Enterprise Integration Modeling Linking Enterprise Integration Architecture with Business Strategy Planning Easton B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Integration of Product, Process and Functional Orientations: Principles and a Case Study
Integration of product, process and functional orientations: principles and a case study Ruth Sara Saven and Jan Olhager LinkiJping Institute of Technology, Department of Production Economics, SE- 581 83 LinkiJping, SWEDEN Email: [email protected]. [email protected] Abstract Companies are traditionally divided in specialised areas in a hierarchical organisation, usually referred to as functions. On the other hand, during the last decade companies have realised the importance of their processes. When they change towards a "process orientation" they must overcome some organisational problems to integrate the new process orientation into the already existing functional organisation. Besides, more and more importance is given to the specific characteristics of products, leading to product-driven manufacturing e.g. focussing on the product life cycles. Thus, one may find companies dealing with three different ways of working at the same time: product orientation, function orientation and process orientation. This paper addresses how product, process and functional orientations can be integrated, with the purpose of improving collaborative production management. In supply chains and networks it is of vital importance that concepts and terminology are shared among the collaborative partners. Even though this paper focuses on these issues for internal operations, the results can easily be transferred to multi-plant collaborative production environments. The proposed framework aims at providing a bridge between the Enterprise Integration and Operation Management fields. We identify important issues and factors to be considered, as well as point to approaches for analysing production systems based on an integrative view. Specifically we discuss the application of "model views" in analysing product, process and functional orientations in an empirical study of a large telecommunications company. -
Enterprise Modelling: from Early Languages to Models Transformation Bruno Vallespir, Yves Ducq
Enterprise modelling: from early languages to models transformation Bruno Vallespir, Yves Ducq To cite this version: Bruno Vallespir, Yves Ducq. Enterprise modelling: from early languages to models transforma- tion. International Journal of Production Research, Taylor & Francis, 2018, 56 (8), pp.2878 - 2896. 10.1080/00207543.2017.1418985. hal-01836662 HAL Id: hal-01836662 https://hal.archives-ouvertes.fr/hal-01836662 Submitted on 12 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ENTERPRISE MODELLING: FROM EARLY LANGUAGES TO MODELS TRANSFORMATION Bruno Vallespir, Yves Ducq Univ. Bordeaux, CNRS, IMS, UMR 5218, 33405 Talence, France [email protected], [email protected] Abstract During the last thirty years, enterprise modelling has been recognised as an efficient tool to externalise the knowledge of companies in order to understand their operations, to analyse their running and to design new systems from several points of view: functions, processes, decisions, resources, information technology. This paper aims at describing the long evolution of enterprise modelling techniques as well as one of the future challenges of these techniques: the transformation of enterprise models. So, in a first part, the paper describes the evolution of enterprise modelling techniques from the divergence era to the convergence period. -
Design of Enterprise Systems
Design of Enterprise Systems Theory, Architecture, and Methods Ronald E. Giachetti CRC Press Taylor &. Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business Contents Preface xiii I Enterprise Engineering 1 1 Enterprise Engineering 3 1.1 Definition of Enterprise Engineering 3 1.1.1 Enterprise Systems 4 1.1.2 Enterprise Engineer 5 1.1.3 Enterprise Life-Cycle 7 1.1.4 Enterprise Design Method 8 1.1.5 Enterprise Architecture 9 1.1.6 Enterprise Engineering Projects 10 1.2 Need for Enterprise Engineering 11 1.2.1 Enterprise Engineering Compared to Systems Engineering 13 1.2.2 Skills and Knowledge of Enterprise Engineers 13 1.3 The Enterprise Environment 14 1.4 History of Enterprise Engineering 18 1.4.1 Scientific Management 19 1.4.2 Humanist School 22 1.4.3 General Systems Theory Movement 23 1.5 Summary . 24 Bibliography - 25 2 Systems Theory 29 2.1 Definition of a System 29 2.1.1 Enterprise Boundaries 30 2.1.2 Enterprise Subsystems 30 2.1.3 Holism 31 2.1.4 Open versus Closed 31 2.1.5 Purposefulness 32 2.1.6 Feedback and Control 32 2.1.7 Complexity 34 2.1.8 Dynamic 36 2.1.9 Equifmality ' : . 37 2.2 System Dynamics 37 2.2.1 Causal Loop Diagrams 37 2.2.2 Stock and Flow Diagrams 39 2.2.3 Critique of System Dynamics 42 2.3 Systems Thinking 43 2.3.1 Reductionist Perspective 43 2.3.2 Systems Perspective 44 2.4 How To Think Like a Systems Thinker 48 VI 2.4.1 Implications for Enterprise System Design 48 2.5 Summary 49 Bibliography 51 3 Modeling Concepts 53 3.1 Model Definition 53 3.2 Features -
