Observations Pathogenicity Experiments on Gsnodermcr

Total Page:16

File Type:pdf, Size:1020Kb

Observations Pathogenicity Experiments on Gsnodermcr PALMS Ganodermain Florida:Elliott & Broschat Volume 45(2) 2001 Observations and M. t. Eluorr Pathogenicity AND T. K. BnoscHer Universityof Florida Experiments Fort LauderdaleResearch and EducationCenter 3205 CollegeAvenue on GsnodermcrFort Lauderdale,Floricla zonatum in 33314 USA Florida Ganoderma butt rot of palms, caused by Ganoderma zonatum, is a widespread and serious disease in Florida, USA. The means by which the fungus invades healthy palm trunks is not known. However, infection appears to begin at the center of the base of palm trunks and spreads outrvard and upwards from there, eventually producing a hard, shelf-like structure that is the basidiocarp (conk). Basidiospores produced within the conk may be the primary method for spreading the fungus in the urban landscape. Wilt symptoms are caused by the fungus rotting the xylem, as well as other trunk tissue, in the lowest 1.5 m of trunk. It is believed that most, if not all, woody palms are susceptible to this disease. Experimental attempts to inoculate healthy trees with this fungus have generally been unsuccessful. Palms are found throughout Florida (USA)in both basidiomycete fungi that are found throughout natural and landscaped settings. They are not l the world on all types of wood - gymnosperms, grown for agronomic purposes, but are important hard- and softwood dicots, and palms (Gilbertson as ornamental plants. When a list of the top ten , & Ryvarden 1986). The genus is greatly debated diseasesof Florida ornamentals was compiled in , at the specieslevel; Miller et al. (1999) described "currently 1997, Ganodermabutt rot of palms was listed as , it as chaotic." This has been due to number two (Schubert et al. 1997). The fungal , speciesnames being added and then dropped, an genus Ganodermais a group of wood-decaying , inconsistency in criteria used for identification 62 PALMS45(2): 62-72 I'ALNlS Ganodermain Florida:Elliott & Broschat Volume45(2) 2001 1 (above).Sabal palmetto (sabal palm) with wilted and desiccatedleaves due to Canodermozonotum infection. 2 (right).Syogrus romonzoffiana (queen palm) dying from Canodermazonatum. Only the spearand one other leaf remaingreen. 3. Basidiocarp(conk) o1 Conoderma zonatum. Note glazed reddish- brown top surfaceand whiteundersurface. The "straight"side of the conkis directly attached to thetrunk. There is no "stem" or "stalk"that attachesthe conkto the trun k. 63 PALMS Ganodermain Florida:Elliott & Broschat Volume 45(2) 2001 purposes at the specieslevel, and the fact that the vasculartissue aswell as the surrounding tissue morphological characteristics change based on has been degradedby the fungus. This becomes environment (Moncalvo et al. 1995). evident when a palm that has died or is dying from Ganoderma butt rot is cut down and cross- In Florida, Ganodermabutt rot is a lethal disease sections made of the trunk. Figs 4 and 5 are that appearsto be causedby the fungus Gqnoderma examples of the wood rotting and disease zonatum Murrill. Another fungal name that was progression pattern observed. The fungus associatedwith this diseasein the first half of the colonizes and degradesthe palm trunk tissue 20th century was Ganodermasulcatum MurrilI closestto the soil line first, expands in diameter (Murrill 1902,79O8;Childs & West 1953).Murrill at the baseand moves up the center or near-center indicated in his papers that both specieswere of the trunk. Therefore, the diseaseprogression associatedwith dead wood in Florida, and that pattern within the trunk is best described as cone- they were very similar in appearance.Recently, shaped,widest at the soil line and narrowing to a these two specieshave been grouped together as pinpoint. In general, we do not see the fungus