The Influence of Exotic Salmonids on Native Host-Parasite Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

The Influence of Exotic Salmonids on Native Host-Parasite Dynamics The influence of exotic salmonids on native host-parasite dynamics Rachel A. Paterson A thesis submitted for the degree of Doctor of Philosophy at the University of Otago, Dunedin, New Zealand December 2010 ii Summary Native parasite acquisition provides introduced species with the potential to modify native host-parasite dynamics by acting as parasite reservoirs (with the ‘spillback’ of infection increasing the parasite burdens of native hosts) or sinks (with the ‘dilution’ of infection decreasing the parasite burdens of native hosts) of infection. Exotic salmonids are frequently shown to acquire native parasites; however, as research into the threats posed by exotic salmonids has largely focused on predation and competition, threats posed by shared native parasites are poorly understood. I used a multiple-pronged approach combining field observations, experimental infections and dynamic population modelling to investigate whether native parasite acquisition by exotic salmonids alters host-parasite dynamics in native fish populations from streams and lakes in New Zealand and Argentina. I also used a meta-analysis approach to investigate which trait(s) influence native parasite acquisition by exotic freshwater fish. My research demonstrated that two key factors strongly influence whether the dynamics of native parasites will be affected by exotic fish. On one hand, the competency of exotic fish for native parasites is an important determinant of whether native parasite populations are likely to increase or decrease. On the other hand, the relative abundance of the exotic species determines whether its competency for a native parasite will actually translate into altered native host-parasite dynamics, with highly abundant exotic species more likely to induce changes in native parasite dynamics. I also demonstrated how exotic species may be able to override the influence of low host abundance, or competency by altering native host behaviour. The meta-analysis suggested that traits known to influence parasite richness in native fish or invasion success of exotic species are not reliable predictors of native parasite acquisition by exotic fish. Instead, it is more likely that complex interactions between a variety of biological, geographical and historical factors govern parasite acquisition by exotic species, making it difficult to predict whether native parasites will be acquired. iii Acknowledgements This thesis would not have completed without the support and encouragement of many wonderful people. First, I would like to thank Dan Tompkins, Robert Poulin and Colin Townsend for the outstanding supervision they provided me. Your prompt feedback and constructive advice greatly shaped my research, and I have learned so much from you all. I am especially grateful to Dan, who first suggested this doctorate to me - otherwise I might be still trapping possums. I was fortunate to belong to both the Aquatic and Parasitology lab groups and wish to thank lab members for interesting discussions, feedback and support. I also have greatly appreciated assistance from the following Department of Zoology staff: Kim Garrett, Ken Miller, Murray McKenzie, Ronda Peacock, Wendy Shanks, Vivienne McNaughton and Esther Sibbald. I would especially like to thank Nicky McHugh, who made the Aquatic lab a fantastic place to work. I would also to thank the following people who assisted with field and laboratory work: Tina Bayer, Marcia Dale, Kim Garrett, Mya Gaby, Ruth Goldsmith, Kristin Herrmann, Andy Hicks, Dave Kelly, Allison Koone, Clement Lagrue, Aparna Lal, Karen Ludwig, Francis Magbanua, Dean O’Connell, Bronwyn Presswell and Cynthia Winkworth. I also wish to thank Frank Wilhelm for providing Paracalliope fluviatilis life history information that contributed to the Acanthocephalus galaxii research. I am also grateful to landowners from the Manuherikia and Taieri River catchments for access to streams on their properties, and in particular wish to thank Robert Scott (Swin Burn) and Dave Crutchley (Old Hut Creek). I wish to thank Landcare Research for their continued assistance, especially Elly Lang for logistical support. I am grateful to the following people from Fish and Game, who provided valuable advice and assistance: Morgan Trotter, Niall Watson (Otago), Maurice Rodway (Southland), Ross Millichamp and Davor Bejakovich (Canterbury). From Argentina, I wish to thank the Laboratorio de Parasitología, Universidad Nacional del Comahue, Bariloche, and in particular Liliana Semenas, Gustavo Viozzi and Carlos Rauque, for hosting me in their lab. I would like to thank Marcelo Alonso, Pepe Di Gusto, Oscar Quatrin and Mauricio Ugoccioni for assistance in fish collection, and am grateful to Victor Baez and the staff of Centro de Salmonicultura Bariloche for providing experimental infection facilities. Special thanks to Celi and Luciana Harran, Ricardo Albarino iv and Beth Chang Reissig for welcoming me into their families and making my stay Argentina very enjoyable. My doctoral work was generously funded by the Royal Society of New Zealand Marsden Fund, Elman Poole Travelling Fellowship, Department of Zoology and Landcare Research. The Division of Sciences, the Department of Zoology, Ecological Research Group and the Claude McCarthy Fellowship sponsored my attendance at conferences in New Zealand, Australia (2) and Argentina. All research was carried out with the approval of the University of Otago Ethics Committee. Finally, I wish to thank my friends and family, especially my parents, Clive and Anne Paterson, for their continued encouragement and support during my studies. v Table of Contents Summary ..................................................................................................................................... ii Acknowledgements ................................................................................................................... iii List of Tables ............................................................................................................................. ix List of Figures ............................................................................................................................ xi Chapter 1 General Introduction 1.1 Exotic species introductions .............................................................................................. 