Weed Control Using Goats

Total Page:16

File Type:pdf, Size:1020Kb

Weed Control Using Goats This 'Weed Control Using Goats' manual is provided under Creative Commons Licence CC-BY-SA 4.0 For more information go to www.mla.com.au/creative-commons © Meat & Livestock Australia Weed control using goats A guide to using goats for weed control in pastures Weed control using goats A guide to using goats for weed control in pastures Contact: Meat & Livestock Australia Ph: 1800 023 100 Published by Meat & Livestock Australia Limited ABN: 39 081 678 364 Reprinted with amendments May 2007 © Meat & Livestock Australia, 1993 ISBN: 1 7403 6248 9 This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. The inclusion of trade or company names in this publication does not imply endorsement of any product or company by MLA or any contributor to this publication. MLA and the contributors to this publication are not liable to you or any third party for any losses, costs or expenses resulting from any use or misuse of the information contained in this publication. Introduction 1 How goats control weeds 1 What type of goat? 1 The goat’s role 2 Pasture management 2 Preparation 3 Weed palatability determines stock ratio 4 Weed palatability 5 Highly palatable weeds 5 Moderately palatable weeds – growth stage 6 Moderately palatable weeds – availability 8 Husbandry 9 Miscellaneous 10 Conclusion 10 Appendix 11 contents Glossary 15 Peak industry council 16 Breed societies 16 Further reading 16 Introduction along fence lines. Goats will also eat any weeds that germinated too early or too late to be affected by Weeds in pasture greatly reduce the short- and herbicides. Similarly, degraded non-arable country long-term profitability of the pasture. The traditional with woody and other weeds may be reclaimed by methods of weed control in pastures are cultural, goat grazing. biological, chemical, mechanical or grazing. Not all control methods are necessarily effective or desirable. Successful pasture management requires an understanding of the grazing component. Using goats to control weeds can assist traditional control methods in providing efficient, sustainable pasture management when conducted according to best practice. Further detailed best practice information for existing goat producers and those considering entering the goat industry can be found in Going into goats: Profitable producers’ best practice guide. The Going into goats guide is a comprehensive publication written by producers for producers and is available from MLA. Blackberry controlled by grazing goats. How goats control weeds What type of goat? Goats help control weeds by: The Australian goat industry consists of meat, fibre and • preferentially grazing the weed and so placing dairy sectors, all of which can be employed for weed it at a disadvantage control at various stages of the production cycle. • preventing the weed from flowering and Specialist meat-producing goats, Boer goats, dispersing seed rangeland goats and their crosses are most commonly used for weed control. Fibre-producing Cashmere and • ringbarking or structurally weakening some Angora goats are also well suited to weed control, shrub species although care should be taken to avoid fibre Preferential grazing entanglement and contamination. These are generally only used off-shears and when the risk of cold stress is Preferential grazing is an ecological control method at a minimum. Dairy goats also play a role in weed based on an animal’s tendency to graze one plant control at some stages in the production cycle, but this species in preference to another. Goats tend to is less common due to the intensive nature of the dairy preferentially graze many weeds rather than desirable industry. pasture species required for sheep and cattle production, especially clovers. The weed is thus placed at a competitive disadvantage. Fertiliser application will further assist this process by encouraging pasture growth. All grazing animal species have different dietary preferences. For example, the pasture composition will vary between a paddock grazed only by sheep and an adjacent paddock grazed only by cattle. Goats tend to preferentially graze many plants considered unpalatable to sheep and cattle and thus classified as weeds. This presents the opportunity for goats to be incorporated in grazing systems as a strategic weed control tool. Goats may also be used in conjunction with conventional weed control methods. They are efficient Feral low grade cashmere or meat-type goats (above) are browsers and grazers of weeds that may have been recommended for weed control. missed during spraying and effectively control residual weeds in rocky outcrops, corners, around trees and 1 weed. From these assessments and knowledge of ‘Rangeland’ refers to goats raised on land where weed palatability (Appendix), a stocking strategy can the indigenous