Biological Control of Carduus Pycnocephalus and C. Tenuiflorus Using the Rust Fungus Puccinia Cardui- Pycnocephali

Total Page:16

File Type:pdf, Size:1020Kb

Biological Control of Carduus Pycnocephalus and C. Tenuiflorus Using the Rust Fungus Puccinia Cardui- Pycnocephali 14 Plant Protection Quarterly Vol.15(1) 2000 Final host specificity testing of the two isolates (FR3, IT2) was completed by May Biological control of Carduus pycnocephalus and C. 1993 and, following permission from the tenuiflorus using the rust fungus Puccinia cardui- Australian Quarantine Inspection Service and the then Australian Nature Conserva- pycnocephali tion Agency (now Environment Aus- tralia), the isolates were released in the J.J. BurdonAB, P.H. ThrallA, R.H. GrovesAB and P. ChaboudezC field across southern Australia from Octo- A Centre for Plant Biodiversity Research, B CRC for Weed Management ber 1993 onwards. Systems, CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, The release program Australia. C At all release sites a mixed inoculum of le Fontenelle bât. G2, 663 rue Pré aux Clercs, Montpellier 34000, France. both isolates of P. cardui-pycnocephali was released by spraying a suspension of 300 mg of urediospores in 15 L of local tap Summary identified more than 20 insect species water onto 10 m2 patches of either or both Following extensive host-specificity test- feeding on the Carduus species but indi- C. tenuiflorus and C. pycnocephalus. A ing in southern France and in quarantine vidually none appeared to limit the size of mixed inoculum was used to prevent facilities in Canberra, two isolates of the host populations in the field (Sheppard et problems associated with distinguishing rust fungus Puccinia cardui-pycno- al. 1991). In contrast, extensive field obser- between these two closely related thistle cephali were released in southern Aus- vations of natural populations of Carduus taxa by untrained personnel. Plots were tralia in October 1993 as biological con- in southern France during the period inoculated in the late afternoon, covered trol agents for the slender thistles 1988-1991 and subsequent experiments with plastic sheeting overnight to main- Carduus pycnocephalus and C. tenui- indicated that the rust fungus Puccinia tain high humidity, and then uncovered florus. Initially, establishment was poor cardui-pycnocephali had a significant effect the following morning. Disease symp- due to prolonged dry conditions. Subse- on seed production (Chaboudez et al. toms became visible 10–15 days later de- quent releases in 1994–1995 became well 1993, P. Chaboudez unpublished data). pending on prevailing temperatures. established and consistently cause no- Once P. cardui-pycnocephali was identi- Initially, limited field releases were ticeable disease particularly in western fied as a potential biological control agent, made in New South Wales, Victoria and Victoria and Tasmania. In 1998, compara- two further complications came into play. Tasmania in late spring 1993 (October– tive assessments of fungicide-treated First, P. cardui-pycnocephali was known to November) with broad scale releases be- (disease absent) and untreated (disease have occurred in Australia for at least 50 ing undertaken throughout southern Aus- present) plots in both these areas showed years prior to this control program (Costin tralia during 1994. All these early releases reductions in the size of individual C. 1954). This presented questions regarding suffered from the prolonged drought that tenuiflorus plants and the number of in- the value of importing further strains of an prevailed across much of southern Aus- florescences as a consequence of infec- agent that, to date, had had no noticeable tralia during 1993–1994. While the patho- tion by P. cardui-pycnocephalus. While effect on thistle growth. Second, there was gen became established at several sites the impact of the pathogen alone was in- some suggestion that different isolates of during the winter/spring period, it failed sufficient to reduce thistle densities per- P. cardui-pycnocephali would show differ- to persist over summer probably because manently, it will have a role as an addi- ent degrees of aggressiveness on the two of the extremely dry conditions and con- tional tool in the integrated control of target species. These concerns were ad- sequent very high grazing pressures. these thistles. dressed during initial trials in France (con- Once the drought broke, further releases ducted at the CSIRO Biological Control were made through a network of collabo- Introduction Facility in Montpellier) by comparing the rators in