Sleep, N.H., Hotspots and Mantle Plumes: Some Phenomenology, J

Total Page:16

File Type:pdf, Size:1020Kb

Sleep, N.H., Hotspots and Mantle Plumes: Some Phenomenology, J JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 95, NO. B5, PAGES 6715-6736, MAY 10, 1990 Hotspotsand Mantle Plumes'Some Phenomenology NORMAN H. SLEEP Departmentsof Geologyand Geophysics,Stanford University, Stanford, California The availabledata, mainly topography, geoid, and heat flow, describinghotspots worldwide are examined to constrainthe mechanismsfor swelluplift and to obtainfluxes and excess temperatures of mantleplumes. Swelluplift is causedmainly by excesstemperatures that move with the lithosphereplate and to a lesser extenthot asthenospherenear the hotspot.The volume,heat, and buoyancy fluxes of hotspotsare computed fromthe cross-sectionalareas of swells,the shapes of nosesof swells,and, for on ridgehotspots, the amount of ascendingmaterial needed to supplythe lengthof ridgeaxis whichhas abnormallyhigh elevationand thickcrust. The buoyancy fluxes range over a factorof 20 withHawaii, 8.7 Mg s -1, thelargest. The buoy- ancyflux for Iceland is 1.4Mg s -1 whichis similarto theflux of CapeVerde. The excess temperature of both on-ridgeand off-ridgehotspots is aroundthe 200øCvalue inferred from petrologybut is not tightly constrainedby geophysicalconsiderations. This observation,the similarityof the fluxesof on-ridgeand off- ridgeplumes, and the tendency for hotspotsto crossthe ridge indicate that similar plumes are likely to cause both typesof hotspots.The buoyancyfluxes of 37 hotspotsare estimated;the globalbuoyancy flux is 50 Mgs -1, whichis equivalentto a globallyaveraged surface heat flow of 4 mWm-2 fromcore sources and wouldcool the core at a rateof 50ø C b.y. -1. Basedon a thermalmodel and the assumption that the likeli- hoodof subductionis independentof age,most of the heatfrom hotspotsis implacedin the lower litho- sphereand later subducted. I.NTRODUCWION ridge plumesusing Iceland as an example. The geometryof flow implied by the assumed existence of a low viscosity Linearseamount chains, such as the Hawaiian Islands, are asthenosphericchannelis illustrated bythis exercise. Then the frequentlyattributed tomantle plumes which ascend from deep methods forobtaining theflux of plumes ona rapidlymoving inthe Earth, perhaps thecore-mantle boundary. Theexcessive plate are discussed withHawaii as an example. These methods volcanismof on-ridge hotspots, such as Iceland, is also often involve determining theflux from the plume from the cross- attributedto plumes. If on-ridgeand midplate hotspots are sectionalareaof the swell and taking advantage ofthe kinemat- reallymanifestations of the same phenomenon, onewould ics of theinteraction of asthenospheric flowaway from the expectthat the temperature andflux of the upwelling material plume and asthenospheric flowinduced by thedrag of the wouldbe similar under both features. In particular, thecore- lithospheric plate. The methods forextending thisapproach to mantleboundary isexpected tobe nearly isothermal sothat the hotspotsonslowly moving plates are then discussed which Cape temperatureofplumes ascending fromthe basal boundary layer Verde as an example. Anestimate ofthe global mass and heat shouldbethe same globally provided that cooling byentrain- transfer byplumes isthen obtained byapplying themethods to mentof nearbymaterial and thermal conduction areminor. 