one, G. zonatum (Gilbertson & Ryvarden 1986). extend more than 1.5 m (-5 ft) up into the palm Although G. zonatum is often referred to as a trunk. Although roots may eventually rot, member of the G. lucidum complex, it is a distinct especiallyafter the palm dies, the lethal damage speciesfrom G. lucidum (Adaskaveg& Gilbertson from the fungus appearsto be associatedwith the 1989). Information is available regarding the trunk degradation. Ganoderma butt rot is a disease morphological and cultural characteristicsof G. of mature palms (i.e.,palms with trunks) and has zonatum (e.g., Adaskaveg and Gilbertson 1989; not been observed to affect seedling or juvenile Adaskavegand Gilbertson 1988; Gilbertson & palms in natural or landscapesettings. R1'varden 1986), but little is known about the diseaseit causes.A similar basal stem rot of oil It was previously thought that the location of the palms is widespread,but is causedby a different initial basidiocarpformation was the entry point Ganodermaspecies, presumed to be G. boninense for the fungus, perhapsfrom a wound to the trunk. (Miller et al. 1999). This pathogen does not occur We do not believe that is true. The location of the in North America. Considerable information is basidiocarp is where the fungus is emerging from available on this diseasein SoutheastAsia, so we the trunk. This means the degradation is occurring have relied heavily on this information as a basis internally as the fungus moves from the lower for initiating researchin Florida. This article is a center of the palm to the outside. This is especially compilation of our personal observations and evident when a palm suspectedof being infected pathogenicity researchresults obtained since 1994. with G. zonatum, based on wilt symptoms and palms, I. OBSERVATIONS proximity to other diseased but without basidiocarpsis examined.This meansthat wounds Symptoms and Signs are not a likely factor in diseaseinitiation. Other Ganodermazonatum is a white rot fungus that external environmental factors associatedwith the produces numerous enzymes that allow it to trunk are probably not associatedwith disease degrade (rot) woody tissue, primarily lignin and development either, such as too much mulch cellulose (Adaskaveget al. 1991). As the fungus around the trunk, irrigation heads striking the destroys the palm wood internally, the xylem trunk, flowers or shrubs too close to the trunk, or (water-conducting tissue) will eventually be painting the trunk. affected. Therefore, the primary symptom that Life Cycle of the Fungus may be observed is a wilting, mild to severe,of all leaves but the spear leaf (Figs. 1 and 2). Other The basidiocarp or conk is the most easily symptoms can best be described as a general identifiable structure associatedwith the fungus. decline - slower growth and off-color foliage. The conk is a specializedmass of fungal growth However, these symptoms alone should not be that originates from mycelia in the palm trunk. used for diagnosis of Ganoderma butt rot, since Fig. 6 illustrates different stages in the other disorders or diseasesmay also causethese development of the basidiocarp. When the fungus symptoms. Only when these symptoms are first starts to grow on the side of a palm trunk or accompanied by the development of the palm stump, it is a solid white mass that is basidiocarp (conk) (Fig. 3) can the palm be relatively soft when touched. It will have an confirmed as affected by G. zonaturu.Also, it is irregular to circular shape and is relatively flat on commonly observedthat basidiocarpswill form the trunk or stump. prior to any obvious wilting or decline symptoms. As the conk matures, a small shelf or bracket will It should be emphasizedthat this fungus is not start to form asthe basidiocarpbegins to protrude restricted to vasculartissue. The palm wilts because from the trunk. It will