vegetation is predominantly be devised. grasses, herbs and shrubs suitable for grazing and browsing, and where the land is managed as Figure 1 An example of estimating the percentage of weed cover in a pasture: here, the thistle takes up about 30% of a natural ecosystem. This includes natural the groundcover. grasslands, shrublands, deserts and alpine areas. The goat’s role The principal role of the goat is to place the weed at a competitive disadvantage to the surrounding pasture by: • selectively grazing • reducing the plant’s stored energy reserves • trampling and ringbarking The advantages • savings in the cost of chemicals, labour, time and machinery • sustained and efficient levels of control • returns from goat products • environmental (reduced chemical use) Furthermore, the producer maintains control at all stages by being able to decrease or increase grazing pressure depending on prevailing seasonal conditions. Other control methods do not give the producer the same level of control. Pasture management In most cases it is also important to have a competitive Grazing management base pasture to out-compete the weed and colonise bare areas. Clover is a good choice, as it is not highly Monitor the grazing impact of goats on weeds and selected by goats, and should be a major component pasture during the period when the weed is most of the pasture (more than 30%). It is advisable to apply palatable to the goats (Appendix). Ensure there is fertiliser at the start of the weed control program to sufficient pasture to satisfy the nutrition requirements give the clover a competitive advantage. The of the animals and to compete effectively with the application rate will depend on the paddock’s fertiliser targeted weeds. history and level of soil phosphorus. Goats tend to eat the immature seed head of most Assessing pasture and weeds thistles. The presence of mature seed heads after the first month of flowering indicates that goat stocking Before you can devise a stocking strategy you need to rates are too low to achieve control and should be assess pasture quality and quantity and the degree of increased. Similarly, all flowering points on other weeds weed infestation. The degree of weed infestation is need to be eaten by the goats to achieve weed control best judged in the weed’s late vegetative stage, before and prevent fruit and seed production. Stocking rates flowering. This can be done by estimating the should be adjusted to achieve this while being careful percentage groundcover of the weed in a 0.5m x 0.5m not to overgraze the pasture and deplete groundcover. square as shown in Figure 1. Repeat the assessment in about 30 random positions across a paddock to gain Depending on the comparative density of weeds and an overall impression of weed infestation. For larger pasture, you may need to add pasture seed and woody weeds, such as blackberry, broom and gorse, fertiliser and adjust the ratio of goats to sheep or estimate the proportion of paddock taken up by the cattle. Alternatively, if all the seed heads are being 2 eaten, but the pasture is overgrazed, the number of For information on aspects of fencing for goats see goats may be reduced. If all the seed heads are being Going into goats: Profitable producers’ best practice eaten but the pasture is not sufficiently grazed, guide. increase the number of sheep or cattle. Control of widespread weed infestation Where the weed infestation is so great that it would require too many goats to control, other methods may be employed to bring the weeds to a manageable level before you introduce the goats. This combining of weed control practices is called ‘integrated control’ and may include slashing, cultivation, spraying, pasture establishment or renovation and cropping. These methods may be used weeks, months or years before introducing goats, depending on the situation. Woody weeds Nodding thistle in clover. The thistle will be palatable to In dense infestations of woody weeds such as goats once it flowers. blackberry, scotch broom or gorse, slash paths through the infestation to allow greater access for the goats. Preparation Any necessary improvements must be made before goats arrive on a property. These improvements include water points, fences and yards. Goats test the lower portion of fences; any drains, low areas and diagonal stays will need to be covered with netting or fabricated wire to prevent goats escaping. Electric fencing is a reliable and inexpensive method of upgrading existing fences. As a general rule, any fence that will contain crossbred ewes will contain goats. For localised woody weed infestations it may be best to isolate the infestation with fencing. This has two benefits: it confines your goats to the infested area, so that fewer goats may be required for the job of Slash tracks through thick infestations (in this case, scotch broom) to allow goat access.
