28/2020 Galaxy Data name constell. -
7.5 X 11.5.Threelines.P65
Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93, -
1 I Articles Dans Des Revues Avec Comité De Lecture
1 I Articles dans des revues avec comité de lecture (ACL) internationales II Articles dans des revues sans comité de lecture (SCL) NB : La liste des publications est donnée de façon exhautive par équipe, ce qui signifie qu’il existe des redondances chaque fois qu’une publication est cosignée pas des membres dépendant d’équipes différentes. Par contre, certains chercheurs sont à cheval sur deux équipes, dans ce cas il leur a été demandé de rattacher leurs publications seulement à l’une ou à l’autre équipe en fonction de la nature de la publication et la raison de leur rattachement à deux équipes. I Articles dans des revues avec comité de lecture (ACL) internationales ANNÉE 2006 A / Equipe « Physique des galaxies » 1. Aguilar, J.A. et al. (the ANTARES collaboration, 214 auteurs). First results of the Instrumentation Line for the deep- sea ANTARES neturino telescope Astroparticle Physic 26, 314 2. Auld, R.; Minchin, R. F.; Davies, J. I.; Catinella, B.; van Driel, W.; Henning, P. A.; Linder, S.; Momjian, E.; Muller, E.; O'Neil, K.; Boselli, A.; et 18 coauteurs. The Arecibo Galaxy Environment Survey: precursor observations of the NGC 628 group, 2006, MNRAS,.371,1617A 3. Boselli, A.; Boissier, S.; Cortese, L.; Gil de Paz, A.; Seibert, M.; Madore, B. F.; Buat, V.; Martin, D. C. The Fate of Spiral Galaxies in Clusters: The Star Formation History of the Anemic Virgo Cluster Galaxy NGC 4569, 2006, ApJ, 651, 811B 4. Boselli, A.; Gavazzi, G. Environmental Effects on Late-Type Galaxies in Nearby Clusters -2006, PASP, 118, 517 5. -
First Results from the MADCASH Survey: a Faint Dwarf Galaxy
Draft version August 10, 2016 Preprint typeset using LATEX style AASTeX6 v. 1.0 FIRST RESULTS FROM THE MADCASH SURVEY: A FAINT DWARF GALAXY COMPANION TO THE LOW MASS SPIRAL GALAXY NGC 2403 AT 3.2 MPC 1 Jeffrey L. Carlin2, David J. Sand3, Paul Price4, Beth Willman2, Ananthan Karunakaran5, Kristine Spekkens5,6, Eric F. Bell7, Jean P. Brodie8, Denija Crnojevic´3, Duncan A. Forbes9, Jonathan Hargis10, Evan Kirby11, Robert Lupton4, Annika H. G. Peter12, Aaron J. Romanowsky8, 13, and Jay Strader14 1Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. 2LSST and Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721, USA; Haverford College, Department of Astronomy, 370 Lancaster Avenue, Haverford, PA 19041, USA; jeff[email protected] 3Texas Tech University, Physics Department, Box 41051, Lubbock, TX 79409-1051, USA 4Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA 5Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, Ontario, Canada, K7L 3N6 6Department of Physics, Royal Military College of Canada, P.O. Box 17000, Station Forces, Kingston, ON K7L 7B4, Canada 7Department of Astronomy, University of Michigan, 1085 South University Ave, Ann Arbor, MI 48109, USA 8University of California Observatories, 1156 High Street, Santa Cruz, CA 95064, USA 9Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn VIC 3122, Australia 10Space Telescope Science Institute, 3700 San Martin Drive, -
Astronomy Astrophysics
A&A 449, 1233–1242 (2006) Astronomy DOI: 10.1051/0004-6361:20054284 & c ESO 2006 Astrophysics Simulating observable comets III. Real stellar perturbers of the Oort cloud and their output P. A. Dybczynski´ Astronomical Observatory of the A. Mickiewicz University, Słoneczna 36, 60-286 Poznan,´ Poland e-mail: [email protected] Received 30 September 2005 / Accepted 15 November 2005 ABSTRACT Context. This is the third of a series of papers on simulating the mechanisms acting currently on the Oort cloud and producing the observed long-period comets. Aims. In this paper we investigate the influence of current stellar perturbers on the Oort cloud of comets under the simultaneous galactic disk tide. We also analyse the past motion of the observed long-period comets under the same dynamical model to verify the widely used definition of dynamically new comets. Methods. The action of nearby stars and the galactic disk tide on the Oort cloud was simulated. The original orbital elements of all 386 long- period comets of quality classes 1 and 2 were calculated, and their motion was followed numerically for one orbital revolution into the past, down to the previous perihelion. We also simulated the output of the close future pass of GJ 710 through the Oort cloud. Results. The simulated flux of the observable comets resulting from the current stellar and galactic perturbations, as well as the distribution of perihelion direction, was obtained. The same data are presented for the future passage of GJ 710. A detailed description is given of the past evolution of aphelion and perihelion distances of the observed long-period comets.