Phosphodiesterase 2 Inhibition Preferentially Promotes NO/Guanylyl Cyclase/Cgmp Signaling to Reverse the Development of Heart Failure

Total Page:16

File Type:pdf, Size:1020Kb

Phosphodiesterase 2 Inhibition Preferentially Promotes NO/Guanylyl Cyclase/Cgmp Signaling to Reverse the Development of Heart Failure Phosphodiesterase 2 inhibition preferentially promotes NO/guanylyl cyclase/cGMP signaling to reverse the development of heart failure Reshma S. Baligaa,1, Michael E. J. Preedya,1, Matthew S. Dukinfielda, Sandy M. Chua, Aisah A. Aubdoola, Kristen J. Bubba, Amie J. Moyesa, Michael A. Tonesb, and Adrian J. Hobbsa,2 aWilliam Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, EC1M 6BQ London, United Kingdom; and bPfizer, Inc., St. Louis, MO 63198 Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved June 26, 2018 (received for review January 18, 2018) Heart failure (HF) is a shared manifestation of several cardiovas- innervation, whereas nNOS-generated NO regulates basal myo- cular pathologies, including hypertension and myocardial infarc- cardial inotropy and lusitropy via inhibition of the inward calcium tion, and a limited repertoire of treatment modalities entails that current (ICa), sympathovagal balance, and limitation of the activity the associated morbidity and mortality remain high. Impaired nitric of oxidases (6, 7). Indeed, in LVH, such protective NO-mediated oxide (NO)/guanylyl cyclase (GC)/cyclic guanosine-3′,5′-monophos- systems are depressed, in part, due to diminished NO bioavail- phate (cGMP) signaling, underpinned, in part, by up-regulation of ability and elevated GC-1/GC-2 heme oxidation (8–10), driven by cyclic nucleotide-hydrolyzing phosphodiesterase (PDE) isozymes, an increase in the production of reactive oxygen species, particu- contributes to the pathogenesis of HF, and interventions targeted larly by NADPH oxidase isoforms (11). Likewise, natriuretic pep- to enhancing cGMP have proven effective in preclinical models and tides maintain cardiac structure and function in both physiological patients. Numerous PDE isozymes coordinate the regulation of car- and pathological settings, as illustrated by the hypertrophic, fibrotic diac cGMP in the context of HF; PDE2 expression and activity are up- cardiac phenotype in transgenic animals lacking these mediators or regulated in experimental and human HF, but a well-defined role for cognate receptors, and the exacerbated response of such mice to this isoform in pathogenesis has yet to be established, certainly in cardiac stress (12–14). terms of cGMP signaling. Herein, using a selective pharmacological From a pharmacological standpoint, NO donors, GC-1/GC-2 PHARMACOLOGY inhibitor of PDE2, BAY 60-7550, and transgenic mice lacking either [soluble GC (sGC)] stimulators, and exogenously applied natri- NO-sensitive GC-1α (GC-1α−/−) or natriuretic peptide-responsive uretic peptides have been shown to decrease hypertrophy in GC-A (GC-A−/−), we demonstrate that the blockade of PDE2 promotes cardiomyocytes and offset the development of HF in animal cGMP signaling to offset the pathogenesis of experimental HF (in- models and patients (15, 16). The common generation of cGMP and G-kinase activation affects a plethora of maladaptive, hy- duced by pressure overload or sympathetic hyperactivation), revers- + pertrophic pathways, including functional inhibition of Ca2 ing the development of left ventricular hypertrophy, compromised 2+ contractility, and cardiac fibrosis. Moreover, we show that this ben- channels and Ca sequestration (17, 18), calcineurin/nuclear − − eficial pharmacodynamic profile is maintained in GC-A / mice but is factor of activated T cells (NFAT) signaling (19), blockade of absent in animals null for GC-1α or treated with a NO synthase regulators of G protein-signaling (RGS) proteins (20), transient inhibitor, revealing that PDE2 inhibition preferentially enhances NO/GC/cGMP signaling in the setting of HF to exert wide-ranging Significance protection to preserve cardiac structure and function. These data substantiate the targeting of PDE2 in HF as a tangible approach to The morbidity and mortality associated with heart failure (HF) maximize myocardial cGMP signaling and enhancing therapy. are unacceptably high. Cyclic guanosine-3′,5′-monophosphate (cGMP) plays a key role in preserving cardiac structure and nitric oxide | natriuretic peptide | cyclic GMP | phosphodiesterase | function, and therapeutically targeting cGMP in