Recommended publications
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Italian Thistle (Carduus Pycnocephalus)
    Thistles: Identification and Management Rebecca Ozeran 1 May 2018 Common thistles in the San Joaquin Valley Carduus Centaurea Cirsium Silybum Onopordum Italian thistle Yellow starthistle Bull thistle (Blessed) milkthistle Scotch thistle Tocalote Canada thistle (Malta starthistle) All of these species are found at least one of Fresno, Kern, Kings, Madera, or Tulare Counties Identification • Many species start as a basal rosette in fall • Mature plants can have dense & bushy or tall & stemmy appearance • Purple/pink or yellow-flowered Identification • Why does thistle species matter? • Varying levels of risk to animals • Varying competition with forage • Varying susceptibility to control options Identification – 1. Italian thistle • Carduus pycnocephalus • narrow, spiky flower heads • winged, spiny stems branching above the base • found in Fresno, Kern, Madera, Tulare Identification – 2. Centaurea thistles • YELLOW STARTHISTLE (C. solstitialis) • long, yellow/white spines on phyllaries • can get a bushy structure • found in Fresno, Kern, Madera, Tulare • TOCALOTE (MALTA STARTHISTLE, C. melitensis) • stouter flower heads and shorter, redder spines on phyllaries • found in all 5 counties Identification – 3. Cirsium thistles • Canada thistle (C. arvense) • smooth stems, non-spiny flowerheads • flowers Jun-Oct • found in Fresno, Kern, Tulare • Bull thistle (C. vulgare) • large spiky looking flowerheads • lots of branching, dense plant • flowers Jun-Oct • found in all 5 counties Identification – 4. Blessed milk thistle • Silybum marianum • Distinct,
    [Show full text]
  • Slender Thistles LC0229 Department of Primary Industries ISSN 1329-833X
    Updated: August 2007 Slender Thistles LC0229 Department of Primary Industries ISSN 1329-833X Common and scientific names in colour. All seeds have a group of plumes (the pappus) about three times as long as the seed for wind dispersal. Slender thistle, shore thistle Roots - branched, slender or stout tap root. Carduus pycnocephalus L. (slender thistle) Carduus tenuiflorus Curt. (winged slender thistle) Family Asteraceae (daisy family) Origin and distribution Slender thistles are native to Europe and North Africa. The range of C. pycnocephalus extends to Asia Minor and Pakistan while that of C. tenuiflorus extends northwards to Britain and Scandinavia. They are a problem in many areas of the world. Both species were present in Victoria during the 1880s and now occur throughout much of the State. Slender thistles are troublesome weeds in pastures and wastelands, favouring areas of winter rainfall and soils of moderate to high fertility. The two species often occur together in mixed populations. Description Erect annual herbs, commonly 60 to 100 cm high but up to 2m, reproducing by seed. Seed germinates in the 6 weeks Figure 1. Slender thistle, Carduus tenuiflorus. following the autumn break. Seedlings develop into rosettes and remain in the rosette stage over winter. Flowering stems are produced in early spring and flowering continues from September to December. Plants die in early summer after flowering, but dead stems can remain standing for months. Stems - flowering stems are single or multiple from the base, branched, strongly ribbed and slightly woolly. Spiny wings occur along most of the length of flowering stems. Leaves - rosette leaves 15 to 25 cm long, stalked and Figure 2.
    [Show full text]
  • Milk Thistle
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF EXOTIC T RU E T HISTL E S RACHEL WINSTON , RICH HANSEN , MA R K SCH W A R ZLÄNDE R , ER IC COO M BS , CA R OL BELL RANDALL , AND RODNEY LY M FHTET-2007-05 U.S. Department Forest September 2008 of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Italian thistle. Photo: ©Saint Mary’s College of California. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • Proboscidea Louisianica (Miller) Thell
    Eurasscience Journals Eurasian Journal of Forest Science (2017) 5(2): 19-25 A new alien species record for the flora of Turkey: Proboscidea louisianica (Miller) Thell. Ece Sevgi1, Çağla Kızılarslan-Hançer1, Hatice Yılmaz2, Muhammet Akkaya3 1) Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Botany, 34093, İstanbul, Turkey 2) İstanbul University, Vocational School of Forestry, Ornamental Plants Cultivation Prog., 34473, İstanbul, Turkey 3)Forest Management, Biga-Çanakkale, Turkey *corresponding author: [email protected] Abstract Proboscidea louisianica (Miller) Thell. (Martyniaceae) is reported as a new alien species for the flora of Turkey. A plant species with different and interesting fruits was photographed in 2016. During a field investigation, a population of P. louisianica consisting of ca. 25 individuals was found at roadside between Biga and Karabiga town, district of Çanakkale, and plant specimens with flowers were collected in 2017. After detailed literature studies, this species was identified as Proboscidea louisianica. The family Martyniaceae is represented by just 1 genus with 1 taxa (Ibicella lutea (Lindl.) Van Eselt.) in Turkey and no member of the genus Proboscidea has been recorded before. In this paper, the species was introduced with taxonomical and morphological features. Its ecological impact was also evaluated with potential risks. Keywords: Proboscidea, Martyniaceae, new record, flora, Turkey Özet Bu çalışmada Proboscidea louisianica (Miller) Thell. (Martyniaceae) Türkiye Florası için yeni bir yabancı tür olarak kaydedilmiştir. Çanakkale, Biga-Karabiga arası yol kenarında yaklaşık 25 adet bitkiden oluşan populasyondan 2016 yılında genç meyveli, çiçek taşımayan bireylerden fotoğraflar çekilerek kayıt alınmıştır. 2017 yılında çiçeklenme dönemi olan Ağustos ve Eylül aylarında tekrar arazi çalışması yapılarak hem bitki örnekleri alınmış hem de detaylı populasyon bilgileri kaydedilmiştir.