still be white, both on the 64 PALMS Ganoderma in Florida:Elliott & Broschat Volume45(2) 2001 Thble 1. Palms documented to have been infected with Ganodermq zonqtum. Palm Sourcez Nannorrhopsritchiqna FTG Phoenix canartensis DPI, FTG Acoelorraphewrightii FTG Phoenix dactylifera FLREC Acrocomiaaculeata FTG Phoenix reclinata DPI, FTG Adonidia merrillii FTG Phoenix roebelenii FTG Aiphanessp. DPI Phoenixsylvestris FLREC Arenga engleri FTG Ptychospermaelegans TREC Arenga tremula FTG Ptycho s p erma mac arthurii DPI, FTG qlomonens Arenga undulatifolia FTG Ptycho sp erma s e FTG Attalea sp. FTG Roystoneaaltissima FTG Bactris maior FTG Roystoneaoleracea FTG Brahea berlandieri FTG Roystonearegia DPI, FTG Brqhea brandegeei FTG Sabal causiarum FTG, TREC Brqhea dulcis FTG Sabal mauritiiformis FTG Brahea edulis x brandegeei FTG Sabalpalmetto DPI, FLREC, Butia eriospatha FTG Sabal uresana FTG Butia capitata DPI Satqkentia liukiuensis FLREC Carpentariaacuminata FLREC Serenoarepens FTG Caryota mitis DPI Syagrusoleracea FTG Chamaeropshumilis FTG Syagruspicrophylla FTG Coccothrinaxsp. FTG Syagrusromanzoffiana DPI, FLREC, Cocosnucifera DPI Syagus sancona FTG Copemiciacurtisii FTG Syagrusschizophylla FTG Dictyospermaalbum DPI Syagrusx costae FTG Dypsis cabqdae FTG Washingtoniarobusta DPI, FTG Dypsis lutescens DPI, FTG Elaeisguineensis TREC ZDPI = Diseasesand Disordersof Ptants in Florida Euterpeedulis DPI (Alfieri et aI., 1994); FTG = Fairchild Tropical Gastrococoscrispa FTG Garden, Miami, FL; TREC = University of Hyophorbeindica TREC Florida's Tropical Researchand Education Livistona benthamii FTG Center, Homestead, FL; FLREC= University of Livistona chinensis DPI, FTG Florida's Fort Lauderdale Research and Livistona merrillii FTG Education Centeq Fort Lauderdale, FL; Forestry Livistona muelleri FTG = Florida's Department of Forestry, Miami, FL. Livistona saribus Forestry top and bottom surfaces.Eventually, it will form expanding in size at a later date. In southern, sub- a very
Recommended publications
  • Syagrus Romanzoffiana [Cham.] Glassman
    SCIENTIFIC note Doi: https://doi.org/10.17584/rcch.2019v13i3.8363 Pre-depulping and depulping treatments and the emergence of queen palm seeds (Syagrus romanzoffiana [Cham.] Glassman) Tratamiento de pre-despulpado y despulpado sobre la emergencia de semillas de palma reina (Syagrus romanzoffiana [Cham.] Glassman) LUCAS MARQUEZAN NASCIMENTO1 EDUARDO PRADI VENDRUSCOLO2, 4 LUIZ FERNANDES CARDOSO CAMPOS1 LISMAÍRA GONÇALVES CAIXETA GARCIA1 LARISSA LEANDRO PIRES1 ALEXANDER SELEGUINI3 Syagrus romanzoffiana under conditions of Brazilian Cerrado. Photo: L.M. Nascimento ABSTRACT The propagation of the palm Syagrus romanzoffiano is done sexually with seeds, making the process of obtai- ning new plants slow and difficult, especially on large scales. In addition, seed germination is slow, uneven and susceptible to degradation and loss of vigor because of embryo deterioration, even under laboratory conditions. As a result of the lack of information on efficient depulping methods for queen palm fruits, the present study aimed to establish a depulping methodology that is less aggressive to embryos, maintaining emergence quality. This experiment was carried out in Goiânia, Brazil, using fruits from eight stock plants submitted to three pre-depulping treatments (control, fermentation and drying) and two depulping me- thods (industrial depulping and concrete-mixer with the addition of gravel). After the different pre-sowing processes, the fresh and dry pyrenes mass, remaining fibers adhered to the pyrene and seedling emergence were evaluated. The pulper removed an average of 45% more pyrene pulp than the concrete mixer. However, these methodologies did not result in differences in the emergence of plants, which was affected only by the pre-depulping treatment, with superiority in the use of fresh fruits.