2 1.2 Disease associated with exotic species.............................................................................. 2 1.3 Disease associated with exotic freshwater fish ................................................................. 3 1.4 Salmonid introductions ..................................................................................................... 3 1.5 Thesis outline .................................................................................................................... 4 Chapter 2 Has the introduction of brown trout altered disease patterns in native New Zealand fish? 2.1 Introduction ....................................................................................................................... 7 2.2 Materials and Methods ...................................................................................................... 8 2.2.1 Fish sampling .............................................................................................................. 8 2.2.2 Intermediate host sampling ......................................................................................... 9 2.2.3 Statistical Analyses ..................................................................................................... 9 2.3 Results ............................................................................................................................. 10 2.3.1 Infection of native fish in relation to trout presence ................................................. 11 2.4 Discussion ....................................................................................................................... 12 Chapter 3 Introduced brown trout alter native acanthocephalan infections in native fish 3.1 Introduction ..................................................................................................................... 23 3.2 Materials and Methods .................................................................................................... 25 3.2.1 Study system ............................................................................................................. 25 vi 3.2.2 Field surveys ............................................................................................................. 25 3.2.3 Infection experiment ................................................................................................. 26 3.2.4 Statistical analyses .................................................................................................... 27 3.2.5 Population model ...................................................................................................... 27 3.3 Results ............................................................................................................................. 32 3.3.1 Field survey ............................................................................................................... 32 3.3.2 Infection experiment ................................................................................................. 32 3.3.3 Population model .....................................................................................................
Recommended publications
  • Critical Habitat for Canterbury Freshwater Fish, Kōura/Kēkēwai and Kākahi
    CRITICAL HABITAT FOR CANTERBURY FRESHWATER FISH, KŌURA/KĒKĒWAI AND KĀKAHI REPORT PREPARED FOR CANTERBURY REGIONAL COUNCIL BY RICHARD ALLIBONE WATERWAYS CONSULTING REPORT NUMBER: 55-2018 AND DUNCAN GRAY CANTERBURY REGIONAL COUNCIL DATE: DECEMBER 2018 EXECUTIVE SUMMARY Aquatic habitat in Canterbury supports a range of native freshwater fish and the mega macroinvertebrates kōura/kēkēwai (crayfish) and kākahi (mussel). Loss of habitat, barriers to fish passage, water quality and water quantity issues present management challenges when we seek to protect this freshwater fauna while providing for human use. Water plans in Canterbury are intended to set rules for the use of water, the quality of water in aquatic systems and activities that occur within and adjacent to aquatic areas. To inform the planning and resource consent processes, information on the distribution of species and their critical habitat requirements can be used to provide for their protection. This report assesses the conservation status and distributions of indigenous freshwater fish, kēkēwai and kākahi in the Canterbury region. The report identifies the geographic distribution of these species and provides information on the critical habitat requirements of these species and/or populations. Water Ways Consulting Ltd Critical habitats for Canterbury aquatic fauna Table of Contents 1 Introduction ......................................................................................................................................... 1 2 Methods ..............................................................................................................................................