34 additional hotspots. The magnitude ofthis total estimated Finally,theglobal heat loss from plumes should imply areason- flux is compatible withthe heat flux expected fromcooling the ablecooling rate of the core [Davies, 1988a]. corein agreement withDavies [1988a]. Finally, the results are Themost important point of this paper isthat the properties used to obtain general properties ofplumes and inferences on ofmantle plumes areconstrained byobservations, mainlytopog- the underlying mantle dynamics. "• raphy, geoid, and heat flow. I follow Davies [1988a], Richards eta!. [1988],and Sleep [1987a, b] in assumingthat the ICELANDICPLUM•FLUX geometryof plumesconsists of narrowvertical pipes which sup- plieshot mantle to a thinlow-viscosity asthenosphere beneath TheIcelandic hotspot is directlyon theMid-Atlantic Ridge. the movingplate (Figure 1). Suchplumes provide a muchMethods developed for off-ridge hotspots are thus inappropriate. betterexplanation for geoidand topographic anomalies than Theexcess volcanism of theridge near the hotspot is probably doessecondary convection from the cooling of theoceanic plate the best way to constrainthe excess temperature andvolume of Davies[1988a, b]. Thisgeometry allows simplification of the materialsupplied by theplume. discussionand the physicsbecause the model plume is much narrowerthan the hotspot swell and the rapidly flowing layer of ExcessCrustal Thickness andTemperature asthenosphereis thin compared to the thickness of the mantle of Icelandic Plume and the width of the swell. The expenseis somemodel depen- dencyof the resultsprimarily because the existence of a thin Highertemperatures beneath hotspot ridges lead to morepar- low-viscositychannel has not been established. tial meltingand explain the 20-km-thickcrust beneath Iceland I beginby developingmethods for estimating the flux of on- [McKenzie,1984]. An excesstemperature of the upwelling materialbetween 200 ø C and250 ø C is neededto generatethe.... excess15 km of crustin the computationsof McKenzie[1984]. This averageexcess temperature is also compatiblewith the Copyfight1990 by the American Geophysical Union. depthand volume of extensivemelting beneath Hawaii [McKen- Papernumber 89IB03587. zie,1984] and with the maximum excess temperature of 300øC 0148-0227/90/89JB-03587505.00 of Wyllie [1988]. 6715 6716 SL•,: Ho?s•?s • M•rrL• PLU•_• Ridge axis Lithosphere t \ 4 ! \ Lithosphere Asthenosphere Asthenosphere Plume material Fig. 2. The geometryof platemotion away from the Icelandhotspot is shownschematically. At large distancesaway from the hotspot,the flux of the plumeis balancedby the flow in the lithosphereat the platevelo- city Vt. and the flow in the entrainedasthenosphere. For convenience, both the lithosphereand the asthenospherethickness are assumedto be 100 km in this paper. velocity at the top to zero at the bottom. The volume flux is then Qp = Vs(L + A/2) Y (1) where V$ is the full spreadingrate, L and A are the thicknessesof the lithosphereand the asthenosphereaway from the ridge, here takento be 100 km, and Y is the along-strike Fig. 1. Mantleplumes are envisionedto tap a basalchannel near the distancesupplied by the plume. core-mantleboundary and to dischargeinto the low-viscosityastheno- Axial topographyappears to correlateon a globalbasis with sphere. The lithospheremoves over the plumecreating a hotspottrack. The radialflow in the asthenosphereaway from the plumecarries heat to crustal thicknessand magma chemistryvariations attributed to the flanks of the swell. higher temperaturesin the ascendingsource material [Klein and Langmuir, 1987; 1989; cf. Brodholtand Batiza, 1989; Viereck et al., 1989]. The distancesupplied by the plumeY is therefore obtainedfrom topography.An along-axisdistance of 500 km of Furtherquantification of theseestimates would give more Icelandis suppliedmainly by theplume, as it is eithersubaerial informationon the temperatureof the upwellingmaterial. In or shallowshelf. Severalhundred additional kilometers where addition,the geochemical anomaly provides information on the elevationand crustal thickness decrease away from Iceland are motionof theplume material [Schilling, 1986]. Unfommately,parfly suppliedby the plume. The geochemicalanomaly the methodof generationof mid-oceanicridge basalts is not extendsover about 700 km [Schilling,1986]. I obtaina fluxof agreedupon. For example, Stolper [1980] and Elthon