    [Show full text]
  • Cultural Characterization and Chlamydospore Function of the Ganodermataceae Present in the Eastern United States
    Mycologia ISSN: 0027-5514 (Print) 1557-2536 (Online) Journal homepage: https://www.tandfonline.com/loi/umyc20 Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States Andrew L. Loyd, Eric R. Linder, Matthew E. Smith, Robert A. Blanchette & Jason A. Smith To cite this article: Andrew L. Loyd, Eric R. Linder, Matthew E. Smith, Robert A. Blanchette & Jason A. Smith (2019): Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States, Mycologia To link to this article: https://doi.org/10.1080/00275514.2018.1543509 View supplementary material Published online: 24 Jan 2019. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=umyc20 MYCOLOGIA https://doi.org/10.1080/00275514.2018.1543509 Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States Andrew L. Loyd a, Eric R. Lindera, Matthew E. Smith b, Robert A. Blanchettec, and Jason A. Smitha aSchool of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611; bDepartment of Plant Pathology, University of Florida, Gainesville, Florida 32611; cDepartment of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 ABSTRACT ARTICLE HISTORY The cultural characteristics of fungi can provide useful information for studying the biology and Received 7 Feburary 2018 ecology of a group of closely related species, but these features are often overlooked in the order Accepted 30 October 2018 Polyporales. Optimal temperature and growth rate data can also be of utility for strain selection of KEYWORDS cultivated fungi such as reishi (i.e., laccate Ganoderma species) and potential novel management Chlamydospores; tactics (e.g., solarization) for butt rot diseases caused by Ganoderma species.
    [Show full text]
  • A RAPID and EFFICIENT DNA EXTRACTION PROTOCOL for Ganoderma Zonatum, a BASAL and UPPER STEM ROT PATHOGEN of OIL PALM in MALAYSIA
    RESEARCH ARTICLES Journal of Oil Palm Research Vol. 33 (1) March 2021 p. 12-20 DOI: https://doi.org/10.21894/jopr.2020.0058 A RAPID AND EFFICIENT DNA EXTRACTION PROTOCOL FOR Ganoderma zonatum, A BASAL AND UPPER STEM ROT PATHOGEN OF OIL PALM IN MALAYSIA JAYANTHI NAGAPPAN*; FAIZUN KADRI*; CHIN CHIEW FOAN**; RICHARD M COOPER‡; SEAN T MAY‡‡; IDRIS ABU SEMAN* and ENG TI LESLIE LOW* ABSTRACT Ganoderma zonatum is associated with both the basal and upper stem rot diseases in oil palm. Despite the severity of these diseases, there is only limited information on the molecular characteristics of this oil palm pathogen. Most of the studies on G. zonatum related to oil palm are focused on the epidemiology and genetic diversity of the organism. In other palm species, G. zonatum has also been identifed as the causal agent of bud rot disease. To further characterise the organism using molecular techniques, the ability to isolate good quality DNA samples is important. In this study, seven DNA extraction protocols were evaluated and the best protocol, Boehm protocol, had the highest yield of good quality DNA. The protocol was able to yield 208.95 ± 4.52 µg DNA per gram of sample with purities above 1.80 for A260/280 and 2.0 for A260/230. This extraction protocol is a rapid and efcient protocol that employs cetyl trimethylammonium bromide (CTAB), sodium dodecyl sulphate (SDS), β-mercaptoethanol and proteinase K in the lysis bufer. The Boehm protocol was further tested on three other Ganoderma species found in the oil palm plantations and a medicinal fungus, G.