many of the same areas in au- Carduus pycnocephalus and C. tenuiflorus virulence and aggressiveness of several tumn 1995. A strategy of release of P. are two closely related thistle species oc- isolates of P. cardui-pycnocephali collected cardui-pycnocephali at multiple sites rather curring naturally in Mediterranean to in Mediterranean Europe with a ‘control’ than detailed monitoring of just a few sites north-western Europe. Introduced to Aus- isolate collected in Australia. Two Medi- was adopted to maximize spread. A total tralia, probably as a contaminant of feed, terranean isolates (IT2 and FR3) were sub- of 478 ‘starter’ samples of both isolates of these thistles have become widely distrib- stantially more aggressive towards C. P. cardui-pycnocephali were distributed be- uted across southern Australia from pycnocephalus or C. tenuiflorus than the tween October 1993 and June 1995 (Figure Queensland to Western Australia and Tas- Australian isolate. Although both isolates 1). These post-drought releases were mania (Parsons and Cuthbertson 1992). In attacked both Carduus species, isolate IT2 much more successful, with reports of es- favourable sites, they may form dense induced a slightly more susceptible reac- tablishment and persistence coming from stands, leading to reduced growth of more tion on C. pycnocephalus than isolate FR3, collaborators in South Australia, Victoria, desirable pasture plants. Losses to Aus- which was similarly more successful on C. Tasmania and New South Wales. tralian industry resulting from reduced tenuiflorus (Chaboudez et al. 1993). Since 1995, anecdotal reports from stock carrying capacities and vegetable These two isolates of P. cardui- property owners and State government contamination of wool were estimated to pycnocephali were then subjected to ex- weed inspectors have suggested that P. exceed $5 million per annum in 1992. haustive host specificity testing on a range cardui-pycnocephali was generating suffi- As part of a broader strategy to control of plant species with a particular empha- cient disease pressure to cause reductions all weedy thistle species introduced to sis on members of the Asteraceae. With in the size and seed production of affected Australia, C. pycnocephalus and C. tenui- the exception of seedlings of Cynara slender thistle stands. This paper reports florus were identified as candidates for a scolymus (globe artichoke) where pustules an objective assessment of the perform- biological control program. The first step developed on cotyledons and the first true ance of P. cardui-pycnocephali as a biologi- in mounting the control program was to leaves, P. cardui-pycnocephali only attacked cal control agent against one (C. tenui- conduct a series of extensive surveys for plants of C. pycnocephalus and C. florus) of its two thistle hosts. natural enemies associated with the spe- tenuiflorus (Chaboudez et al. 1993, P. cies in their home ranges. Those surveys Chaboudez unpublished data). Plant Protection Quarterly Vol.15(1) 2000 15 significance of treatment effects (fungicide treated vs. control) on per cent disease, fe- cundity (as measured by the number of in- florescences) and final dry weight were based on Type III sums of squares. Plot density was used as a covariate. Regres- sion analysis was used to examine the re- lationship between disease severity and dry weight of infected plants. Results and discussion There were substantial differences be- tween the Tasmanian and Victorian sites in terms of plot densities: mean densities were 27.7 and 52.0 m-2 for the two sites re- spectively. As a consequence of their higher density, individual plant dry weights were much lower in both fungi- cide treated and control plots at the Victo- rian site (Figure 2c). With respect to dis- ease levels, there was little difference in 60 the control plots, although fungicide- treated plots at the Victorian site were al- 124 most entirely disease-free. A low level of disease was present in many of the treated 210 plots at the Tasmanian site. There ap- peared to be little difference in number of 74 inflorescences per plant between the two sites. 