    [Show full text]
  • Development of Indigenous Cucumis Technologies (Icts) to Alleviate the Void Created by the Withdrawal of Synthetic Nematicides from the Agro-Chemical Market
    International Scholars Journals African Journal of Soil Science ISSN 2375-088X Vol. 3 (8), pp. 161-166, August, 2015. Available online at www.internationalscholarsjournals.org © International Scholars Journals Author(s) retain the copyright of this article. Review Development of Indigenous Cucumis Technologies (ICTs) to alleviate the void created by the withdrawal of synthetic nematicides from the agro-chemical market *Trevor Mixwell, Bokang Montjane and Pietie Vermaak Department of Soil Science, Plant Production and Agricultural Sciences, University of Johannesburg, Johannesburg, South Africa. Accepted 16 July, 2015 The ”Indigenous Cucumis Technologies” (ICTs) were researched and developed for the management of plant- parasitic nematodes, particularly Meloidogyne species, in an attempt to alleviate the void created by the withdrawal of synthetic nematicides from the agro-chemical markets and the drawbacks associated with the use of conventional organic matter as a nematode management practice. Currently, ICTs comprises of four technology types, namely (1) ground leaching, (2) nematode resistance, (3) inter-generic grafting and (4) fermented crude extracts. ICTs, in their various forms, consistently suppressed the nematode numbers and improved crop yields in experimental trials carried out in Limpopo Province, Republic of South Africa. The present paper reviews a decade of successful research and development in ICTs for the management of root- knot nematodes in low-input agricultural farming systems. Key words: Cucumis species, fermented crude extract, ground leaching technology, inter-generic grafting, nematode resistance. INTRODUCTION Worldwide, the withdrawal of highly effective synthetic Been estimated at US $125 billion prior to the final fumigants used in the management of plant-parasitic withdrawal of methyl bromide from agro-chemical markets nematode populations has had economic consequences in in 2005 (Chitwood, 2003).
    [Show full text]
  • Conservation Genetics – Heat Map Analysis of Nussrs of Adna of Archaeological Watermelons (Cucurbitaceae, Citrullus L. Lanatus) Compared to Current Varieties
    ® Genes, Genomes and Genomics ©2012 Global Science Books Conservation Genetics – Heat Map Analysis of nuSSRs of aDNA of Archaeological Watermelons (Cucurbitaceae, Citrullus l. lanatus) Compared to Current Varieties Gábor Gyulai1* • Zoltán Szabó1,2 • Barna Wichmann1 • András Bittsánszky1,3 • Luther Waters Jr.4 • Zoltán Tóth1 • Fenny Dane4 1 St. Stephanus University, School of Agricultural and Environmental Sciences, GBI, Gödöll, H-2103 Hungary 2 Agricultural Biotechnology Centre, Gödöll, H-2100 Hungary 3 Plant Protection Institute, Hungarian Academy of Sciences, Budapest, H-1525 Hungary 4 Department of Horticulture, Auburn University, Auburn, Alabama AL 36849, USA Corresponding author : * [email protected] ABSTRACT Seed remains of watermelon (Citrullus lanatus lanatus) were excavated from two sites dating from the 13th (Debrecen) and 15th centuries (Budapest) Hungary. Morphological characterization, aDNA (ancient DNA) extraction, microsatellite analyses, and in silico sequence alignments were carried out. A total of 598 SSR fragments of 26 alleles at 12 microsatellite loci of DNAs were detected in the medieval and current watermelons. A heat map analysis using double dendrograms based on microsatellite fragment patterns revealed the closest th th similarity to current watermelons with red flesh (13 CENT) and yellow flesh (15 CENT) colors. In silico studies on cpDNA and mtDNA of watermelon revealed new data on Citrullus genome constitution. The results provide new tools to reconstruct and ‘resurrect’ extinct plants from aDNA used