A Real Options Perspective to Enterprise Architecture As an Investment Activity
A REAL OPTIONS PERSPECTIVE TO ENTERPRISE ARCHITECTURE AS AN INVESTMENT ACTIVITY Pallab Saha Institute of Systems Science National University of Singapore [email protected] ABSTRACT The ever-increasing expenditure on information technology (IT) is accompanied by an increasing demand to measure the business value of the investment. This has prompted enterprises to take an architectural view of their information systems (IS) and supporting technologies. However, many crucial enterprise architecture frameworks and guidelines are characterized by lack of adequate theoretical or conceptual foundations. Important but inadequately formulated concepts include architectural assessments, governance and architecture maturity models. These, though central to the enterprise architecture development process, remain in their current formulations largely wisdom driven rather than engineering based approaches. Absence of adequate scientific or mathematical foundations for enterprise design and engineering significantly impede enterprise architecture initiatives. The current body of knowledge is limited to reference architectures where the implementation challenges are left to the enterprises themselves. This paper views enterprise architecture development as largely a process of decision making under uncertainty and incomplete knowledge. Taking value maximization as the primary objective of the enterprise architecture decision- making process, the paper attempts to develop guidelines for value enhancement. The paper assumes that portion of the value -
Enterprise Modeling in the Context of Enterprise Engineering: State of the Art and Outlook
I International Journal of J Production Management http://dx.doi.org/10.4995/ijpme.2014.2326 PME and Engineering Received 2014-04-30 - Accepted 2014-06-05 Enterprise Modeling in the context of Enterprise Engineering: State of the art and outlook Vernadat, F.B. Laboratory for Industrial Engineering, Production and Maintenance (LGIPM), University of Lorraine, Ile du Saulcy, Metz F-57042 cedex 1, France. [email protected] Abstract: Enterprise Modeling is a central activity in Enterprise Engineering which can facilitate Production Management activities. This state-of-the-art paper first recalls definitions and fundamental principles of enterprise modelling, which goes far beyond process modeling. The CIMOSA modeling framework, which is based on an event-driven process-based modeling language suitable for enterprise system analysis and model enactment, is used as a reference conceptual framework because of its generality. Next, the focus is on new features of enterprise modeling languages including risk, value, competency modeling and service orientation. Extensions for modeling collaborative aspects of networked organizations are suggested as research outlook. Major approaches used in enterprise modeling are recalled before concluding. Key words: Enterprise Engineering, Enterprise modeling, Process modeling, Capability/competency modeling, Risk modeling, Value modeling, Collaborative networked organization, CIMOSA . 1. Introduction be a central activity in Enterprise Engineering and Enterprise Integration projects. Nowadays, companies are facing drastic competition, Enterprise Engineering (EE) deals with design or unstable business conditions and serious efficiency redesign of business entities (Kosanke & Nell, 1997). problems. They must rationalize and optimize their It concerns all activities, except enterprise operations, daily operations in a productive and cost-effective involved in the enterprise life cycle, i.e., mission way. -
Life Cycle Business Modelling
ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL – 2015, Vol. 4, No. 1, 17–24 ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL – 2015. Vol. 1. No. 1. 21–28 Life cycle business modelling A. Chukhray1, I. Novakivskii2 1 Department of Marketing and Logistics, 2 Department of Management of Organizations, Lviv Polytechnic National University 79013, Lviv, BanderyReceived st.January 12, [email protected] 08.2015; accepted March, [email protected] 15.2015 Abstract. The article deals with the task of life cycle model of the enterprise, which should be selected business modelling. In the article the strategic individually for each enterprise. orientation of enterprises is examined from the point of According to the dominant and widespread today estimation view of its possibility to cost creation. A concept of system approach, functions of planning, problem consists in development of management organizing, regulation, motivation and control are the mechanism of the difficult mutually concerted basic, which are combined by the processes of multistage complex of tasks in industries of cost creation communication, decision-making and management. The for a consumer and cost of enterprise, as in turn laid out processes of setting goals for the future, tasks projects on the row of the recommended project measures. This defining and decision-making for their achievement in task was set forth in terms of the dynamic programming. the conditions of uncertainty – belong to the initial stage The brought analysis over of this task allowed forming of any entity activity, which depending on the level of the comfortable and transparent algorithm of her detail can be seen as a series of interrelated activities decision, and her erection in an eventual result to the aimed at making the predictions, plans and programs. -