    [Show full text]
  • Evidence of Interactive Segregation Between Introduced Trout and Native Fishes in Northern Patagonian Rivers, Chile
    Transactions of the American Fisheries Society 138:839–845, 2009 [Note] Ó Copyright by the American Fisheries Society 2009 DOI: 10.1577/T08-134.1 Evidence of Interactive Segregation between Introduced Trout and Native Fishes in Northern Patagonian Rivers, Chile BROOKE E. PENALUNA* Department of Fisheries and Wildlife, Oregon State University, 3200 Jefferson Way, Corvallis, Oregon 97331, USA IVAN ARISMENDI Nu´cleo Milenio FORECOS, and Escuela de Graduados, Facultad de Ciencias Forestales, Universidad Austral de Chile, Casilla #567, Valdivia, Chile DORIS SOTO Nu´cleo Milenio FORECOS, Universidad Austral de Chile, Casilla #567, Valdivia, Chile; and Food and Agriculture Organization of the United Nations, Fisheries Department, Inland Water Resources and Aquaculture Service, Viale delle Terme di Caracalla, 00100 Rome, Italy Abstract.—Introduced rainbow trout Oncorhynchus mykiss recreational fishing and early practices of aquaculture and brown trout Salmo trutta fario are the most abundant (Basulto 2003). It was thought that these areas in the fishes in the northern Chilean Patagonia, and their effect on Southern Hemisphere were suitable for and would benefit native fishes is not well known. We tested for interactive from the addition of trout (Campos 1970; Basulto 2003). segregation between trout and native fishes by using a before– Since their introduction, trout have formed naturalized after, control–impact design in which we deliberately reduced the density of trout and observed the response of the native populations and have become the most abundant fish fishes in their mesohabitat use (pool, run, riffle). Three native species, accounting for over 95% of the total biomass in fish species, Brachygalaxias bullocki, Galaxias maculatus rivers of the Chilean Patagonia (Soto et al.
    [Show full text]
  • Rediscovering the Species in Community-Wide Predictive Modeling
    Ecological Applications, 16(4), 2006, pp. 1449–1460 Ó 2006 by the the Ecological Society of America REDISCOVERING THE SPECIES IN COMMUNITY-WIDE PREDICTIVE MODELING 1,3 2 2 JULIAN D. OLDEN, MICHAEL K. JOY, AND RUSSELL G. DEATH 1Center for Limnology, University of Wisconsin–Madison, 680 N. Park Street, Madison, Wisconsin 53706 USA 2Institute of Natural Resources–Ecology, Massey University, Private Bag 11 222, Palmerston North, New Zealand Abstract. Broadening the scope of conservation efforts to protect entire communities provides several advantages over the current species-specific focus, yet ecologists have been hampered by the fact that predictive modeling of multiple species is not directly amenable to traditional statistical approaches. Perhaps the greatest hurdle in community-wide modeling is that communities are composed of both co-occurring groups of species and species arranged independently along environmental gradients. Therefore, commonly used ‘‘short-cut’’ methods such as the modeling of so-called ‘‘assemblage types’’ are problematic. Our study demonstrates the utility of a multiresponse artificial neural network (MANN) to model entire community membership in an integrative yet species-specific manner. We compare MANN to two traditional approaches used to predict community composition: (1) a species-by-species approach using logistic regression analysis (LOG) and (2) a ‘‘classification-then-modeling’’ approach in which sites are classified into assemblage ‘‘types’’ (here we used two-way indicator species analysis and multiple discriminant analysis [MDA]). For freshwater fish assemblages of the North Island, New Zealand, we found that the MANN outperformed all other methods for predicting community composition based on multiscaled descriptors of the environment.