HF has shown heart failure promise in experimental models and patients. Phosphodiester- ases (PDEs) metabolize and curtail the actions of cGMP (and eft ventricular hypertrophy (LVH) and subsequent heart cAMP), and increased PDE activity is thought to contribute to HF Lfailure (HF) are common to many cardiovascular disorders, pathogenesis. Herein, we show that inhibition of one specific including hypertension and myocardial infarction (MI), and, after isoform, PDE2, enhances the salutary effects of cGMP in the age, represent the most significant independent risk factors for context of HF, and that this beneficial action facilitates a distinct cardiovascular morbidity and mortality (1). Current therapy focuses pathway, driven by nitric oxide, that is impaired in this disorder. on reducing excess fluid load (e.g., diuretics) and blocking neuro- These observations validate PDE2 inhibitors as a demonstrable hormonal pathways (e.g., β-blockers, angiotensin-converting enzyme means of boosting cardiac cGMP and advancing HF therapy. inhibitors) (2). Unfortunately, these interventions do not offer a Author contributions: R.S.B., M.E.J.P., M.S.D., S.M.C., A.A.A., K.J.B., A.J.M., M.A.T., and cure but only slow deterioration in LV function. Consequently, HF A.J.H. designed research; R.S.B., M.E.J.P., M.S.D., S.M.C., A.A.A., K.J.B., A.J.M., and M.A.T. is still associated with a 5-y survival rate of ∼50%; the disorder performed research; M.A.T. contributed new reagents/analytic tools; R.S.B., M.E.J.P., therefore represents a clear unmet medical need. M.S.D., S.M.C., A.A.A., K.J.B., A.J.M., M.A.T., and A.J.H. analyzed data; and R.S.B., Generation of the second-messenger cyclic guanosine-3′,5′- M.E.J.P., M.S.D., S.M.C., A.A.A., K.J.B., A.J.M., M.A.T., and A.J.H. wrote the paper. monophosphate (cGMP) by activation of NO-sensitive guanylyl The authors declare no conflict of interest. This article is a PNAS Direct Submission. cyclases [α1β1 (GC-1) and α2β1 (GC-2)] (3) and natriuretic peptide- sensitive GCs (GC-A and GC-B) (4) plays a key role in main- This open access article is distributed under Creative Commons Attribution-NonCommercial- taining physiological cardiac contractility and integrity, and in NoDerivatives License 4.0 (CC BY-NC-ND). offsetting the pathogenesis of LVH and HF (5). From a homeo- 1R.S.B. and M.E.J.P. contributed equally to this work. static perspective, endothelial nitric oxide synthase (eNOS) and 2To whom correspondence should be addressed. Email: [email protected]. neuronal NOS (nNOS) appear to function in a complementary This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. manner; eNOS-derived NO is thought to contribute to LV com- 1073/pnas.1800996115/-/DCSupplemental. pliance and β-adrenergic inotropy, and to amplify parasympathetic www.pnas.org/cgi/doi/10.1073/pnas.1800996115 PNAS Latest Articles | 1of10 Downloaded by guest on September 25, 2021 receptor potential cation channel (TRPC) (21), and myosin Genotyping. Genomic DNA was prepared from ear biopsies for analysis by PCR binding protein (MBP)-C (22). This cardioprotective profile of using standard cycling parameters utilizing the forward and reverse primers cGMP in HF is exemplified by positive clinical outcomes with the listed in SI Appendix, Table S1, as we have described previously (47). dual neutral endopeptidase (an enzyme that inactivates natri- −/− uretic peptides) inhibitor-angiotensin receptor blocker LCZ696 Generation of GC-1α Knockout Mice. This GC-1α strain was developed at (23) and the sGC stimulator vericiguat (15). Pfizer, Inc. Briefly, heterozygous mouse embryonic stem cells containing one α−/− An alternative therapeutic strategy to augment cGMP signaling GC-1 allele modified by homologous recombination were obtained from Deltagen. Long-distance PCR was used to generate a 5.7-kb 5′ homology arm for cardioprotection is inhibition of phosphodiesterases (PDEs). ′ Cardiac cGMP concentrations are dynamically regulated by GC- and a 3.6-kb 3 homology arm flanking a 5.3-kb deletion encompassing exons 6 and 7 of the mouse GC-1α gene (GenBank accession no. NM_021896). driven synthesis in cooperation with degradation mediated by Exons 6 and 7 were replaced with a Lac-Z/Neor selection cassette, disrupting PDEs, a family of enzymes that hydrolyze cGMP and its sibling ′ ′ ′ the 3 end of the cyclase domain (SI Appendix, Fig. S1). Mouse 129P2/OlaHsd cyclic adenosine-3 -5 -monophosphate (cAMP) (24). In the heart, (E14) cells were