et al. 63 m3 s -1 byassuming analong-strike length of 800 km and a [1982]state that mid-ocean ridge basalt (MORB) forms from a full spreadingof 16.5 mm yr -• [Gordonand Jurdy, 1986]. picriticmelt generated around 70 km depth.In contrast,The volume flux of magma Qv is 8 m3s-1. Presnalland Hoover [1984] state that extensive partial melting It is usefulto definea buoyancyflux for latercomparison beginsat 30 km depth. The formerhypothesis implies that withoff-ridge hotspots miningextensiveexcess melttemperatureremains inthefrom manfie crustal andthickness. thus precludesForms ofdeter- the B = p,,,otAT Q/, (2) latter hypothesisare thus used by McKenzie [1984]. For- whereAT is the averageexcess temperature, Pm is the density tunarely,the various melting relationships used by McKenzieof themanfie, about 3300 kg m -3, and 0t is the thermal expan- ß 5o 1 [1984] and a simplifiedrelationship by Sleepand Windley s•oncoefficient, about 3 x 10- C-. Thebuoyancy flux of the [1982]give similar excess temperatures. I thus make no Icelandplume is thusabout 1.4 Mg s -1. Asshown below this attemptto improveestimates of meltingrelationships. An esti- flux is similarto the flux of CapeVerde and much less than the mate of 225øC for the averageexcess temperature of the Ice- flux of Hawaii. landplume is usedbelow. The Jan Mayen hotspotis supposedto exist alongthe ridge north of Iceland [e.g., Vink, 1984]. However, it has litfie topo- Flux of IcelandicPlume graphicexpression along the ridge axis. It is possiblyrelated to southwardpropagation of the Moins ridge axis [Saemundsson, The volume flux of the Icelandic plume may be computed 1986]. The flux of this plume if it exists is includedhere in from the kinematicsof spreading. The plume needs to supply that of the Icelandhotspot. the oceaniclithosphere at least down to the depth of extensive melting, about 80 km, and probably the underlying astheno- HAWAUAN I•UM•
Recommended publications
  • Age Progressive Volcanism in the New England Seamounts and the Opening of the Central Atlantic Ocean
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 89, NO. B12, PAGES 9980-9990, NOVEMBER 10, 1984 AGEPROGRESSIVE VOLCANISM IN THENEW ENGLAND SEAMOUNTS AND THE OPENING OF THE CENTRAL ATLANTIC OCEAN R. A. Duncan College of Oceanography, Oregon State University, Corvallis Abstract. Radiometric ages (K-Ar and •øAr- transient featur e•s that allow calculations of 39Ar methods) have been determined on dredged relative motions only. volcanic rocks from seven of the New England The possibility that plate motions may be Seamounts, a prominent northwest-southeast trend- recorded by lines of islands and seamounts in the ing volcanic lineament in the northwestern ocean basins is attractive in this regard. If, Atlantic Ocean. The •øAr-39Ar total fusion and as the Carey-Wilson-Morgan model [Carey, 1958; incren•ental heating ages show an increase in Wilson, 1963; Morgan, 19•1] proposes, sublitho- seamount construction age from southeast to spheric, thermal anomalies called hot spots are northwest that is consistent with northwestward active and fixed with respect to one another in motion of the North American plate over a New the earth's upper mantle, they would then consti- England hot spot between 103 and 82 Ma. A linear tute a reference frame for directly and precisely volcano migration rate of 4.7 cm/yr fits the measuring plate motions. Ancient longitudes as seamount age distribution. These ages fall well as latitudes would be determined from vol- Within a longer age progression from the Corner cano construction ages along the tracks left by Seamounts (70 to 75 Ma), at the eastern end of hot spots and, providing relative plate motions the New England Seamounts, to the youngest phase are also known, quantitative estimates of conver- of volcanism in the White Mountain Igneous gent plate motions can be calculated [Engebretson Province, New England (100 to 124 Ma).