10 As expected, there was a significant ef- fect of treatment (control vs. fungicide- Figure 1. General areas and number of releases of ‘starter’ samples of treated) on mean levels of disease for both inoculum of two isolates of P. cardui-pycnocephali from October 1993 to the Tasmanian (F=138.2, P<0.001) and Vic- June 1995. torian sites (F=265.1, P<0.001) (Figure 2a). Disease levels in control plots were rela- Materials and methods plants) were harvested approximately tively low being about 3–4%. However, Twenty 1 m2 plots were established in two weeks later in early December. Al- inspection of dried and withered leaves August 1998 in a large stand of C. though not all plots could be harvested, at still attached to plants indicated that dis- tenuiflorus in an improved pasture in both sites equal numbers of treated and ease levels had been higher in the weeks northern Tasmania (147°15'E, 41°04'E). A control plots were assessed. Within each preceding harvest. These differences were month later a second site was set up in a plot, the above-ground biomass of each reflected in significant effects of the fungi- similar manner in south-western Victoria plant was separately harvested and cide treatment on both the number of in- (141°26'E, 37°27'S). At both sites C. bagged. At that time, a visual estimate of florescences (Figure 2b) and plant dry tenuiflorus was the dominant thistle disease severity (per cent disease cover of weights (Figure 2c) at both sites. Mean present; although C. pycnocephalus was green leaves and stems) was also made plant dry weights for infected plants were present in the stands no individuals oc- and recorded.
Recommended publications
  • Italian Thistle (Carduus Pycnocephalus)
    Thistles: Identification and Management Rebecca Ozeran 1 May 2018 Common thistles in the San Joaquin Valley Carduus Centaurea Cirsium Silybum Onopordum Italian thistle Yellow starthistle Bull thistle (Blessed) milkthistle Scotch thistle Tocalote Canada thistle (Malta starthistle) All of these species are found at least one of Fresno, Kern, Kings, Madera, or Tulare Counties Identification • Many species start as a basal rosette in fall • Mature plants can have dense & bushy or tall & stemmy appearance • Purple/pink or yellow-flowered Identification • Why does thistle species matter? • Varying levels of risk to animals • Varying competition with forage • Varying susceptibility to control options Identification – 1. Italian thistle • Carduus pycnocephalus • narrow, spiky flower heads • winged, spiny stems branching above the base • found in Fresno, Kern, Madera, Tulare Identification – 2. Centaurea thistles • YELLOW STARTHISTLE (C. solstitialis) • long, yellow/white spines on phyllaries • can get a bushy structure • found in Fresno, Kern, Madera, Tulare • TOCALOTE (MALTA STARTHISTLE, C. melitensis) • stouter flower heads and shorter, redder spines on phyllaries • found in all 5 counties Identification – 3. Cirsium thistles • Canada thistle (C. arvense) • smooth stems, non-spiny flowerheads • flowers Jun-Oct • found in Fresno, Kern, Tulare • Bull thistle (C. vulgare) • large spiky looking flowerheads • lots of branching, dense plant • flowers Jun-Oct • found in all 5 counties Identification – 4. Blessed milk thistle • Silybum marianum • Distinct,
    [Show full text]
  • Slender Thistles LC0229 Department of Primary Industries ISSN 1329-833X
    Updated: August 2007 Slender Thistles LC0229 Department of Primary Industries ISSN 1329-833X Common and scientific names in colour. All seeds have a group of plumes (the pappus) about three times as long as the seed for wind dispersal. Slender thistle, shore thistle Roots - branched, slender or stout tap root. Carduus pycnocephalus L. (slender thistle) Carduus tenuiflorus Curt. (winged slender thistle) Family Asteraceae (daisy family) Origin and distribution Slender thistles are native to Europe and North Africa. The range of C. pycnocephalus extends to Asia Minor and Pakistan while that of C. tenuiflorus extends northwards to Britain and Scandinavia. They are a problem in many areas of the world. Both species were present in Victoria during the 1880s and now occur throughout much of the State. Slender thistles are troublesome weeds in pastures and wastelands, favouring areas of winter rainfall and soils of moderate to high fertility. The two species often occur together in mixed populations. Description Erect annual herbs, commonly 60 to 100 cm high but up to 2m, reproducing by seed. Seed germinates in the 6 weeks Figure 1. Slender thistle, Carduus tenuiflorus. following the autumn break. Seedlings develop into rosettes and remain in the rosette stage over winter. Flowering stems are produced in early spring and flowering continues from September to December. Plants die in early summer after flowering, but dead stems can remain standing for months. Stems - flowering stems are single or multiple from the base, branched, strongly ribbed and slightly woolly. Spiny wings occur along most of the length of flowering stems. Leaves - rosette leaves 15 to 25 cm long, stalked and Figure 2.