    [Show full text]
  • The Toxic Effects of Cucurbitacin in Paddy Melon (Cucumis Myriocarpus) on Rats
    International Journal of Research and Review www.ijrrjournal.com E-ISSN: 2349-9788; P-ISSN: 2454-2237 Original Research Article The Toxic Effects of Cucurbitacin in Paddy Melon (Cucumis Myriocarpus) on Rats Violet Nakhungu Momanyi Kenya Agricultural and Livestock Research Organization (KALRO), National Agricultural, Research Laboratories (NARL), P.O. Box 14733-00800, NAIROBI, Kenya. Received: 16/09/2016 Revised: 28/09/2016 Accepted: 28/09/2016 ABSTRACT Untold losses of livestock are caused by various poisonous plant families each year globally, through death, physical malformation, abortion and lowered gain. Such families include; Solanaceae, Apocynaceae, Euphobiaceae and Cucubitaceae, where paddy melon (Cucumis myriocarpus) belongs. The main objective of the study was to carry out acute toxicity test of crude cucurbitacin in the ripe fruits of paddy melon (Cucumis myriocarpus) and determine its lethal dose (LD50) on laboratory rats. The crude extract of paddy melon was highly lethal, with an LD50 of 0.68g/kg body weight. Key words: Cucumis myriocarpus, Toxicity, rats, LD50. INTRODUCTION parasympatholytic alkaloids, atropine, Plant poisonings cause about 10-25 hyascine and hyoscyanine exert an % livestock losses due to lack of knowledge antimuscarinic effect causing neurological on the chemical composition, medicinal and disorders without pathological lesions toxic effects of many pasture plants. (Matthews and Endress, 2004). Solanaceae family like Daturastramonium Neurological disorders with distinct contain Atropine toxins which exert an pathological lesions are caused by plants antimuscarine effect blocking transmission which produce mycotoxins that cause of autonomic impulses at ganglia and muscle tremors, greyish-white areas of neuromuscular junctions (Kurzbaumet al., hyaline degeneration and necrosis 2001). Those of Apocynaceae like particularly near the insertions and origins Acokanthera spp.
    [Show full text]
  • Lipid Composition of Carduus Thoermeri Weinm., Onopordum Acanthium L
    622 Bulgarian Journal of Agricultural Science, 20 (No 3) 2014, 622-627 Agricultural Academy LIPID COMPOSITION OF CARDUUS THOERMERI WEINM., ONOPORDUM ACANTHIUM L. AND SILYBUM MARIANUM L., GROWING IN BULGARIA I. ZHELEV1, P. MERDZHANOV2, М. AngelovA-RomovA3, M. ZLATANOV3, g. AntovA3, I. DImItRovA-DyulgeRovA*3 and A. StoyAnovA2 1 Medical University of Varna, Faculty of Pharmacy, BG - 9002 Varna, Bulgaria 2 University of Food Technologies, BG - 4003 Plovdiv, Bulgaria 3 University of Plovdiv ”Paisij Hilendarski”, BG - 4000 Plovdiv, Bulgaria Abstract ZHELEV, I., P. MERDZHANOV, М. AngelovA-RomovA, m. ZlAtAnov, g. AntovA, I. DImItRovA- DyulgeRovA and A. StoyAnovA, 2014. Lipid composition of Carduus thoermeri Weinm., Onopordum acanthium L. and Silybum marianum L., growing in Bulgaria. Bulg. J. Agric. Sci., 20: 622-627 Seed oil chemical composition of wild growing Carduus thoermeri Weinm., Onopordum acanthium L. and Silybum mari- anum l. were studied for the first time in Bulgaria, by using gC, HPlC, TLC and spectrophotometrical methods. the major components of fatty acids were oleic (342 - 530 g.kg-1), linoleic (176 - 511 g.kg-1) and palmitic (99 - 150 g.kg-1). α-tocopherol was the main component in the tocopherol fraction of O. acanthium seeds (911 g.kg-1). In the sterol fraction the main components were β-sitosterol (546 - 632 g.kg-1) and campesterol (128 - 156 g.kg-1). Phosphatidylinositol was with the highest concentration in the phospolipid fraction (317 g.kg-1 in C. thoermeri and 320 g.kg-1 in O. acanthium). Due to content of unsaturated fatty acids, tocopherols and phytosterols, the seeds of these widespread species (especially O.