    [Show full text]
  • Coconut and Other Palm Trees Posted on August 8, 2019 by Leslie Lang
    HOME HOURS & DIRECTIONS GARDEN SLIDESHOW GARDEN NEWS & BLOG Coconut and Other Palm Trees Posted on August 8, 2019 by Leslie Lang Of all the types of palm trees, many people here in Hawai‘i are most familiar with the coconut palm, Cocos nucifera. It’s the tree that says, “tropics.” But there’s so much more to the coconut palm. Its fruit, the niu or coconut, is so useful that early Polynesians brought it along to sustain themselves when they sailed across the Pacific to Hawai‘i. Polynesians knew that when they settled on new islands, they could plant coconuts and make use of the entire tree that grew—not only the coconut meat and water, but also the leaves, the wood, the fiber, and every other part. According to the book Canoe Plants of Ancient Hawaii, “Besides drink, food and shade, niu offers the possibilities of housing, thatching, hats, baskets, furniture, mats, cordage, clothing, charcoal, brooms, fans, ornaments, musical instruments, shampoo, containers, implements and oil for fuel, light, ointments, soap and more.” The only palm tree that’s native to Hawai‘i is the loulu (Pritchardia). There are perhaps 19 loulu species in Hawai‘i and a few related species in Tahiti and Fiji. Hawai‘i used to have large loulu forests, but while some loulu still survive in the wild, many disappeared because of rats, pigs, goats, and even people. Within the genus Pritchardia, there are 25 species of palms native to the tropical Pacific Islands. In Hawai‘i, as many as 19 species of Pritchardia are endemic, and some of them are categorized as endangered, rare, or vulnerable.
    [Show full text]
  • Causes and Consequences of Coati Sociality
    chapter 28 Causes and consequences of coati sociality Ben T. Hirsch and Matthew E. Gompper Ring-tailed coatis (Nasua nasua) © B. Hirsch Introduction of Kaufmann’s work, and similar studies on pri- mates and other carnivores, have greatly enhanced Over fifty years ago John Kaufmann conducted a our understanding of how and why animals live in two-year study on the white-nosed coati (Nasua groups. Such issues frame the core of the modern narica) on Barro Colorado Island, Panama. The field of behavioural ecology. resulting monograph (Kaufmann 1962) is a solid Animals live in groups when the benefits (e.g. examination of the natural history of the species, a greater ability to survive threats from predators with an emphasis on understanding its social struc- and pathogens) are greater than the costs (e.g. in- ture. Although many such studies now exist, Kauf- creased competition for resources such as food or mann’s study bordered on revolutionary at the time mates) (Krause and Ruxton 2002). Overlaying such because this was one of the first studies to gather cost–benefit ratios are the genetic relatedness of in- detailed ethological data of wild vertebrates via dividuals and the willingness of animals to coop- habituation of free-living social animals. The idea erate in a manner that increases the benefits and of following animals from a distance of just a few decreases the costs of sociality. Among the mus- metres, and observing the nuances of their behav- teloid carnivores, studies of coatis have contrib- iour, was relatively novel at the time. The results uted more to our understanding of the causes and Hirsch, B.
    [Show full text]
  • Syagrus Romanzoffiana: Queen Palm1 Timothy K
    ENH-767 Syagrus romanzoffiana: Queen Palm1 Timothy K. Broschat2 The queen palm is a popular feather-leaved palm with and fruit stalks are typically removed at the time that dead graceful arching leaves (Figure 1). It is one of the hardiest leaves are removed to reduce the mess caused by falling of the tropical-looking palms, being suitable for planting fruit. Avoid removing leaves that are not completely dead in USDA plant hardiness zone 9B (>25°F). Queen palms because these leaves serve as a supplementary source of are considered to be moderately tolerant of salt spray. They potassium (K) in the absence of sufficient K in the soil. can reach heights up to 50 ft with a spread of 20–25 ft. The smooth gray trunk varies from 8–15 inches in diameter, depending on the seed source and environment, and may contain bulges. Large inflorescences of cream-colored flowers are produced from within the leaves in the canopy during spring and summer months. These are followed by bright orange, round to slightly elongated fruits between ¾ and 1 inch long (Figure 2). Fruit drop is a major concern for queen palms because fruit clusters can weigh over 100 pounds and contain over a thousand seeds. These accumulate on the ground beneath the canopy, where some will sprout into unwanted seedlings (Figure 3). Queen palm seeds to be used for propagation should be half ripe to fully ripe with the fruit pulp removed. Soaking the cleaned seeds in water for two days prior to planting in a well-drained, but uniformly moist potting soil can improve germination in this species.