    [Show full text]
  • Milk Thistle
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF EXOTIC T RU E T HISTL E S RACHEL WINSTON , RICH HANSEN , MA R K SCH W A R ZLÄNDE R , ER IC COO M BS , CA R OL BELL RANDALL , AND RODNEY LY M FHTET-2007-05 U.S. Department Forest September 2008 of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Italian thistle. Photo: ©Saint Mary’s College of California. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • Lipid Composition of Carduus Thoermeri Weinm., Onopordum Acanthium L
    622 Bulgarian Journal of Agricultural Science, 20 (No 3) 2014, 622-627 Agricultural Academy LIPID COMPOSITION OF CARDUUS THOERMERI WEINM., ONOPORDUM ACANTHIUM L. AND SILYBUM MARIANUM L., GROWING IN BULGARIA I. ZHELEV1, P. MERDZHANOV2, М. AngelovA-RomovA3, M. ZLATANOV3, g. AntovA3, I. DImItRovA-DyulgeRovA*3 and A. StoyAnovA2 1 Medical University of Varna, Faculty of Pharmacy, BG - 9002 Varna, Bulgaria 2 University of Food Technologies, BG - 4003 Plovdiv, Bulgaria 3 University of Plovdiv ”Paisij Hilendarski”, BG - 4000 Plovdiv, Bulgaria Abstract ZHELEV, I., P. MERDZHANOV, М. AngelovA-RomovA, m. ZlAtAnov, g. AntovA, I. DImItRovA- DyulgeRovA and A. StoyAnovA, 2014. Lipid composition of Carduus thoermeri Weinm., Onopordum acanthium L. and Silybum marianum L., growing in Bulgaria. Bulg. J. Agric. Sci., 20: 622-627 Seed oil chemical composition of wild growing Carduus thoermeri Weinm., Onopordum acanthium L. and Silybum mari- anum l. were studied for the first time in Bulgaria, by using gC, HPlC, TLC and spectrophotometrical methods. the major components of fatty acids were oleic (342 - 530 g.kg-1), linoleic (176 - 511 g.kg-1) and palmitic (99 - 150 g.kg-1). α-tocopherol was the main component in the tocopherol fraction of O. acanthium seeds (911 g.kg-1). In the sterol fraction the main components were β-sitosterol (546 - 632 g.kg-1) and campesterol (128 - 156 g.kg-1). Phosphatidylinositol was with the highest concentration in the phospolipid fraction (317 g.kg-1 in C. thoermeri and 320 g.kg-1 in O. acanthium). Due to content of unsaturated fatty acids, tocopherols and phytosterols, the seeds of these widespread species (especially O.