    [Show full text]
  • A COMPARATIVE PHENOLOGICAL and GENETIC DIVERSITY ANALYSIS of TWO INVASIVE WEEDS, CAMEL MELON (CITRULLUS LANATUS (Thunb.) Matsum
    23rd Asian-Pacific Weed Science Society Conference The Sebel Cairns, 26-29 September 2011 A COMPARATIVE PHENOLOGICAL AND GENETIC DIVERSITY ANALYSIS OF TWO INVASIVE WEEDS, CAMEL MELON (CITRULLUS LANATUS (Thunb.) Matsum. and Nakai var. LANATUS) AND PRICKLY PADDY MELON (CUCUMIS MYRIOCARPUS L.), IN INLAND AUSTRALIA Razia S. Shaik1, Leslie A. Weston1, Geoff Burrows 2 and David Gopurenko 3 1Charles Sturt University, E. H. Graham Centre for Agricultural Innovation, Wagga Wagga NSW 2678 2Charles Sturt University, School of Agriculture and Wine Sciences, Wagga Wagga NSW 2678 3NSW Department of Primary Industries, Wagga Wagga NSW 2650 ABSTRACT The biological attributes of two invasive weed species, prickly paddy melon and camel melon, were studied in different disturbed habitats of the Riverina region, NSW during 2010-2011. Seedlings first germinated in early to mid November 2010, once optimal soil temperatures were achieved. Flowering began in both species, generally 35 to 45 days following seedling establishment. Both species exhibited monoecious tendencies, with production of male flowers rapidly followed by production of both male and female flowers on the same vine. Both species exhibited prolific fruit production at all sites, until senescence occurred, at 150-180 days following establishment. Date of senescence varied among sites and species. Molecular genetic sequences analysis of chloroplast (MatK) and nuclear (G3pdh) genes was used to assay population genetic diversity and to verify species identity of melon species sampled from geographically diverse locations in Australia. Genetic variation within the species was not observed among the Australian populations at either of the assayed genes. This lack of genetic diversity may have resulted from a limited entry by each of the species into Australia and or sustained population bottlenecks following their entry.
    [Show full text]
  • Oregon Department of Agriculture Pest Risk Assessment for Welted Thistle, Carduus Crispus L
    Oregon Department of Agriculture Pest Risk Assessment for Welted thistle, Carduus crispus L. February 2017 Species: Welted thistle, Curly plumeless thistle, (Carduus crispus) L. Family: Asteraceae Findings of this review and assessment: Welted thistle (Carduus crispus) was evaluated and determined to be a category “A” rated noxious weed, as defined by the Oregon Department of Agriculture (ODA) Noxious Weed Policy and Classification System. This determination was based on a literature review and analysis using two ODA evaluation forms. Using the Noxious Qualitative Weed Risk Assessment v. 3.8, welted thistle scored 61 indicating a Risk Category of A; and a score of 16 with the Noxious Weed Rating System v. 3.1, indicating an “A” rating. Introduction: Welted thistle, native to Europe and Asia, has become a weed of waste ground, pastures, and roadsides, in some areas of the United States. The first record of welted thistle occurred in the Eastern U.S. in 1974. For decades, only one site (British Columbia) had been documented west of the Rockies. In 2016, a new western infestation was detected in Wallowa County, Oregon. Welted thistle was found invading irrigated field margins, ditch banks and tended alfalfa crops. Several satellite infestations were found within a mile radius of the core infestation (see Appendix, Map 1). It is not clear how the plant was introduced into Oregon, but contaminated crop seed is suspected. Carduus crispus closely resembles the more common C. acanthoides (plumeless thistle) that is also present in very low numbers in Wallowa County. Wallowa County listed welted thistle as an A-rated weed and quickly expanded survey boundaries and began implementing early eradication measures.
    [Show full text]