    [Show full text]
  • Cenozoic Changes in Pacific Absolute Plate Motion A
    CENOZOIC CHANGES IN PACIFIC ABSOLUTE PLATE MOTION A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGY AND GEOPHYSICS DECEMBER 2003 By Nile Akel Kevis Sterling Thesis Committee: Paul Wessel, Chairperson Loren Kroenke Fred Duennebier We certify that we have read this thesis and that, in our opinion, it is satisfactory in scope and quality as a thesis for the degree of Master of Science in Geology and Geophysics. THESIS COMMITTEE Chairperson ii Abstract Using the polygonal finite rotation method (PFRM) in conjunction with the hotspot- ting technique, a model of Pacific absolute plate motion (APM) from 65 Ma to the present has been created. This model is based primarily on the Hawaiian-Emperor and Louisville hotspot trails but also incorporates the Cobb, Bowie, Kodiak, Foundation, Caroline, Mar- quesas and Pitcairn hotspot trails. Using this model, distinct changes in Pacific APM have been identified at 48, 27, 23, 18, 12 and 6 Ma. These changes are reflected as kinks in the linear trends of Pacific hotspot trails. The sense of motion and timing of a number of circum-Pacific tectonic events appear to be correlated with these changes in Pacific APM. With the model and discussion presented here it is suggested that Pacific hotpots are fixed with respect to one another and with respect to the mantle. If they are moving as some paleomagnetic results suggest, they must be moving coherently in response to large-scale mantle flow. iii List of Tables 4.1 Initial hotspot locations .
    [Show full text]
  • Predicted Path for Hotspot Tracks Off South America Since Paleocene Times: Tectonic Implications of Ridge-Trench Collision Along the Andean Margin
    Gondwana Research 64 (2018) 216–234 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Predicted path for hotspot tracks off South America since Paleocene times: Tectonic implications of ridge-trench collision along the Andean margin Juan Pablo Bello-González a,⁎, Eduardo Contreras-Reyes b,CésarArriagadaa a Laboratorio de Paleomagnetismo, Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile b Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile article info abstract Article history: Hotspots are generated by partial melting due to hot plumes rising within the Earth's mantle, and when tectonic Received 12 January 2018 plates move relative to the plume source, hotspot tracks form. Off South America, the oceanic Nazca Plate hosts a Received in revised form 20 July 2018 large population of hotspot tracks. Examples include seamounts formed far from the Pacific-Nazca spreading cen- Accepted 23 July 2018 ter (“off-ridge” seamounts), such as the Juan Fernández Ridge (Juan Fernández hotspot), the Taltal Ridge (San Available online 20 September 2018 Félix hotspot), and the Copiapó Ridge (Caldera hotspot). These hotspot tracks are characterized by a rough and fi “ Handling Editor: T. Gerya discontinuous topography. Other examples include seamounts formed near the East Paci c Rise (EPR) ( on- ridge” seamounts), such as the Nazca Ridge (Salas y Gómez hotspot) and Easter Seamount Chain (Easter hotspot), Keywords: and the Iquique Ridge (Foundation hotspot). These oceanic ridges developed a relatively smooth and broad mor- Hotspot phology. Here, we present a plate reconstruction of these six oceanic hotspot tracks since the Paleocene, provid- Volcanism ing a kinematic model of ridge-continental margin collision.