    [Show full text]
  • BEFORE the COMMISSIONERS on BEHALF of the OTAGO REGIONAL COUNCIL Consent No. RM16.093.01 BETWEEN CRIFFEL WATER LIMITED Applic
    BEFORE THE COMMISSIONERS ON BEHALF OF THE OTAGO REGIONAL COUNCIL Consent No. RM16.093.01 BETWEEN CRIFFEL WATER LIMITED Applicant AND OTAGO REGIONAL COUNCIL Consent Authority EVIDENCE OF RICHARD MARK ALLIBONE ____________________________________________________________ GALLAWAY COOK ALLAN LAWYERS DUNEDIN Solicitor to contact: Bridget Irving P O Box 143, Dunedin 9054 Ph: (03) 477 7312 Fax: (03) 477 5564 Email: [email protected] BI-308132-1-352-V4 1 EVIDENCE OF RICHARD MARK ALLIBONE Introduction 1. My name is Richard Mark Allibone. 2. I am the Director and Principal Ecologist of Water Ways Consulting Limited. I hold the following tertiary qualifications; a BSc (Zoology and Geology), an MSc (Zoology) and PhD (Zoology), all from the University of Otago. My research has centred on New Zealand’s native fish with a focus on the New Zealand galaxiids, their taxonomy, life history and threats to these species. 3. I specialise in freshwater ecological research and management for native freshwater fish. I have been a researching native fish for over thirty years. Initially my research between 1990 and 2001 was conducted as a post-graduate student and then as a freshwater fisheries specialist for the Department of Conservation, a Post Doctoral Fellow and fisheries scientist at NIWA, and a Species Protection Officer in the Department of Conservation’s Biodiversity Recovery Unit. During 2002-2004 I was the National Services Manager at the QEII National Trust. Since 2004 I have worked as a consultant; firstly for Kingett Mitchell Limited, then Golder Associates (NZ) Ltd. In November 2014 I formed the company Water Ways Consulting Limited where I am a director and the principal ecologist.
    [Show full text]
  • Multiple Scales of Biological Variability in New Zealand Streams
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Multiple scales of biological variability in New Zealand streams A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Ecology at Massey University, Manawatū, New Zealand. Withanage Thushantha Sriyan Jayasuriya 2016 ii General Abstract Stream fish communities in Taranaki, New Zealand, were studied for the patterns and drivers of their spatial ecology. The study was focused on three main themes: a) complementarity between geography and landuse in driving regional distribution patterns of stream fish, b) the impact of agriculture on community composition, structure and variability of fish and invertebrates, and c) concordance among environmental distance and community dissimilarities of stream fish and invertebrates. Stream sampling and data collection for fish was conducted at regional scale using 96 sites distributed in the protected forest (44 sites) of Egmont National Park in Taranaki, and in surrounding farmlands (52 sites). Local scale sampling for fish and invertebrates was carried out at 15 stream sites in pasture (8 sites) and in adjacent forest (7 sites). Environmental data of geography, landuse and local habitat description were also gathered concurrently to biological sampling. The regional scale survey reported fifteen fish species, dominated by longfin eels (Anguilla dieffenbachia), redfin bullies (Gobiomorphus huttoni) and koaro (Galaxias brevipinnis), while 12 fish species and 69 different invertebrate taxa were recorded from the 15 sites at local scale.
