Mycosphere Essays 1: Taxonomic Confusion in the Ganoderma Lucidum Species Complex Article
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity of Polyporales in the Malay Peninsular and the Application of Ganoderma Australe (Fr.) Pat
DIVERSITY OF POLYPORALES IN THE MALAY PENINSULAR AND THE APPLICATION OF GANODERMA AUSTRALE (FR.) PAT. IN BIOPULPING OF EMPTY FRUIT BUNCHES OF ELAEIS GUINEENSIS MOHAMAD HASNUL BIN BOLHASSAN FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 DIVERSITY OF POLYPORALES IN THE MALAY PENINSULAR AND THE APPLICATION OF GANODERMA AUSTRALE (FR.) PAT. IN BIOPULPING OF EMPTY FRUIT BUNCHES OF ELAEIS GUINEENSIS MOHAMAD HASNUL BIN BOLHASSAN THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate: MOHAMAD HASNUL BIN BOLHASSAN (I.C No: 830416-13-5439) Registration/Matric No: SHC080030 Name of Degree: DOCTOR OF PHILOSOPHY Title of Project Paper/Research Report/Disertation/Thesis (“this Work”): DIVERSITY OF POLYPORALES IN THE MALAY PENINSULAR AND THE APPLICATION OF GANODERMA AUSTRALE (FR.) PAT. IN BIOPULPING OF EMPTY FRUIT BUNCHES OF ELAEIS GUINEENSIS. Field of Study: MUSHROOM DIVERSITY AND BIOTECHNOLOGY I do solemnly and sincerely declare that: 1) I am the sole author/writer of this work; 2) This Work is original; 3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledge in this Work; 4) I do not have any actual -
Wood Research Wood Degrading Mushrooms
WOOD RESEARCH doi.org/10.37763/wr.1336-4561/65.5.809818 65 (5): 2020 809-818 WOOD DEGRADING MUSHROOMS POTENTIALLY STRONG TOWARDS LACCASE BIOSYNTHESIS IN PAKISTAN Zill-E-Huma Aftab, Shakil Ahmed University of The Punjab Pakistan Arusa Aftab Lahore College for Women University Pakistan Iffat Siddique Eastern Cereal and Oilseed Research Centre Canada Muzammil Aftab Government College University Pakistan Zubaida Yousaf Lahore College for Women University Pakistan Farman Ahmed Chaudhry Minhaj University Pakistan (Received November 2019) ABSTRACT In present study, Pleurotus ostreatus, Ganoderma lucidum, Ganoderma ahmadii, Ganoderma applanatum, Ganoderma australe, Ganoderma colossus, Ganoderma flexipes, Ganoderma resinaceum, Ganoderma tornatum, Trametes hirsutus, Trametes proteus, Trametes pubescens, Trametes tephroleucus, Trametes versicolor, Trametes insularis, Fomes fomentarius, Fomes scruposus, Fomitopsis semitostus, Fomes lividus, Fomes linteus, Phellinus allardii, Phellinus badius, Phellinus callimorphus, Phellinus caryophylli, Phellinus pini, Phellinus torulosus, Poria ravenalae, Poria versipora, Poria paradoxa, Poria latemarginata, Heterobasidion insulare, Schizophyllum commune, Schizophyllum radiatum, 809 WOOD RESEARCH Daldinia sp., Xylaria sp., were collected, isolated, identified and then screened qualitatively for their laccase activity. Among all the collected and tested fungi Pleurotus ostreatus 008 and 016, Ganoderma lucidum 101,102 and 104 were highly efficient in terms of laccase production. The potent strains were further subjected -
Cultural Characterization and Chlamydospore Function of the Ganodermataceae Present in the Eastern United States
Mycologia ISSN: 0027-5514 (Print) 1557-2536 (Online) Journal homepage: https://www.tandfonline.com/loi/umyc20 Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States Andrew L. Loyd, Eric R. Linder, Matthew E. Smith, Robert A. Blanchette & Jason A. Smith To cite this article: Andrew L. Loyd, Eric R. Linder, Matthew E. Smith, Robert A. Blanchette & Jason A. Smith (2019): Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States, Mycologia To link to this article: https://doi.org/10.1080/00275514.2018.1543509 View supplementary material Published online: 24 Jan 2019. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=umyc20 MYCOLOGIA https://doi.org/10.1080/00275514.2018.1543509 Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States Andrew L. Loyd a, Eric R. Lindera, Matthew E. Smith b, Robert A. Blanchettec, and Jason A. Smitha aSchool of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611; bDepartment of Plant Pathology, University of Florida, Gainesville, Florida 32611; cDepartment of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 ABSTRACT ARTICLE HISTORY The cultural characteristics of fungi can provide useful information for studying the biology and Received 7 Feburary 2018 ecology of a group of closely related species, but these features are often overlooked in the order Accepted 30 October 2018 Polyporales. Optimal temperature and growth rate data can also be of utility for strain selection of KEYWORDS cultivated fungi such as reishi (i.e., laccate Ganoderma species) and potential novel management Chlamydospores; tactics (e.g., solarization) for butt rot diseases caused by Ganoderma species. -
Phylogenetic Classification of Trametes
TAXON 60 (6) • December 2011: 1567–1583 Justo & Hibbett • Phylogenetic classification of Trametes SYSTEMATICS AND PHYLOGENY Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset Alfredo Justo & David S. Hibbett Clark University, Biology Department, 950 Main St., Worcester, Massachusetts 01610, U.S.A. Author for correspondence: Alfredo Justo, [email protected] Abstract: The phylogeny of Trametes and related genera was studied using molecular data from ribosomal markers (nLSU, ITS) and protein-coding genes (RPB1, RPB2, TEF1-alpha) and consequences for the taxonomy and nomenclature of this group were considered. Separate datasets with rDNA data only, single datasets for each of the protein-coding genes, and a combined five-marker dataset were analyzed. Molecular analyses recover a strongly supported trametoid clade that includes most of Trametes species (including the type T. suaveolens, the T. versicolor group, and mainly tropical species such as T. maxima and T. cubensis) together with species of Lenzites and Pycnoporus and Coriolopsis polyzona. Our data confirm the positions of Trametes cervina (= Trametopsis cervina) in the phlebioid clade and of Trametes trogii (= Coriolopsis trogii) outside the trametoid clade, closely related to Coriolopsis gallica. The genus Coriolopsis, as currently defined, is polyphyletic, with the type species as part of the trametoid clade and at least two additional lineages occurring in the core polyporoid clade. In view of these results the use of a single generic name (Trametes) for the trametoid clade is considered to be the best taxonomic and nomenclatural option as the morphological concept of Trametes would remain almost unchanged, few new nomenclatural combinations would be necessary, and the classification of additional species (i.e., not yet described and/or sampled for mo- lecular data) in Trametes based on morphological characters alone will still be possible. -
Phylogenetic Analysis of Widely Cultivated Ganoderma in China Based on the Mitochondrial V4-V6 Region of SSU Rdna
Phylogenetic analysis of widely cultivated Ganoderma in China based on the mitochondrial V4-V6 region of SSU rDNA X.W. Zhou1,2, K.Q. Su2 and Y.M. Zhang1 1School of Life and Environment Science, Shanghai Normal University, Shanghai, China 2Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China Corresponding authors: Y.M. Zhang / X.W. Zhou E-mail: [email protected] / [email protected] Genet. Mol. Res. 14 (1): 886-897 (2015) Received February 6, 2014 Accepted May 15, 2014 Published February 2, 2015 DOI http://dx.doi.org/10.4238/2015.February.2.12 ABSTRACT. Ganoderma mushroom is one of the most prescribed traditional medicines and has been used for centuries, particularly in China, Japan, Korea, and other Asian countries. In this study, different strains of Ganoderma spp and the genetic relationships of the closely related strains were identified and investigated based on the V4-V6 region of mitochondrial small subunit ribosomal DNA of the Ganoderma species. The sizes of the mitochondrial ribosomal DNA regions from different Ganoderma species showed 2 types of sequences, 2.0 or 0.5 kb. A phylogenetic tree was constructed, which revealed a high level of genetic diversity in Ganoderma species. Ganoderma lucidum G05 and G. eupense G09 strains were clustered into a G. resinaceum group. Ganoderma spp G29 and G22 strains were clustered into a G. lucidum group. However, Ganoderma spp G19, G20, and G21 strains were Genetics and Molecular Research 14 (1): 886-897 (2015) ©FUNPEC-RP www.funpecrp.com.br Characterization of V4-V6 region of SSU rDNA of Ganoderma 887 clustered into a single group, the G. -