    [Show full text]
  • Oregon Department of Agriculture Pest Risk Assessment for Welted Thistle, Carduus Crispus L
    Oregon Department of Agriculture Pest Risk Assessment for Welted thistle, Carduus crispus L. February 2017 Species: Welted thistle, Curly plumeless thistle, (Carduus crispus) L. Family: Asteraceae Findings of this review and assessment: Welted thistle (Carduus crispus) was evaluated and determined to be a category “A” rated noxious weed, as defined by the Oregon Department of Agriculture (ODA) Noxious Weed Policy and Classification System. This determination was based on a literature review and analysis using two ODA evaluation forms. Using the Noxious Qualitative Weed Risk Assessment v. 3.8, welted thistle scored 61 indicating a Risk Category of A; and a score of 16 with the Noxious Weed Rating System v. 3.1, indicating an “A” rating. Introduction: Welted thistle, native to Europe and Asia, has become a weed of waste ground, pastures, and roadsides, in some areas of the United States. The first record of welted thistle occurred in the Eastern U.S. in 1974. For decades, only one site (British Columbia) had been documented west of the Rockies. In 2016, a new western infestation was detected in Wallowa County, Oregon. Welted thistle was found invading irrigated field margins, ditch banks and tended alfalfa crops. Several satellite infestations were found within a mile radius of the core infestation (see Appendix, Map 1). It is not clear how the plant was introduced into Oregon, but contaminated crop seed is suspected. Carduus crispus closely resembles the more common C. acanthoides (plumeless thistle) that is also present in very low numbers in Wallowa County. Wallowa County listed welted thistle as an A-rated weed and quickly expanded survey boundaries and began implementing early eradication measures.
    [Show full text]
  • Draft Written Findings for Turkish Thistle, Carduus Cinereus
    DRAFT: WRITTEN FINDINGS OF THE WASHINGTON STATE NOXIOUS WEED CONTROL BOARD Scientific Name: Carduus cinereus M.Bieb. Synonyms: Carduus pycnocephalus L. subsp. cinereus (M.Bieb.) P.H.Davis; Carduus arabicus Jacq. subsp. cinereus (M.Bieb.) Kazmi Common Name: Turkish thistle, Spanish thistle Family: Asteraceae Legal Status: being considered for listing on the monitor list or the state noxious weed list Description and Variation: Turkish thistle’s description is adapted from Gaskin et al. (2019) unless otherwise cited. Refer to Gaskin et al. (2019) for Turkish thistle’s full botanical description as well as the genetic research that determined these plants to be this new species in North America. Overall habit: Turkish thistle is an annual thistle with winged stems that can grow up to 4 feet tall. Its basal leaves are up to 4 inches long, and stem leaves reduce in size moving up the stem. Flower heads are compressed, non-spherical, and single or in loose clusters. Each purplish flower head is typically on a short hairy stem or may be stemless. Images: left, Turkish thistle plants can flower when they are as small as 3 inches or can grow up to 4 feet tall depending on growing conditions (right image), images by Mark Porter, Oregon Department of Agriculture. Stems: Turkish thistle stems can vary greatly in size depending on habitat conditions, growing from 3 to 48 inches tall, (7.7 to 120 cm) (Porter 2020, Gaskin et al. 2019). Stems are unbranched to openly branched, and loosely covered with soft woolly hairs (tomentose). The stems are winged, with teeth of wings to 0.2 inches (5 mm) long and wing spines to 0.4 inches (10 mm) long.