    [Show full text]
  • Palm (Arecaceae) Communities in the Brazilian Atlantic Forest: a Phytosociological Study
    Floresta e Ambiente 2019; 26(4): e20180413 https://doi.org/10.1590/2179-8087.041318 ISSN 2179-8087 (online) Original Article Conservation of Nature Palm (Arecaceae) Communities in the Brazilian Atlantic Forest: a Phytosociological Study Guilherme Alves Elias1 , Renato Colares1, Altamir Rocha Antunes1, Peterson Teodoro Padilha1, Joanna Marie Tucker Lima2, Robson Santos1 1Universidade do Extremo Sul Catarinense – UNESC, Criciúma/SC, Brasil 2Montgomery Botanical Center, Coral Gables/FL, USA ABSTRACT The aim of this study was to improve our understanding of the structure and composition of native palm communities in the Brazilian Atlantic Forest. This study was carried out at “Parque Estadual da Serra Furada” (PAESF), a protected area located in southern state of Santa Catarina. A palm community survey was carried out in Dense Ombrophilous Forest in five 20 m × 100 m sampling units, totaling 1ha. All palm individuals were measured, totaling 11,183 plants, belonging to four genera and five species: Bactris setosa Mart., Euterpe edulis Mart., Geonoma gamiova Barb.Rodr., Geonoma schottiana Mart. and Syagrus romanzoffiana (Cham.) Glassman. Euterpe edulis was the most common species, contributing the most to all phytosociological parameters; however, relatively few large individuals were found. Our study demonstrates the limitations of traditional forest surveys that ignore smaller diameter palm species and highlights the importance of the role of this group in the floristic diversity, ecosystem function, environmental services and carbon dynamics. Keywords: biodiversity, conservation area, Euterpe edulis, forest inventory, Palmae, phytosociology, Santa Catarina. Creative Commons License. All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License.
    [Show full text]
  • Mycosphere Essays 1: Taxonomic Confusion in the Ganoderma Lucidum Species Complex Article
    Mycosphere 6 (5): 542–559(2015) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2015 Online Edition Doi 10.5943/mycosphere/6/5/4 Mycosphere Essays 1: Taxonomic Confusion in the Ganoderma lucidum Species Complex Hapuarachchi KK 1, 2, 3, Wen TC1, Deng CY5, Kang JC1 and Hyde KD2, 3, 4 1The Engineering and Research Center of Southwest Bio–Pharmaceutical Resource Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China 2Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3Center of Excellence in Fungal Research, and 4School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 5Guizhou Academy of Sciences, Guiyang, 550009, Guizhou Province, China Hapuarachchi KK, Wen TC, Deng CY, Kang JC, Hyde KD – Mycosphere Essays 1: Taxonomic confusion in the Ganoderma lucidum species complex. Mycosphere 6(5), 542–559, Doi 10.5943/mycosphere/6/5/4 Abstract The genus Ganoderma (Ganodermataceae) has been widely used as traditional medicines for centuries in Asia, especially in China, Korea and Japan. Its species are widely researched, because of their highly prized medicinal value, since they contain many chemical constituents with potential nutritional and therapeutic values. Ganoderma lucidum (Lingzhi) is one of the most sought after species within the genus, since it is believed to have considerable therapeutic properties. In the G. lucidum species complex, there is much taxonomic confusion concerning the status of species, whose identification and circumscriptions are unclear because of their wide spectrum of morphological variability. In this paper we provide a history of the development of the taxonomic status of the G.