A RAPID and EFFICIENT DNA EXTRACTION PROTOCOL for Ganoderma Zonatum, a BASAL and UPPER STEM ROT PATHOGEN of OIL PALM in MALAYSIA
RESEARCH ARTICLES Journal of Oil Palm Research Vol. 33 (1) March 2021 p. 12-20 DOI: https://doi.org/10.21894/jopr.2020.0058 A RAPID AND EFFICIENT DNA EXTRACTION PROTOCOL FOR Ganoderma zonatum, A BASAL AND UPPER STEM ROT PATHOGEN OF OIL PALM IN MALAYSIA JAYANTHI NAGAPPAN*; FAIZUN KADRI*; CHIN CHIEW FOAN**; RICHARD M COOPER‡; SEAN T MAY‡‡; IDRIS ABU SEMAN* and ENG TI LESLIE LOW* ABSTRACT Ganoderma zonatum is associated with both the basal and upper stem rot diseases in oil palm. Despite the severity of these diseases, there is only limited information on the molecular characteristics of this oil palm pathogen. Most of the studies on G. zonatum related to oil palm are focused on the epidemiology and genetic diversity of the organism. In other palm species, G. zonatum has also been identifed as the causal agent of bud rot disease. To further characterise the organism using molecular techniques, the ability to isolate good quality DNA samples is important. In this study, seven DNA extraction protocols were evaluated and the best protocol, Boehm protocol, had the highest yield of good quality DNA. The protocol was able to yield 208.95 ± 4.52 µg DNA per gram of sample with purities above 1.80 for A260/280 and 2.0 for A260/230. This extraction protocol is a rapid and efcient protocol that employs cetyl trimethylammonium bromide (CTAB), sodium dodecyl sulphate (SDS), β-mercaptoethanol and proteinase K in the lysis bufer. The Boehm protocol was further tested on three other Ganoderma species found in the oil palm plantations and a medicinal fungus, G. -
A New Record of Ganoderma Tropicum (Basidiomycota, Polyporales) for Thailand and First Assessment of Optimum Conditions for Mycelia Production
A peer-reviewed open-access journal MycoKeys 51:A new65–83 record (2019) of Ganoderma tropicum (Basidiomycota, Polyporales) for Thailand... 65 doi: 10.3897/mycokeys.51.33513 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research A new record of Ganoderma tropicum (Basidiomycota, Polyporales) for Thailand and first assessment of optimum conditions for mycelia production Thatsanee Luangharn1,2,3,4, Samantha C. Karunarathna1,3,4, Peter E. Mortimer1,4, Kevin D. Hyde3,5, Naritsada Thongklang5, Jianchu Xu1,3,4 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2 University of Chinese Academy of Sciences, Bei- jing 100049, China 3 East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, Yunnan, China 4 Centre for Mountain Ecosystem Studies (CMES), Kunming Institute of Botany, Kunming 650201, Yunnan, China 5 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand Corresponding author: Jianchu Xu ([email protected]); Peter E. Mortimer ([email protected]) Academic editor: María P. Martín | Received 30 January 2019 | Accepted 12 March 2019 | Published 7 May 2019 Citation: Luangharn T, Karunarathna SC, Mortimer PE, Hyde KD, Thongklang N, Xu J (2019) A new record of Ganoderma tropicum (Basidiomycota, Polyporales) for Thailand and first assessment of optimum conditions for mycelia production. MycoKeys 51: 65–83. https://doi.org/10.3897/mycokeys.51.33513 Abstract In this study a new record of Ganoderma tropicum is described as from Chiang Rai Province, Thailand. The fruiting body was collected on the base of a livingDipterocarpus tree. -
Phylogenetic Classification of a Colombian Basidiomycete Producer of Cytotoxic Components Against Jurkat Cells