    [Show full text]
  • Overview of the Impacts of Introduced Salmonids on Australian Native Fauna
    OVERVIEW OF THE IMPACTS OF INTRODUCED SALMONIDS ON AUSTRALIAN NATIVE FAUNA by P. L. Cadwallader prepared for the Australian Nature Conservation Agency 1996 ~~ AUSTRALIA,,) Overview of the Impacts of Introduced Salmonids on Australian Native Fauna by P L Cadwallader The views and opinions expressed in this report are those of the authors and do not necessarily reflect those of the Commonwealth Government, the Minister for the Environment or the Director of National Parks and Wildlife. ISBN 0 642 21380 1 Published May 1996 © Copyright The Director of National Parks and Wildlife Australian Nature Conservation Agency GPO Box 636 Canberra ACT 2601 Design and art production by BPD Graphic Associates, Canberra Cover illustration by Karina Hansen McInnes CONTENTS FOREWORD 1 SUMMARY 2 ACKNOWLEDGMENTS 3 1. INTRODUCTION 5 2. SPECIES OF SALMONIDAE IN AUSTRALIA 7 2.1 Brown trout 7 2.2 Rainbow trout 8 2.3 Brook trout 9 2.4 Atlantic salmon 9 2.5 Chinook salmon 10 2.6 Summary of present status of salmonids in Australia 11 3. REVIEW OF STUDIES ON THE IMPACTS OF SALMONIDS 13 3.1 Studies on or relating to distributions of salmonids and native fish 13 Grey (1929) Whitley (1935) Williams (1964) Fish (1966) Frankenberg (1966, 1969) Renowden (1968) Andrews (1976) Knott et at. (1976) Cadwallader (1979) Jackson and Williams (1980) Jackson and Davies (1983) Koehn (1986) Jones et al. (1990) Lintermans and Rutzou (1990) Minns (1990) Sanger and F ulton (1991) Sloane and French (1991) Shirley (1991) Townsend and Growl (1991) Hamr (1992) Ault and White (1994) McIntosh et al. (1994) Other Observations and Comments 3.2 Studies Undertaken During the Invasion of New Areas by Salmonids 21 Tilzey (1976) Raadik (1993) Gloss and Lake (in prep) 3.3 Experimental Introduction study 23 Fletcher (1978) 3.4 Feeding Studies, Including Analysis of Dietary Overlap and Competition, and Predation 25 Introductory Comments Morrissy (1967) Cadwallader (1975) Jackson (1978) Cadwallader and Eden (1981,_ 1982) Sagar and Eldon (1983) Glova (1990) Glova and Sagar (1991) Kusabs and Swales (1991) Crowl et at.
    [Show full text]
  • Freshwater Fish Taxonomic Workshop Focussing on New Zealand Non- Migratory Galaxias Taxonomic Issues
    Freshwater fish taxonomic workshop Focussing on New Zealand non- migratory galaxias taxonomic issues Proceedings compiled by: Sjaan Bowie, Lan Pham, Nicholas Dunn, Richard Allibone, and Shannan Crow How to cite this document: Bowie, S. Pham, L, Dunn, N, Allibone, R, & Crow, S. (Eds) 2014: Freshwater fish taxonomic workshop focussing on New Zealand non-migratory galaxias taxonomic issues. Proceedings of a workshop, Dunedin 14th May 2013. Unpublished DOC publication. Christchurch. © Copyright May 2014, New Zealand Department of Conservation DOCDM-1205404 In the interest of forest conservation, we support paperless electronic publishing. CONTENTS 1. Introduction ................................................................................................................. 4 2. Overview of genetic and morphological data used for current non- migratory galaxias groupings .................................................................................... 5 2.1 Background ........................................................................................................... 5 2.2 Workshop group conclusion ................................................................................. 7 2.3 Non-migratory galaxias data management ........................................................... 7 3. Groupings of non-migratory Galaxias ....................................................................... 8 3.1 Background ........................................................................................................... 8 3.2 New Zealand
    [Show full text]
  • Migratory Flexibility in Native Hawai'ian Amphidromous Fishes