    [Show full text]
  • Three Hotspot Reference Frames – Shallow and Lithospherically Controlled – Reflect “Mesoplates”, a Plate Tectonics Heuristic
    Three Hotspot Reference Frames – Shallow and Lithospherically Controlled – Reflect “Mesoplates”, a Plate Tectonics Heuristic Submitted to: Penrose Conference- Plume IV: Beyond the Plume Hypothesis, Iceland, 2003 May 1, 2003 (Not to be circulated beyond the organizing committee) Rex H. Pilger, Jr. Landmark Graphics Corporation 1805 Shea Center Drive Suite 400 Highlands Ranch, Colorado 80129 United States of America Extended Abstract The hotspot reference frames of the Atlantic-Indian Ocean and the Pacific Ocean are kinematically distinct. Relative motion of the two reference frames in the Late Cretaceous and Early Tertiary corresponds with motion of the American plates in the Atlantic-Indian Ocean frame, suggesting a lithospheric control on the reference frames. A third reference frame, beneath Iceland and Eurasia, cannot be satisfactorily quantified at this time, but the inability to fit Iceland in either of the two other reference frames implies its existence. The two hotspot reference frames can be shown to be relatively shallow. Hotspot traces, cross- grain oceanic gravity lineations of the Pacific Ocean reflect a shallow hotspot reference frame. Intracontinental stress fields of North America correspond with the Atlantic-Indian Ocean reference frame, also reflecting a shallow reference frame. Pacific evidence: Minor hotspot island-seamount chains of the Pacific plate (Figure 1) are controlled by lithospheric structure. Almost every such trace appears to originate on the south side of a fracture zone separating older lithosphere on the north from younger lithosphere on the south. Assuming that older plate is thicker than younger plate, passage of a fracture zone separating lithosphere of contrasting age and thickness over the asthenosphere and deeper mesosphere would result in isostatic rise of affected portions of both layers.
    [Show full text]
  • Mantle Dynamics and Characteristics of the Azores Plateau
    Earth and Planetary Science Letters 362 (2013) 258–271 Contents lists available at SciVerse ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Mantle dynamics and characteristics of the Azores plateau C. Adam a,n, P. Madureira a,b, J.M. Miranda c, N. Lourenc-o c,d, M. Yoshida e, D. Fitzenz a,1 a Centro de Geofı´sica de E´vora/Univ. E´vora, 7002-554 E´vora, Portugal b Estrutura de Missao~ para a Extensao~ da Plataforma Continental (EMEPC), 2770-047, Pac-o d’ Arcos, Portugal c Instituto Portugues do Mar e da Atmosfera, Lisboa, Portugal d University of Algarve, IDL, Campus de Gambelas, 8000 Faro, Portugal e Institute for Research on Earth Evolution (IFREE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan article info abstract Article history: Situated in the middle of the Atlantic Ocean, the Azores plateau is a region of elevated topography Received 25 July 2012 encompassing the triple junction between the Eurasian, Nubian and North American plates. The plateau is Received in revised form crossed by the Mid-Atlantic Ridge, and the Terceira Rift is generally thought of as its northern boundary. 2 November 2012 The origin of the plateau and of the Terceira Rift is still under debate. This region is associated with active Accepted 5 November 2012 volcanism. Geophysical data describe complex tectonic and seismic patterns. The mantle under this region Editor: T. Spohn Available online 18 January 2013 is characterized by anomalously slow seismic velocities. However, this mantle structure has not yet been used to quantitatively assess the influence of the mantle dynamics on the surface tectonics.
    [Show full text]
  • A Joint Local and Teleseismic Tomography Study Of
    PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE A joint local and teleseismic tomography study 10.1002/2015JB012761 of the Mississippi Embayment and New Madrid Key Points: Seismic Zone • We present detailed 3-D images of Vp 1 1 1 and Vs for the upper mantle below the Cecilia A. Nyamwandha , Christine A. Powell , and Charles A. Langston ME and NMSZ • A prominent low-velocity anomaly 1Center for Earthquake Research and Information, University of Memphis, Memphis, Tennessee, USA with similar Vp and Vs anomalies is imaged in the upper mantle • Regions of similar high Vp and Vs anomalies present above and to the Abstract Detailed, upper mantle P and S wave velocity (Vp and Vs) models are developed for the northern sides of the low-velocity anomaly Mississippi Embayment (ME), a major physiographic feature in the Central United States (U.S.) and the location of the active New Madrid Seismic Zone (NMSZ). This study incorporates local earthquake and teleseismic data from the New Madrid Seismic Network, the Earthscope Transportable Array, and the Correspondence to: FlexArray Northern Embayment Lithospheric Experiment stations. The Vp and Vs solutions contain anomalies C. A. Nyamwandha, with similar magnitudes and spatial distributions. High velocities are present in the lower crust beneath the [email protected] NMSZ. A pronounced low-velocity anomaly of ~ À3%–À5% is imaged at depths of 100–250 km. High-velocity anomalies of ~ +3%–+4% are observed at depths of 80–160 km and are located along the sides and top Citation: of the low-velocity anomaly. The low-velocity anomaly is attributed to the presence of hot fluids upwelling Nyamwandha, C.