PHYLOGENETIC CLASSIFICATION OF A COLOMBIAN BASIDIOMYCETE PRODUCER OF CYTOTOXIC COMPONENTS AGAINST JURKAT CELLS 1 2 1 1 1 Andrea Bedoya López , Sonia Dávila , Monserrat García García , Mauricio A. Trujillo-Roldán , Norma A. Valdez-Cruz 1. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas/UNAM; 2. Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología/UNAM. [email protected] Key words: fungus, ITS, molecular taxonomy Introduction. Approximately 150,000 different mushrooms existing on Earth and probably less than 10% have been described (1). Although many morphological descriptions were made, phylogenetic analyses of rRNA gene sequences is one of the most used descriptive tools to understand the fungal taxonomy and diversity (2). For this purpose, regions of different fungal rRNA genes as internal transcribed spacer (ITS), small subunit (SSU) and large-subunits (LSU) have been reported (2). The Internal ITS regions of fungal ribosomal DNA (rDNA) are sequences with high variability, which allowed to distinguish fungal species. In this work, a phylogenetic analysis of the ITS region of a new Basidiomicete from Colombia was performed. This mushroom was morphologically classified as Humphreya coffeata (Berk.) Stey. (Ganodermataceae). The importance of this analysis lies is the molecular classification of this mushroom which is used as an alternative medicine. Also, previous data reports a cytotoxic activity on lymphoma cell line (Jurkat) Fig.1. Maximum Likelihood phylogenetic tree, using ITS 1, ITS 2 and the 5.8 ribosomal subunit. The sequences have their identification number by submerged culture filtrates (3). and the problem sequence was named as Humphreya coffeata morphology like . Methods. The test sample was isolated from Tierra Alta, Colombia and acquired from the culture collection of the Conclusions. -
Current Bioactive Compounds 2017, 13, 28-40
Send Orders for Reprints to [email protected] 28 Current Bioactive Compounds 2017, 13, 28-40 RESEARCH ARTICLE ISSN: 1573-4072 eISSN: 1875-6646 Ganoderma lucidum (Ling-zhi): The Impact of Chemistry on Biological Activity in Cancer Temitope O. Lawal1, Sheila M. Wicks2 and Gail B. Mahady3,* 1Department of Pharmacy Practice, Clinical Pharmacognosy Laboratories, University of Illinois at Chicago, Chicago, IL 60612, USA and Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria; 2Department of Clinical Anatomy, City Colleges of Chicago and Rush University, Chicago, IL 60612, USA; 3Department of Phar- macy Practice, Clinical Pharmacognosy Laboratories, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA Abstract: Background: Ganoderma (Ganodermataceae), a genus of medicinal mushrooms, has been employed as an herbal medicine in Traditional Chinese medicine (TCM) for over 2000 years. The fruiting bodies have been used historically in TCM, while the mycelia, and spores are now also used as a tonic, to stimulate the immune system and treat many diseases, including cancers. Objective: To review the anti-cancer research on G. lucidum (GL) from 2005 up to May 2016 and corre- late these data with analysis of the active chemical constituents. Methods: Literature searches were performed from 2005 to May 2016 in various databases such as Pub- A R T I C L E H I S T O R Y Med, SciFinder, Napralert, and Google Scholar for peer-reviewed research literature pertaining to Gano- Received: January 23, 2016 Revised: June 2, 2016 derma lucidum and cancer. Accepted: June 9, 2016 Results: Of the >200 known Ganoderma species, only two species, G. -
Antibacterial Activity, Optimal Culture Conditions and Cultivation of the Medicinal Ganoderma Australe, New to Thailand
1108 Mycosphere 8(8): 1108–1123 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/8/11 Copyright © Guizhou Academy of Agricultural Sciences Antibacterial activity, optimal culture conditions and cultivation of the medicinal Ganoderma australe, new to Thailand Luangharn T1,2, Karunarathna SC1,2, Khan S1,2, Xu JC1,2*, Mortimer PE1,2 and Hyde KD1,2,3,4,5 1 Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China. 