    [Show full text]
  • Ganoderma Sichuanense (Ganodermataceae, Polyporales)
    A peer-reviewed open-access journal MycoKeys 22: 27–43Ganoderma (2017) sichuanense (Ganodermataceae, Polyporales) new to Thailand 27 doi: 10.3897/mycokeys.22.13083 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Ganoderma sichuanense (Ganodermataceae, Polyporales) new to Thailand Anan Thawthong1,2,3, Kalani K. Hapuarachchi1,2,3, Ting-Chi Wen1, Olivier Raspé5,6, Naritsada Thongklang2, Ji-Chuan Kang1, Kevin D. Hyde2,4 1 The Engineering Research Center of Southwest Bio–Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 School of science, Mae Fah Luang University, Chiang Rai 57100, Thailand 4 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 5 Botanic Garden Meise, Nieuwe- laan 38, 1860 Meise, Belgium 6 Fédération Wallonie-Bruxelles, Service général de l’Enseignement universitaire et de la Recherche scientifique, Rue A. Lavallée 1, 1080 Bruxelles, Belgium Corresponding author: Ting-Chi Wen ([email protected]) Academic editor: R.H. Nilsson | Received 5 April 2017 | Accepted 1 June 2017 | Published 7 June 2017 Citation: Thawthong A, Hapuarachchi KK, Wen T-C, Raspé O, Thongklang N, Kang J-C, Hyde KD (2017) Ganoderma sichuanense (Ganodermataceae, Polyporales) new to Thailand. MycoKeys 22: 27–43. https://doi.org/10.3897/ mycokeys.22.13083 Abstract Ganoderma sichuanense (Ganodermataceae) is a medicinal mushroom originally described from China and previously confused with G. lucidum. It has been widely used as traditional medicine in Asia since it has potential nutritional and therapeutic values.
    [Show full text]
  • A Revised Family-Level Classification of the Polyporales (Basidiomycota)
    fungal biology 121 (2017) 798e824 journal homepage: www.elsevier.com/locate/funbio A revised family-level classification of the Polyporales (Basidiomycota) Alfredo JUSTOa,*, Otto MIETTINENb, Dimitrios FLOUDASc, € Beatriz ORTIZ-SANTANAd, Elisabet SJOKVISTe, Daniel LINDNERd, d €b f Karen NAKASONE , Tuomo NIEMELA , Karl-Henrik LARSSON , Leif RYVARDENg, David S. HIBBETTa aDepartment of Biology, Clark University, 950 Main St, Worcester, 01610, MA, USA bBotanical Museum, University of Helsinki, PO Box 7, 00014, Helsinki, Finland cDepartment of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden dCenter for Forest Mycology Research, US Forest Service, Northern Research Station, One Gifford Pinchot Drive, Madison, 53726, WI, USA eScotland’s Rural College, Edinburgh Campus, King’s Buildings, West Mains Road, Edinburgh, EH9 3JG, UK fNatural History Museum, University of Oslo, PO Box 1172, Blindern, NO 0318, Oslo, Norway gInstitute of Biological Sciences, University of Oslo, PO Box 1066, Blindern, N-0316, Oslo, Norway article info abstract Article history: Polyporales is strongly supported as a clade of Agaricomycetes, but the lack of a consensus Received 21 April 2017 higher-level classification within the group is a barrier to further taxonomic revision. We Accepted 30 May 2017 amplified nrLSU, nrITS, and rpb1 genes across the Polyporales, with a special focus on the Available online 16 June 2017 latter. We combined the new sequences with molecular data generated during the Poly- Corresponding Editor: PEET project and performed Maximum Likelihood and Bayesian phylogenetic analyses. Ursula Peintner Analyses of our final 3-gene dataset (292 Polyporales taxa) provide a phylogenetic overview of the order that we translate here into a formal family-level classification.