transformed by established techniques (48), and G418- PDE isozymes 1, 2, 5, and 9 are believed to exert the most influ- resistant colonies were selected. Expanded clones were screened via long- ential effects on cGMP signaling (25–28).Ofthese,PDE1isthe distance PCR and Southern blot analysis. One clone with the correctly major isoform expressed in the healthy myocardium (29), whereas modified GC-1α allele was used to generate the mouse line via standard PDE5 is only minimally expressed under physiological conditions blastocyst injection (48). but significantly up-regulated in the failing myocardium (30, 31). In Successful deletion of GC-1α was confirmed by immunoblot, assay of HF, inhibition of cGMP-metabolizing PDEs 1, 5, and 9 slows enzyme activity in lung homogenates, functional vascular pharmacology in pathogenesis (27, 28); indeed, up-regulation of expression and/or response to NO donor, and measurement of mean arterial blood pressure − − activity of PDEs is thought to underpin the diminution of cGMP (MABP; SI Appendix, Fig. S1). The body weight (BW) of WT and GC-1α / signaling characteristic of HF (32). Several small clinical stud- mice did not differ significantly at the time of experimentation (WT: 30.92 ± − − ies support a beneficial role for PDE5i in HF (33–36), but the 0.63 g, GC-1α / : 30.95 ± 0.65 g; P > 0.05; n = 10).
Recommended publications
  • A Biochemical Rationale for the Discrete Behavior of Nitroxyl and Nitric Oxide in the Cardiovascular System
    A biochemical rationale for the discrete behavior of nitroxyl and nitric oxide in the cardiovascular system Katrina M. Miranda*†‡, Nazareno Paolocci§, Tatsuo Katori§, Douglas D. Thomas*, Eleonora Ford¶, Michael D. Bartbergerʈ, Michael G. Espey*, David A. Kass§, Martin Feelisch**, Jon M. Fukuto¶, and David A. Wink*† *Radiation Biology Branch, Building 10, Room B3-B69, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; §Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD 21287; ¶Department of Molecular and Medical Pharmacology, Center for the Health Sciences, University of California, Los Angeles, CA 90095; ʈDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095; and **Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130 Edited by Louis J. Ignarro, University of California School of Medicine, Los Angeles, CA, and approved May 20, 2003 (received for review February 20, 2003) The redox siblings nitroxyl (HNO) and nitric oxide (NO) have often cellular thiol functions (14, 15). Conversely, NO reacts only indi- been assumed to undergo casual redox reactions in biological sys- rectly with thiols after RNOS formation (17). tems. However, several recent studies have demonstrated distinct Contrasting effects are also apparent in vivo or ex vivo,for pharmacological effects for donors of these two species. Here, infu- example in models of ischemia reperfusion injury. Exposure to NO sion of the HNO donor Angeli’s salt into normal dogs resulted in donors at the onset of reperfusion provides protection against elevated plasma levels of calcitonin gene-related peptide, whereas reperfusion injury in the heart and other organs (18–20).
    [Show full text]
  • Download Product Insert (PDF)
    Product Information DEA NONOate Item No. 82100 CAS Registry No.: 372965-00-9 Formal Name: Diethylammonium (Z)-1-(N,N- diethylamino)diazen-1-ium-1,2-diolate O Synonyms: DEA/NO, Diethylamine NONOate N MF: C4H10N3O2 • C4H12N + N N • H N FW: 206.3 2 Purity: ≥98% O- Stability: ≥1 year at -80°C Supplied as: A crystalline solid l UV/Vis.: max: 250 nm Laboratory Procedures For long term storage, keep DEA NONOate sealed under nitrogen at -80°C. It should be stable for at least one year. The crystals are sensitive to moisture and become discolored on exposure to air. Keep the vial sealed until use unless your laboratory is equipped with a glove box with an inert atmosphere for the handling of air sensitive compounds. DEA NONOate is supplied as a crystalline solid. A stock solution may be made by dissolving the DEA NONOate in an organic solvent purged with an inert gas. DEA NONOate is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide (DMF). The solubility of DEA NONOate is approximately 25 mg/ml in ethanol and 2 mg/ml in DMSO and DMF. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of DEA NONOate can be prepared by directly dissolving the crystalline compound in aqueous buffers. The solubility of DEA NONOate in PBS (pH 7.2) is approximately 10 mg/ml.