2 World Agroforestry Centre, China & East-Asia Office, 132 Lanhei Road, Kunming 650201, China.3 3 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand. 4 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand. 5 Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand. Luangharn T, Karunarathna SC, Khan S, Xu JC, Mortimer PE, Hyde KD 2017 – Antibacterial activity, optimal culture conditions and cultivation of the medicinal Ganoderma australe, new to Thailand. Mycosphere 8(8), 1108–1123, Doi 10.5943/mycosphere/8/8/11 Abstract Ganoderma is a well-known genus of medicinal mushrooms that belongs to the order Polyporales. Many members of this genus are extensively used in traditional Asian medicines. Herein we report a new strain of Ganoderma australe collected in Thailand and identified using macro- and micro-morphological characteristics as well as phylogenetic analysis. The optimal conditions for mycelia growth were 25–30 ºC at pH 7–8, while sorghum and barley were found to be the best grain media for spawn production. -
Comparison of Nutrient Contents and Antimicrobial Properties of Pleurotus Djamor, Agaricus Bisporus and Ganoderma Tsugae
Int.J.Curr.Microbiol.App.Sci (2014) 3(6): 518-526 ISSN: 2319-7706 Volume 3 Number 6 (2014) pp. 518-526 http://www.ijcmas.com Original Research Article Comparison of Nutrient Contents and Antimicrobial Properties of Pleurotus djamor, Agaricus bisporus and Ganoderma tsugae K.Dharmaraj1*, T. Kuberan2 and R. Mahalakshmi2 1Post Graduate Department of Botany, Ayya Nadar Janaki Ammal College, Sivakasi 626 124, Tamil Nadu, India 2Cybermonk Lifescience Solution, Srivilliputtur 626 125, Tamil Nadu, India *Corresponding author A B S T R A C T The edible mushrooms of pleurotus djamor, Agaricus bisporus and non-edible mushroom Ganoderma tsugae were used for in this study. The dry weight, nutrient contents and antimicrobial activity was studied in edible and non-edible mushrooms. The dry weight of the mushroom was analysed and it was found in the range of 11-16 gm/100gm.the maximum dry weight observed in Ganoderma K e y w o r d s tsugae (16.1 gm/100gm) followed by Agaricus bisporus (14.3 gm/100gm) The maximum nutrient content was observed in Agaricus bisporus and the minimum Mushroom, amount of nutrient content was observed in Ganoderma tsugae. The maximum pathogen, amount of protein (32.0 mg/gm), glucose (13.2 mg/gm) and free amino acid (5.2 inhibition, mg/gm) content was observed in the Agaricus bisporus and the trace amount of antibacterial was observed in Ganoderma tsugae. The antimicrobial activity was studied by the mushroom extracts (acetone and dimethyl sulfoxide) of Pleurotus djamor, Agaricus bisporus and Ganoderma tsugae against the pathogenic bacteria such as Escherichia coli and Pseudomonas aeruginosa. -
Fungal Planet Description Sheets: 400–468
Persoonia 36, 2016: 316– 458 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158516X692185 Fungal Planet description sheets: 400–468 P.W. Crous1,2, M.J. Wingfield3, D.M. Richardson4, J.J. Le Roux4, D. Strasberg5, J. Edwards6, F. Roets7, V. Hubka8, P.W.J. Taylor9, M. Heykoop10, M.P. Martín11, G. Moreno10, D.A. Sutton12, N.P. Wiederhold12, C.W. Barnes13, J.R. Carlavilla10, J. Gené14, A. Giraldo1,2, V. Guarnaccia1, J. Guarro14, M. Hernández-Restrepo1,2, M. Kolařík15, J.L. Manjón10, I.G. Pascoe6, E.S. Popov16, M. Sandoval-Denis14, J.H.C. Woudenberg1, K. Acharya17, A.V. Alexandrova18, P. Alvarado19, R.N. Barbosa20, I.G. Baseia21, R.A. Blanchette22, T. Boekhout3, T.I. Burgess23, J.F. Cano-Lira14, A. Čmoková8, R.A. Dimitrov24, M.Yu. Dyakov18, M. Dueñas11, A.K. Dutta17, F. Esteve- Raventós10, A.G. Fedosova16, J. Fournier25, P. Gamboa26, D.E. Gouliamova27, T. Grebenc28, M. Groenewald1, B. Hanse29, G.E.St.J. Hardy23, B.W. Held22, Ž. Jurjević30, T. Kaewgrajang31, K.P.D. Latha32, L. Lombard1, J.J. Luangsa-ard33, P. Lysková34, N. Mallátová35, P. Manimohan32, A.N. Miller36, M. Mirabolfathy37, O.V. Morozova16, M. Obodai38, N.T. Oliveira20, M.E. Ordóñez39, E.C. Otto22, S. Paloi17, S.W. Peterson40, C. Phosri41, J. Roux3, W.A. Salazar 39, A. Sánchez10, G.A. Sarria42, H.-D. Shin43, B.D.B. Silva21, G.A. Silva20, M.Th. Smith1, C.M. Souza-Motta44, A.M. Stchigel14, M.M. Stoilova-Disheva27, M.A. Sulzbacher 45, M.T. Telleria11, C. Toapanta46, J.M. Traba47, N.