    [Show full text]
  • S41598-020-76691-1 1 Vol.:(0123456789)
    www.nature.com/scientificreports OPEN Rifting of the oceanic Azores Plateau with episodic volcanic activity B. Storch1*, K. M. Haase1, R. H. W. Romer1, C. Beier1,2 & A. A. P. Koppers3 Extension of the Azores Plateau along the Terceira Rift exposes a lava sequence on the steep northern fank of the Hirondelle Basin. Unlike typical tholeiitic basalts of oceanic plateaus, the 1.2 km vertical submarine stratigraphic profle reveals two successive compositionally distinct basanitic to alkali basaltic eruptive units. The lower unit is volumetrically more extensive with ~ 1060 m of the crustal profle forming between ~ 2.02 and ~ 1.66 Ma, followed by a second unit erupting the uppermost ~ 30 m of lavas in ~ 100 kyrs. The age of ~ 1.56 Ma of the youngest in-situ sample at the top of the profle implies that the 35 km-wide Hirondelle Basin opened after this time along normal faults. This rifting phase was followed by alkaline volcanism at D. João de Castro seamount in the basin center indicating episodic volcanic activity along the Terceira Rift. The mantle source compositions of the two lava units change towards less radiogenic Nd, Hf, and Pb isotope ratios. A change to less SiO2-undersaturated magmas may indicate increasing degrees of partial melting beneath D. João de Castro seamount, possibly caused by lithospheric thinning within the past 1.5 million years. Our results suggest that rifting of oceanic lithosphere alternates between magmatically and tectonically dominated phases. Oceanic plateaus with a crustal thickness to 30 km cover large areas in the oceans and these bathymetric swells afect oceanic currents and marine life 1,2.
    [Show full text]
  • Chemical Systematics of an Intermediate Spreading Ridge: the Pacific-Antarctic Ridge Between 56°S and 66°S
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. B2, PAGES 2915-2936, FEBRUARY 10, 2000 Chemical systematics of an intermediate spreading ridge: The Pacific-Antarctic Ridge between 56°S and 66°S Ivan Vlastélic,I,2 Laure DOSSO,I Henri Bougault/ Daniel Aslanian,3 Louis Géli,3 Joël Etoubleau,3 Marcel Bohn,1 Jean-Louis Joron,4 and Claire Bollinger l Abstract. Axial bathymetry, major/trace elements, and isotopes suggest that the Pacific-Antarctic Ridge (PAR) between 56°S and 66°S is devoid of any hotspot influence. PAR (56-66°S) samples 144 have in average lower 87Sr/86Sr and 143 Nd/ Nd and higher 206 PbP04 Pb than northern Pacific l11id­ ocean ridge basalts (MORB), and also than MORB From the other oceans. The high variability of pb isotopic ratios (compared to Sr and Nd) can be due to either a general high ~l (I-IIMU) (high U/Pb) affïnity of the southern Pacific upper mantle or to a mantle event first recorded in time by Pb isotopes. Compiling the results ofthis study with those From the PAR between 53°S and 57°S gives a continuous vie~ of mantle characteristics fr~m sOl~th ,Pitman. Fracture Z?ne (FZ) to . Vacquier FZ, representll1g about 3000 km of spreadll1g aXIs. [he latitude ofUdmtsev FZ (56°S) IS a limit between, to the narth, a domain with large geochemical variations and, to the south, one with small variations. The spreading rate has intermediate values (54 mm/yr at 66°S to 74 mm/yr at 56°S) which increase along the PAR, while the axial morphology changes from valley to dome.