    [Show full text]
  • Approved Palm Tree List
    City of Parkland Department of Environmental Resources APPROVED PALM SPECIES for Landscape A Small Palms – mature height up to 20’ Common Name Botanical Name Alexander/Solitaire Palm Ptychosperma elegans Bottle Palm Hyophorbe lagenicaulis *Buccaneer Palm Psuedophoenix sargentii Carpentaria Palm Carpentaria acuminata Chinese Fan Palm Livistona chinensis Christmas Palm Adonidia merrillii *Florida Thatch Palm Coccothrinax radiata *Keys Thatch Palm Luecothrinax morrisii Majesty Palm Ravenea rivularis Pindo Palm Butia capitata Pygmy Date Palm Phoenix roebellini *Silver Thatch Palm Coccothrinax argentata Sunshine Palm Veitchia mcdanielsii Windmill Palm Trachycarpus fortunei Medium Palms – mature height up to 35’ Common Name Botanical Name Carpentaria Palm Carpentaria acuminata *Cabbage Palm Sabal palmetto Canary Island Date Palm Phoenix canariensis Coconut Palm Cocos nucifera Date palm Phoenix dactylifera Foxtail Palm Wodyetia bifurcata Hurricane/Princess Palm Dictyosperma album *Paroutis Palm Acoelorrhaphe wrightii Piccabeen Palm Archontophoenix cunninghamiana Latan Palm Latania loddigesii MacArthur Palm (Clustering) Ptychosperma macarthuri Montgomery Palm Veitchia montgomeryana Queen Palm Syagrus romanzoffiana Ribbon Palm Livistona decora Senegal Date Palm Phoenix reclinata Triangle Palm Dypsis decaryi Large Palms – mature height >35’ Common Name Botanical Name Bismark Bismarkia nobilis Cuban Royal Roystonea regia Date Palm Phoenix dactylifera *Florida Royal Roystonea elata Mexican Fan Palm/Washingtonia Washingtonia robusta Sylvester Date Palm Phoenix sylvestris *denotes native to South Florida Please note: This list is provided as a convenience and is intended for Zones 9a to 10b. It is not to suggest any particular species for your permit or application. Not all nurseries and/or growers keep inventory of the tree(s)/palm(s) and plant species listed, and therefore availability could be a factor.
    [Show full text]
  • Banana Moth on Palms, Hodel and Santos, 2020-12
    PALMARBOR Hodel and Santos: Banana Moth on Palms 2020-12: 1–20 Banana Moth A Resurgent and Serious Pest of Palms in Southern California DONALD R. HODEL AND PAUL SANTOS The banana moth (Opogona sacchari) is a primary pest of many agricultural and landscape plants, including palms (Howard et al. 2001). Although native to tropical and subtropical areas of Africa, it is now a widespread and rather common pest and occurs in California, Florida, Hawaii, South and Central America, Europe, Madagascar, and many Pacific Islands. In Hawaii it is a significant pest of sugarcane, banana, pineapple, and palms, especially the much beloved native Pritchardia spp. (loulu) (Hodel 2012c, Nelson and Wright 2005). In southern California, the banana moth has mostly been documented or observed on only a few species of palms, primarily Ravenea rivularis (majesty palm) (Fig. 1), Trachycarpus fortunei (windmill palm), and sometimes Syagrus romanzoffiana (queen palm), the latter typically as young, containerized nursery plants (Hodel 2012 a, b). However, in the last several years, two additional species have come under increasing attack, including Archontophoenix cunninghamiana (king palm) and Howea forsteriana (kentia palm), two of our more elegant, stately, and common landscape palms (Fig. 2). Or, perhaps these species were always under attack but the symptoms were attributed to other causes. While the banana moth attacks mostly stressed, weakened, and/ or wounded palms, in some instances it attacks seemingly healthy, unstressed palms although the underlying stress might not always be obvious or the attacked palm has yet to show stress symptoms. One of the subtle factors that could be stressing palms and leaving them susceptible to banana moth is climate change and its attendant ramifications, including temperature extremes, reduced rainfall, salt accumulation in the root zone, and excessively high soil pH, among others.
    [Show full text]