    [Show full text]
  • Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics
    Review Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics Joel Mintz 1,†, Anastasia Vedenko 2,†, Omar Rosete 3 , Khushi Shah 4, Gabriella Goldstein 5 , Joshua M. Hare 2,6,7 , Ranjith Ramasamy 3,6,* and Himanshu Arora 2,3,6,* 1 Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA; [email protected] 2 John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] (A.V.); [email protected] (J.M.H.) 3 Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] 4 College of Arts and Sciences, University of Miami, Miami, FL 33146, USA; [email protected] 5 College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA; [email protected] 6 The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA 7 Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA * Correspondence: [email protected] (R.R.); [email protected] (H.A.) † These authors contributed equally to this work. Abstract: Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumori- Citation: Mintz, J.; Vedenko, A.; genic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the Rosete, O.; Shah, K.; Goldstein, G.; level of production, the oxidative/reductive (redox) environment in which this radical is generated, Hare, J.M; Ramasamy, R.; Arora, H.
    [Show full text]
  • Phosphodiesterase (PDE)
    Phosphodiesterase (PDE) Phosphodiesterase (PDE) is any enzyme that breaks a phosphodiester bond. Usually, people speaking of phosphodiesterase are referring to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many other families of phosphodiesterases, including phospholipases C and D, autotaxin, sphingomyelin phosphodiesterase, DNases, RNases, and restriction endonucleases, as well as numerous less-well-characterized small-molecule phosphodiesterases. The cyclic nucleotide phosphodiesterases comprise a group of enzymes that degrade the phosphodiester bond in the second messenger molecules cAMP and cGMP. They regulate the localization, duration, and amplitude of cyclic nucleotide signaling within subcellular domains. PDEs are therefore important regulators ofsignal transduction mediated by these second messenger molecules. www.MedChemExpress.com 1 Phosphodiesterase (PDE) Inhibitors, Activators & Modulators (+)-Medioresinol Di-O-β-D-glucopyranoside (R)-(-)-Rolipram Cat. No.: HY-N8209 ((R)-Rolipram; (-)-Rolipram) Cat. No.: HY-16900A (+)-Medioresinol Di-O-β-D-glucopyranoside is a (R)-(-)-Rolipram is the R-enantiomer of Rolipram. lignan glucoside with strong inhibitory activity Rolipram is a selective inhibitor of of 3', 5'-cyclic monophosphate (cyclic AMP) phosphodiesterases PDE4 with IC50 of 3 nM, 130 nM phosphodiesterase. and 240 nM for PDE4A, PDE4B, and PDE4D, respectively. Purity: >98% Purity: 99.91% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 1 mg, 5 mg Size: 10 mM × 1 mL, 10 mg, 50 mg (R)-DNMDP (S)-(+)-Rolipram Cat. No.: HY-122751 ((+)-Rolipram; (S)-Rolipram) Cat. No.: HY-B0392 (R)-DNMDP is a potent and selective cancer cell (S)-(+)-Rolipram ((+)-Rolipram) is a cyclic cytotoxic agent. (R)-DNMDP, the R-form of DNMDP, AMP(cAMP)-specific phosphodiesterase (PDE) binds PDE3A directly.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Lipid Related Genes Altered in NASH Connect Inflammation in Liver Pathogenesis Progression to HCC: a Canonical Pathway
    Lipid related genes altered in NASH connect inflammation in liver pathogenesis progression to HCC: a canonical pathway Christophe Desterke1, Franck Chiappini2* 1 Inserm, U935, Villejuif, F-94800, France 2 Cell Growth and Tissue Repair (CRRET) Laboratory, Université Paris-Est Créteil (UPEC), EA 4397 / ERL CNRS 9215, F-94010, Créteil, France. Corresponding author: *Franck Chiappini. Laboratoire du CRRET (Croissance, Réparation et Régénération Tissulaires), Université Paris-Est Créteil, 61 avenue du Général de Gaulle F- 94010, Créteil Cedex, Val de Marne, France. Email address: [email protected]; Tel: +33(0)145177080; Fax: +33(0)145171816 Supplementary Information Supplementary Datasets Table S1: Text-mining list of genes associated in PubMed literature with lipid related keywords. Supplementary Datasets Table S2: Expression fold change of lipid related genes found differentially expressed between NASH and healthy obese liver samples. Supplementary Datasets Table S3: Liver as principal filter for prioritization of lipid related genes found differentially expressed in NASH. Supplementary Datasets Table S4: Gene prioritization secondary filters (immunological, inflammation, liver pathogenesis progression) table found with lipid related genes differentially expressed in NASH. Supplementary Datasets Table S5: Identification of protein partners of YWHAZ gene using InnateDB database. Supplementary Datasets Table S1: Text-mining list of genes associated in PubMed literature with lipid related keywords. Ranking of "lipidic" textmining Gene symbol