    [Show full text]
  • The Leaf-Feeding Beetle, Cassida Rubiginosa, Has No Impact on Carduus Pycnocephalus (Slender Winged Thistle) Regardless of Physical Constraints on Plant Growth
    Mills et al. New Zealand Plant Protection 73 (2020) 49–56 https://doi.org/10.30843/nzpp.2020.73.11722 The leaf-feeding beetle, Cassida rubiginosa, has no impact on Carduus pycnocephalus (slender winged thistle) regardless of physical constraints on plant growth Jonty Mills, Sarah Jackman, Chikako van Koten, and Michael Cripps* AgResearch, Lincoln Science Centre, Private Bag 4749, Lincoln, New Zealand *Corresponding author: [email protected] (Original submission received 4 September 2020; accepted in revised form 15 November 2020) Abstract The leaf-feeding beetle, Cassida rubiginosa, is an oligophagous biocontrol agent capable of feeding on most species in the tribe Cardueae (thistles and knapweeds). The beetle was released in New Zealand in 2007, primarily to control Cirsium arvense (Californian thistle), with the recognition that it had potential to control multiple thistle weeds. The objective of this study was to test the impact of different densities of Cassida rubiginosa larvae (0, 50, 100, or 200 per plant) on the growth and reproductive performance of the annual thistle weed, Carduus pycnocephalus (slender winged thistle). Since the effectiveness of biocontrol agents is often enhanced when plants are stressed, different levels of growth constraint were imposed by growing the weed in different pot sizes (0.5, 1, 5, and 12 litres). We hypothesised that feeding damage by Cassida rubiginosa larvae would have a greater impact on the weed when grown in smaller pots, since root growth would be constrained, and the weed’s ability to compensate for feeding damage would be restricted. Contrary to our hypothesis, pot size had no effect on feeding damage by Cassida rubiginosa on Carduus pycnocephalus.
    [Show full text]
  • A Comparison of Two Types of Mediterranean Scrub in Israel And
    A Comparison of Two Types of Mediterranean Abstract: Matorral/chaparral and phrygana/ 1 coastal sage vegetation types of Israel and Cali- Scrub in Israel and California fornia exhibit major differences in life form spectra, physiognomy, species richness, fire adap- tations, spinescence, and leaf traits. In some Avi Shmida and Michael Barbour2 cases it is possible to correlate such differ- ences in climate, geologic history, soil, fire frequency, and human history. There seems to be only a superficial degree of convergence between comparable mediterranean types of vegetation in the two areas. A mediterranean climate--hot, dry summer and field studies conducted in Southern California cool, wet winter (Trewartha 1954, Flohn 1969)-- and Israel from 1977 - 1980 by the author and Dr. occurs in at least five widely scattered regions Robert Whittaker. Samples were taken along cli- of the world: the Mediterranean region itself, matological gradients from various vegetation between Europe and Africa; the Pacific Coast of types in each of the mediterranean ecosystems. North America, from Oregon to northern Baja Cali- fornia; the Cape Region of South Africa; certain On each site plots of 1/10th hectare (20x50 m= coastal portions of South and West Australia; and 1 dunam) were marked and all sampling was carried the central Chilean coast. As summarized well by out in these plots. The tenth-hectare size was Raven (1971), "Plant associations of the five chosen as being large enough to represent the regions. are extremely similar both in their vegetation adequately but not too large for effi- physiognomy and in the morphology and physiology cient sampling of all vascular plant species.
    [Show full text]
  • Carduus Pycnocephalus L
    Conyza 1 Conyza bonariensis (L.) Cronquist (Asteraceae) Flax-leaved Fleabane, Hairy Fleabane Description. Annual herbs, from stout taproots. Stems 10-100 cm tall, stiffly erect, moderately pubescent, the lateral branches elongated, sometimes overtopping the central axis. Leaves alternate, 5-10 cm long, cauline, oblanceolate to linear or oblong, short-petioled or tapered at the base, sparsely to moderately pubescent. Heads arranged in a panicle, leafy near the base, the involucre 4-6 mm long, the phyllaries imbricated, glabrous to short-pubescent, narrowly lanceolate to linear-oblong. Flowers mostly tubular, pistillate, the outer series pistillate, 70-200 per head. Pappus composed of capillary bristles, tan to reddish tinged. Fruit an achene, 1-1.5 mm long. In California, flowering from April to November. (Barkley 1986, Cronquist 1943, 1976, Fernald 1950, Ferris 1960, Keil 1993, Munz 1959). The closely related species, C. canadensis (horseweed), differs by having a shorter involucre (3-4 mm long) composed of nearly glabrous phyllaries, having only 25-40 pistillate flowers per head, and with ligulate marginal flowers. Lateral inflorescences do not exceed the length of the uppermost one. Conyza canadensis shows geographic variation throughout North America; variation in California suggests that more than one geographical race may be present. Plants with pubescent stems and leaves are referrable to var. canadensis; plants with almost glabrous stems and leaves are referrable to var. glabrata (A.Gray) Cronquist (Cronquist 1943, 1994, Fernald 1950). Geographic distribution. Conyza bonariensis and C. canadensis are generally believed native to South America and eastern North America respectively (Cronquist 1994, Clapham et al. 1962, Guillerm et al.