    [Show full text]
  • Hafnium Isotopic Variations in East Atlantic Intraplate Volcanism
    Contrib Mineral Petrol DOI 10.1007/s00410-010-0580-5 ORIGINAL PAPER Hafnium isotopic variations in East Atlantic intraplate volcanism Jo¨rg Geldmacher • Kaj Hoernle • Barry B. Hanan • Janne Blichert-Toft • F. Hauff • James B. Gill • Hans-Ulrich Schmincke Received: 29 April 2010 / Accepted: 1 September 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract The broad belt of intraplate volcanism in the East range (14 eHf units). Samples from the proposed Madeira Atlantic between 25° and 37° N is proposed to have formed hotspot track have the most radiogenic Hf isotopic compo- 176 177 by two adjacent hotspot tracks (the Madeira and Canary sitions ( Hf/ Hfm up to 0.283335), extending across the tracks) that possess systematically different isotopic signa- entire field for central Atlantic MORB. They form a rela- tures reflecting different mantle source compositions. To test tively narrow, elongated trend on the Nd vs. Hf isotope this model, Hf isotope ratios from volcanic rocks from all diagram (stretching over [ 10 eHf units) between a depleted individual islands and all major seamounts are presented in N-MORB-like endmember and a moderately enriched this study. In comparison with published Nd isotope varia- composition located on, or slightly below, the Nd–Hf mantle tions (6 eNd units), 176Hf/177Hf ratios span a much larger array, which overlaps the proposed ‘‘C’’ mantle component of Hanan and Graham (1996). In contrast, all samples from the Canary hotspot track plot below the mantle array 176 177 Communicated by J. Hoefs. ( Hf/ Hfm = 0.282943–0.283067) and form a much denser cluster with less compositional variation (*4 eHf Electronic supplementary material The online version of this article (doi:10.1007/s00410-010-0580-5) contains supplementary units).
    [Show full text]
  • Tectonic-Sedimentary System of the Atlantis‒Meteor Seamounts (North
    ISSN 0024-4902, Lithology and Mineral Resources, 2019, Vol. 54, No. 5, pp. 374–389. © Pleiades Publishing, Inc., 2019. Russian Text © The Author(s), 2019, published in Litologiya i Poleznye Iskopaemye, 2019, No. 5. Tectonic-Sedimentary System of the Atlantis‒Meteor Seamounts (North Atlantic): Volcanism and Sedimentation in the Late Miocene‒Pliocene and Position in the Atlantic‒Arctic Rift System N. P. Chamova, *, I. E. Stukalovaa, S. Yu. Sokolova, A. A. Peivea, N. V. Gor’kovaa, A. A. Razumovskiia, M. E. Bylinskayaa, and L. A. Golovinaa aGeological Institute, Russian Academy of Sciences, Pyzhevskii per., 7, Moscow, 119017 Russia *e-mail: [email protected] Received February 19, 2019; revised February 19, 2019; accepted March 13, 2019 Abstract—The paper analyzes original data obtained on the Atlantis‒Meteor seamount system during Cruise 33 of the R/V Akademik Nikolai Strakhov in the eastern North Atlantic. This system is a volcanic rise formed on the Canary abyssal plate and represents one of the key objects for understanding the geological history of opening of the central segment of the Atlantic Ocean. Basalts, tephrites, and organogenic terrigenous lagoonal marine sediments dredged from the Atlantis, Plato, and Cruiser seamounts are considered. Petrog- raphy and compositions of the Atlantis and Cruiser basalts reflect significant differences in settings of their eruptions. Well-crystallized vesicle-free olivine basalts from the Atlantis Seamount were ejected under deep- water conditions. Glassy vesicular basalts of the Cruiser Seamount are typical of shallow subaerial eruptions. Evidence for the accumulation of tuff breccias and tuff gravelstones of the Plato Seamount in subaerial set- tings are obtained.