    [Show full text]
  • Nitric Oxide Attenuates Hypoxia-Induced 5-FU Resistance
    Sasabe et al. Int J Cancer Clin Res 2015, 2:2 DOI: 10.23937/2378-3419/2/2/1014 International Journal of Cancer and Clinical Research ISSN: 2378-3419 Original Article: Open Access Nitric Oxide Attenuates Hypoxia-Induced 5-FU Resistance of Oral Squamous Cell Carcinoma Cells Eri Sasabe*, Ayumi Tomomura, Mayuko Hamada, Naoya Kitamura, Tomohiro Yamada and Tetsuya Yamamoto Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University Kohasu, Japan *Corresponding author: Eri Sasabe, Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan, Tel: +81-88-880-2423, Fax: +81-88-880-2424, E-mail: [email protected] to development and progression of malignancies, and resistance Abstract to cancer therapy. The heterodimeric transcription factor Hypoxia Hypoxic environments in tumors induce expression of hypoxia- inducible factor (HIF) is a master regulator that can adapt tumor cells inducible factor (HIF). HIF contributes to the development of the to hypoxic conditions [1]. Overexpression of HIF has been observed malignant progression through the induction of various target genes. in many different cancers, including head and neck squamous cell We previously reported that treatment with chemotherapeutic drugs and γ-rays enhances expression and nuclear translocation carcinomas, and is associated with increased patient mortality [2-4]. of HIF-1α under normoxic conditions; susceptibility of oral HIF consists of an oxygen-regulated α-subunit and a constitutively squamous cell carcinoma (OSCC) cells to the drugs and γ-rays expressed β-subunit, also known as aryl hydrocarbon receptor is negatively correlated with expression of HIF-1α protein.
    [Show full text]
  • Oxidative Stress and the Guanosine Nucleotide Triphosphate Pool: Implications for a Biomarker and Mechanism of Impaired Cell Function
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2008 OXIDATIVE STRESS AND THE GUANOSINE NUCLEOTIDE TRIPHOSPHATE POOL: IMPLICATIONS FOR A BIOMARKER AND MECHANISM OF IMPAIRED CELL FUNCTION Celeste Maree Bolin The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Bolin, Celeste Maree, "OXIDATIVE STRESS AND THE GUANOSINE NUCLEOTIDE TRIPHOSPHATE POOL: IMPLICATIONS FOR A BIOMARKER AND MECHANISM OF IMPAIRED CELL FUNCTION" (2008). Graduate Student Theses, Dissertations, & Professional Papers. 728. https://scholarworks.umt.edu/etd/728 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. OXIDATIVE STRESS AND THE GUANOSINE NUCLEOTIDE TRIPHOSPHATE POOL: IMPLICATIONS FOR A BIOMARKER AND MECHANISM OF IMPAIRED CELL FUNCTION By Celeste Maree Bolin B.A. Chemistry, Whitman College, Walla Walla, WA 2001 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Toxicology The University of Montana Missoula, Montana Spring 2008 Approved by: Dr. David A. Strobel, Dean Graduate School Dr. Fernando Cardozo-Pelaez,
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Sustained Formation of Nitroglycerin-Derived Nitric Oxide
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2018/01/22/mol.117.110783.DC1 1521-0111/93/4/335–343$35.00 https://doi.org/10.1124/mol.117.110783 MOLECULAR PHARMACOLOGY Mol Pharmacol 93:335–343, April 2018 Copyright ª 2018 The Author(s). This is an open access article distributed under the CC BY Attribution 4.0 International license. Sustained Formation of Nitroglycerin-Derived Nitric Oxide by Aldehyde Dehydrogenase-2 in Vascular Smooth Muscle without Added Reductants: Implications for the Development of Nitrate Tolerance s Marissa Opelt, Gerald Wölkart, Emrah Eroglu, Markus Waldeck-Weiermair, Roland Malli, Wolfgang F. Graier, Alexander Kollau, John T. Fassett, Astrid Schrammel, Bernd Mayer, and Antonius C. F. Gorren Downloaded from Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Karl-Franzens University (M.O., G.W., A.K., J.T.F., A.S., B.M., A.C.F.G.), and Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz (E.E., M.W.-W., R.M., W.F.G.), Graz, Austria Received October 4, 2017; accepted January 18, 2018 molpharm.aspetjournals.org ABSTRACT According to current views, oxidation of aldehyde dehydrogenase-2 ALDH2, thiol-refractive inactivation was observed, particularly under (ALDH2) during glyceryltrinitrate (GTN) biotransformation is essen- high-turnover conditions. Organ bath experiments with rat aortas tially involved in vascular nitrate tolerance and explains the de- showed that relaxation by GTN lasted longer than that caused by the pendence of this reaction on added thiols. Using a novel fluorescent NO donor diethylamine/NONOate, in line with the long-lasting intracellular nitric oxide (NO) probe expressed in vascular smooth nanomolar NO generation from GTN observed in VSMCs.