    [Show full text]
  • Natural History Studies for the Preliminary Evaluation of Larinus Filiformis (Coleoptera: Curculionidae) As a Prospective Biolog
    POPULATION ECOLOGY Natural History Studies for the Preliminary Evaluation of Larinus filiformis (Coleoptera: Curculionidae) as a Prospective Biological Control Agent of Yellow Starthistle 1 2 3 4 L. GU¨ LTEKIN, M. CRISTOFARO, C. TRONCI, AND L. SMITH Faculty of Agriculture, Plant Protection Department, Atatu¨ rk University, 25240 TR Erzurum, Turkey Environ. Entomol. 37(5): 1185Ð1199 (2008) ABSTRACT We studied the life history, geographic distribution, behavior, and ecology of Larinus filiformis Petri (Coleoptera: Curculionidae) in its native range to determine whether it is worthy of further evaluation as a classical biological control agent of yellow starthistle, Centaurea solstitialis (Asteraceae: Cardueae). Larinus filiformis occurs in Armenia, Azerbaijan, Turkey, and Bulgaria and has been reared only from C. solstitialis. At Þeld sites in central and eastern Turkey, adults were well synchronized with the plant, being active from mid-May to late July and ovipositing in capitula (ßowerheads) of C. solstitialis from mid-June to mid-July. Larvae destroy all the seeds in a capitulum. The insect is univoltine in Turkey, and adults hibernate from mid-September to mid-May. In the spring, before adults begin ovipositing, they feed on the immature ßower buds of C. solstitialis, causing them to die. The weevil destroyed 25Ð75% of capitula at natural Þeld sites, depending on the sample date. Preliminary host speciÞcity experiments on adult feeding indicate that the weevil seems to be restricted to a relatively small number of plants within the Cardueae. Approximately 57% of larvae or pupae collected late in the summer were parasitized by hymenopterans [Bracon urinator, B. tshitsherini (Braconidae) and Exeristes roborator (Ichneumonidae), Aprostocetus sp.
    [Show full text]
  • The Palatability, and Potential Toxicity of Australian Weeds to Goats
    1 The palatability, and potential toxicity of Australian weeds to goats Helen Simmonds, Peter Holst, Chris Bourke 2 Rural Industries Research and Development Corporation Level 1, AMA House 42 Macquarie Street BARTON ACT 2600 PO Box 4776 KINGSTON ACT 2604 AUSTRALIA © 2000 Rural Industries Research and Development Corporation All rights reserved. The views expressed and the conclusions reached in this publication are those of the authors and not necessarily those of persons consulted. RIRDC shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. National Library of Australia Cataloguing in Publication entry: Simmonds, Helen. The palatability, and potential toxicity of Australian weeds to goats. New ed. Includes index. ISBN 0 7347 1216 2 1. Weeds-goats-toxicity-palatability-Australia. i. Holst, Peter. ii. Bourke, Chris. iii. Title. 3 CONTENTS Page Preface i A comment on weed control ii The potential toxicity of weeds to goats.....................................1 Weeds - thought to be highly or moderately toxic to goats ........5 - thought to have low toxicity to goats..........................90 The palatability of weeds to goats..........................................138 The botanical name for weeds listed by their common name 142 The common name for some Australian weeds .....................147 Table of herbicide groups ......................................................151 Further reading .......................................................................152
    [Show full text]