    [Show full text]
  • Aula 4 – Tipos Crustais Tipos Crustais Continentais E Oceânicos
    14/09/2020 Aula 4 – Tipos Crustais Introdução Crosta e Litosfera, Astenosfera Crosta Oceânica e Tipos crustais oceânicos Crosta Continental e Tipos crustais continentais Tipos crustais Continentais e Oceânicos A interação divergente é o berço fundamental da litosfera oceânica: não forma cadeias de montanhas, mas forma a cadeia desenhada pela crista meso- oceânica por mais de 60.000km lineares do interior dos oceanos. A interação convergente leva inicialmente à formação dos arcos vulcânicos e magmáticos (que é praticamente o berço da litosfera continental) e posteriormente à colisão (que é praticamente o fechamento do Ciclo de Wilson, o desparecimento da litosfera oceânica). 1 14/09/2020 Curva hipsométrica da terra A área de superfície total da terra (A) é de 510 × 106 km2. Mostra a elevação em função da área cumulativa: 29% da superfície terrestre encontra-se acima do nível do mar; os mais profundos oceanos e montanhas mais altas uma pequena fração da A. A > parte das regiões de plataforma continental coincide com margens passivas, constituídas por crosta continental estirada. Brito Neves, 1995. Tipos crustais circunstâncias geométrico-estruturais da face da Terra (continentais ou oceânicos); Característica: transitoriedade passar do Tempo Geológico e como forma de dissipar o calor do interior da Terra. Todo tipo crustal adveio de um outro ou de dois outros, e será transformado em outro ou outros com o tempo, toda esta dança expressando a perda de calor do interior para o exterior da Terra. Nenhum tipo crustal é eterno; mais "duráveis" (e.g. velhos Crátons de de "ultra-longa duração"); tipos de curta duração, muitas modificações e rápida evolução potencial (como as bacias de antearco).
    [Show full text]
  • Ocean Drilling Program Initial Reports Volume
    Schmincke, H.-U., Weaver, P.P.E., Firth, J.V., et al., 1995 Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 157 2. BACKGROUND, OBJECTIVES, AND PRINCIPAL RESULTS OF DRILLING THE CLASTIC APRON OF GRAN CANARIA (VICAP)1 Shipboard Scientific Party2 INTRODUCTION rise to debris flows and turbidity currents (Masson and Watts, in press). Ocean islands have played a prominent role in the history of the The VICAP drilling project was designed to monitor the subma- earth sciences, despite their small number, surface area, and volume, rine and subaerial temporal, compositional, volcanic, and chemical compared to other major geological units of the eartiYs crust. The growth and mass wasting evolution of a well studied ocean island first fundamental petrological ideas were formulated by Robert Bun- system by drilling through its peripheral clastic apron and through the sen and Charles Darwin in their studies on Iceland and the Azores. edge of the submarine shield phase deposits. We chose Gran Canada The decrease in age of oceanic islands, as deduced from the degree of because it has a very long history with magmas of greatly contrasting erosion from west to east in the Hawaiian island chain (Dana, 1849), compositions and because the temporal, volcanic, and compositional and, among other Atlantic island groups from east to west in the Ca- evolution of the island has been studied in detail. nary islands (von Fritsch, 1867), were the cornerstones for Wilson's Our aim was to understand the way ocean islands evolve and de- 1963 model of hot spots and plate motions. Subsequently Morgan cay from the beginning of the submarine shield stage through the (1972) expanded this idea in his plume model of ascending mantle highly evolved and erosional phases.
    [Show full text]