    Received: 29 August 2019 Accepted: 5 December 2019 DOI: 10.1111/jfb.14224 REGULAR PAPER FISH Migratory flexibility in native Hawai'ian amphidromous fishes Heidi Heim-Ballew1 | Kristine N. Moody2 | Michael J. Blum2 | Peter B. McIntyre3,4 | James D. Hogan1 1Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Abstract Texas, USA We assessed the prevalence of life history variation across four of the five native 2 Department of Ecology and Evolutionary amphidromous Hawai'ian gobioids to determine whether some or all exhibit evidence Biology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA of partial migration. Analysis of otolith Sr.: Ca concentrations affirmed that all are 3Center for Limnology, University of amphidromous and revealed evidence of partial migration in three of the four spe- Wisconsin – Madison, Madison, Wisconsin, USA cies. We found that 25% of Lentipes concolor (n= 8), 40% of Eleotris sandwicensis 4Department of Natural Resources, (n=20) and 29% of Stenogobius hawaiiensis (n=24) did not exhibit a migratory life- Cornell University, Ithaca, New York, history. In contrast, all individuals of Sicyopterus stimpsoni (n= 55) included in the USA study went to sea as larvae. Lentipes concolor exhibited the shortest mean larval dura- Correspondence tion (LD) at 87 days, successively followed by E. sandwicensis (mean LD = 102 days), Heidi Heim-Ballew, Department of Life Sciences, Texas A&M University-Corpus S. hawaiiensis (mean LD = 114 days) and S. stimpsoni (mean LD = 120 days). These Christi, 6300 Ocean Drive, Unit 5800, Corpus findings offer a fresh perspective on migratory life histories that can help improve Christi TX, 78412, USA.
    [Show full text]
  • Aspects of the Phylogeny, Biogeography and Taxonomy of Galaxioid Fishes
    Aspects of the phylogeny, biogeography and taxonomy of galaxioid fishes Jonathan Michael Waters, BSc. (Hons.) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy, / 2- Oo ( 01 f University of Tasmania (August, 1996) Paragalaxias dissim1/is (Regan); illustrated by David Crook Statements I declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution and, to the best of my knowledge and belief, this thesis contains no material previously published o:r written by another person, except where due reference is made in the text. This thesis is not to be made available for loan or copying for two years following the date this statement is signed. Following that time the thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. Signed Summary This study used two distinct methods to infer phylogenetic relationships of members of the Galaxioidea. The first approach involved direct sequencing of mitochondrial DNA to produce a molecular phylogeny. Secondly, a thorough osteological study of the galaxiines was the basis of a cladistic analysis to produce a morphological phylogeny. Phylogenetic analysis of 303 base pairs of mitochondrial cytochrome b _supported the monophyly of Neochanna, Paragalaxias and Galaxiella. This gene also reinforced recognised groups such as Galaxias truttaceus-G. auratus and G. fasciatus-G. argenteus. In a previously unrecognised grouping, Galaxias olidus and G. parvus were united as a sister clade to Paragalaxias. In addition, Nesogalaxias neocaledonicus and G. paucispondylus were included in a clade containing G.
    [Show full text]
  • The Parasite Release Hypothesis and the Success of Invasive Fish in New Zealand
    http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. The parasite release hypothesis and the success of invasive fish in New Zealand A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Biological Science at The University of Waikato by Keshi Zhang The University of Waikato 2012 Abstract Non-indigenous species are commonly released from their native enemies, including parasites, when they are introduced into new geographical areas. This has been referred to as the enemy release hypothesis and more strictly as the parasite release hypothesis. The loss of parasites is commonly inferred to explain the invasiveness of non-indigenous species. I examined parasite release in New Zealand non-indigenous freshwater fishes. A literature review was undertaken in order to collate lists of the known parasite fauna of 20 New Zealand non-indigenous freshwater fish species.