    [Show full text]
  • New Insights Into the Role of Soluble Guanylate Cyclase in Blood Pressure Regulation
    New insights into the role of soluble guanylate cyclase in blood pressure regulation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Buys, Emmanuel, and Patrick Sips. 2014. New Insights into the Role of Soluble Guanylate Cyclase in Blood Pressure Regulation. Current Opinion in Nephrology and Hypertension 23, no. 2: 135–142. doi:10.1097/01.mnh.0000441048.91041.3a. Published Version doi:10.1097/01.mnh.0000441048.91041.3a Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29731915 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Curr Opin Nephrol Hypertens. Author manuscript; available in PMC 2015 March 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Curr Opin Nephrol Hypertens. 2014 March ; 23(2): 135–142. doi:10.1097/01.mnh.0000441048.91041.3a. New Insights into the Role of Soluble Guanylate Cyclase in Blood Pressure Regulation Emmanuel Buys1 and Patrick Sips2 1Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 2Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Abstract Purpose of review—Nitric oxide (NO) – soluble guanylate cyclase (sGC)-dependent signaling mechanisms have a profound effect on the regulation of blood pressure.
    [Show full text]
  • Nitric Oxide Lacks Direct Effect on TRPC5 Channels but Suppresses Endogenous TRPC5-Containing Channels in Endothelial Cells
    Pflugers Arch - Eur J Physiol (2010) 460:121–130 DOI 10.1007/s00424-010-0823-3 ION CHANNELS, RECEPTORS AND TRANSPORTERS Nitric oxide lacks direct effect on TRPC5 channels but suppresses endogenous TRPC5-containing channels in endothelial cells Ching-On Wong & Piruthivi Sukumar & David J. Beech & Xiaoqiang Yao Received: 25 November 2009 /Revised: 7 March 2010 /Accepted: 9 March 2010 /Published online: 14 April 2010 # Springer-Verlag 2010 Abstract TRPC5 is a member of the canonical transient (SNAP) and diethylamine NONOate (DEA-NONOate) receptor potential (TRPC) family of proteins that forms failed to stimulate or inhibit TRPC5 at concentrations that cationic channels either through homomultimeric assembly generated nitric oxide, caused vasorelaxation, or suppressed or heteromultimeric coordination with other TRPC proteins. activity of TRPC6 via protein kinase G. At high concen- It is expressed in a variety of cells including central neurones trations, SNAP (but not DEA-NONOate) occasionally and endothelial cells and has susceptibility to stimulation by stimulated TRPC5 but the effect was confounded by multiple factors. Here we investigated if TRPC5 is sensitive background TRPC5-independent Ca2+ signals. Endogenous to nitric oxide. Mouse TRPC5 or human TRPC5 was over- Ca2+-entry in bovine aortic endothelial cells (BAECs) was expressed in HEK293 cells, and TRPC5 activity was suppressed by SNAP; TRPC5 blocking antibody or determined by measuring the cytosolic Ca2+ concentration dominant-negative mutant TRPC5 suppressed this Ca2+ with an indicator dye or by recording membrane current entry and occluded the effect of SNAP. The data suggest under voltage clamp. TRPC5 activity could be evoked by that nitric oxide is not a direct modulator of homomeric carbachol acting at muscarinic receptors, lanthanum, or a TRPC5 channels but may inhibit endogenous BAEC reducing agent.
    [Show full text]