    [Show full text]
  • EARLY LIFE HISTORY of CAPTIVE-REARED GOBIOMORPHUS BASALIS (OSTEICHTHYES: ELEOTRIDAE) by David J. Riddell SUMMARY a Method for Rr
    TANE 28,1982 EARLY LIFE HISTORY OF CAPTIVE-REARED GOBIOMORPHUS BASALIS (OSTEICHTHYES: ELEOTRIDAE) by David J. Riddell Gordonton Road, R.D.I., Taupiri SUMMARY A method for rrearing Cran's bully (Gobiomorphus basalis) in captivity is outlined. The development of this species throughout the first four weeks after hatching is described, with illustrations. Cran's bully is seen to be more advanced at hatching than related species, though the rapid development observed may be due to artificial factors such as the temperature at which the aquarium was kept and the ready availability of food. INTRODUCTION Cran's bully is a common, though poorly-known species of native freshwater fish found primarily in rocky, bush-clad streams throughout the North Island of New Zealand, but known also from lakes in the Gisborne area, and from tarns near Molesworth in the South Island (McDowall 1978). It also occurs in Western Springs, Auckland (personal observation). Little is known of the reproductive biology of this species except that the eggs are quite large, and the young remain in fresh• water, hiding in the shallows at the water's edge. Spawning behaviour has been described by L.W. Spooner (McDowall 1978) although no details of the subsequent development of the eggs are given. MATERIALS AND METHODS Several specimens of Cran's bully, collected from Western Springs and the Waitakere Stream, together with several other species of native fresh-water fish were kept in an unheated aquarium measuring 1 240 x 440 x 440 mm. They were fed primarily on finely chopped earthworms, with occasional feedings of mosquito larvae, Daphnia, chopped beef or fish, and small Gambusia.
    [Show full text]
  • Identifying Migration Flexibility and the Environmental Factors That Influence Variation in Recruitment Success in Partially Migratory Hawaiian Fishes
    IDENTIFYING MIGRATION FLEXIBILITY AND THE ENVIRONMENTAL FACTORS THAT INFLUENCE VARIATION IN RECRUITMENT SUCCESS IN PARTIALLY MIGRATORY HAWAIIAN FISHES A Dissertation by HEIDI HEIM-BALLEW BS, Texas A&M University-Corpus Christi, 2015 Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in MARINE BIOLOGY Texas A&M University-Corpus Christi Corpus Christi, Texas May 2019 © Heidi Elizabeth Mae Ballew All Rights Reserved May 2019 IDENTIFYING MIGRATION FLEXIBILITY AND THE ENVIRONMENTAL FACTORS THAT INFLUENCE VARIATION IN RECRUITMENT SUCCESS IN PARTIALLY MIGRATORY HAWAIIAN FISHES A Dissertation by HEIDI HEIM-BALLEW This dissertation meets the standards for scope and quality of Texas A&M University-Corpus Christi and is hereby approved. J. Derek Hogan, PhD Chair David Portnoy, PhD Jennifer Pollack, PhD Committee Member Committee Member Benjamin D. Walther Kent Byus, PhD Committee Member Graduate Faculty Representative May 2019 ABSTRACT Behavior flexibility during the larval stage influences differential mortality, recruitment, and population dynamics; recruitment is poorly understood, yet important for understanding population persistence. The purpose of this dissertation was to examine fishes for migration flexibility and to identify factors at different spatiotemporal scales that are influential to differential survival within and across populations. I found that four underexplored native freshwater fishes of Hawai‘i exhibited a larval migratory strategy, but many were flexible. One species (Sicyopterus stimpsoni) showed all individuals made a migration, and the others showed 25 – 40 % did not migrate. Next, I examined if migrant (S. stimpsoni) and flexible species (Awaous stamineus) showed lunar rhythmicity at hatching and settlement. Migrants of the flexible species showed more hatching around the full moon and settlement around the new moon, and residents showed the opposite pattern.
    [Show full text]