The Disciplinary Nature of Business Engineering
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 23 (2017) pp. 13365-13373 © Research India Publications. http://www.ripublication.com The Disciplinary Nature of Business Engineering Togar M. Simatupang School of Business and Management, Bandung Institute of Technology, Bandung 40132, Indonesia. Orcid: 0000-0002-6578-0998 Akbar Adhi Utama School of Business and Management, Bandung Institute of Technology, Bandung 40132, Indonesia. Orcid: 0000-0002-8625-038X Nur Budi Mulyono School of Business and Management, Bandung Institute of Technology, Bandung 40132, Indonesia. Orcid: 0000-0001-6135-9357 Abstract This field is relatively new and accepted as the interaction between business domains and engineering applications. The Business Engineering has evolved in importance within the core includes the design of a business with analytics and firm and education. Although business engineering is now an supporting information tools in a systematic way [2]. There has established field, the distinction between business engineering been an increase in dialogue about the disciplinary nature of and other engineering fields is relatively immature and requires business engineering. The discussion has been sorrounding a further investigation. The body of knowledge of business distinctive feature of business engineering compared to other engineering is also yet unclear. The purpose of this paper, fields such as the general operations management (OM) field, therefore, is to clarify the distinction between business supply chain management, and the latest developments in engineering and other engineering applications to business engineering management even with industrial engineering. enterprises and to propose a preliminary body of knowledge of This raises the issue of the more appropriate position to frame business engineering based on previous research. -
Enterprise Modelling
Handbook of Enterprise Architecture Chapter 16 Enterprise Modelling Michael Gruninger National Institute of Standards and Technology E-Mail: [email protected] Abstract: An enterprise model is a computational representation of the structure, activities, processes, information, people, behaviour, goals and constraints of a business, government or other enterprise. An enterprise model can be both descriptive and definitional and it may cover both 'what is' and 'what should be'. The role of an enterprise model is to achieve model-driven enterprise design, analysis, control1 and evaluation. However, in order to effectively support the use of enterprise models in practice, it has become evident that more formal approaches to enterprise modelling need to be employed. This chapter considers the application of ontologies to support enterprise modelling. It begins with an overview of the applications of enterprise modelling industrial practice and identifies various formal requirements for enterprise models from these applications. Current research in enterprise modelling ontologies and the languages used to specify these ontologies are reviewed, and a set of challenge problems for future research is proposed 1. Applications of Enterprise Modelling An enterprise model is a computational representation of the structure, activities, processes, information, people, behaviour, goals and constraints of a business, government or other enterprise. An enterprise model can be both descriptive and definitional and it may \ cover both 'what is' and 'what should be'. The role of an enterprise model is to achieve model-driven enterprise design, analysis, control2 and evaluation. We will begin by considering these applications of enterprise modelling and the requirements that they impose on any formal approach to the representation and specification of enterprise models. -
Enterprise Modelling and Integration from Fact Modelling to Enterprise Interoperability
Enterprise Modelling and Integration From Fact Modelling to Enterprise Interoperability Francois B. Vemadat EC/EUROSTA T. Luxemburg & LGIPM. ENIM/University ofMetz, France, Francois. [email protected] Abstract: Enterprise Modelling and Integration has evolved over the last decades from entity-relationship and activity modelling to object and flow modelling as well as from pier-to-pier system integration to inter-organisational exchanges ena bling various forms of electronic commerce. The next challenge is Enterprise lnteroperability, i.e. seamless integration in terms of service and knowledge sharing. The paper discusses modelling and integration issues to progress to wards Enterprise lnteroperability and shows how the CIMOSA architecture can be revised to host these emerging techniques and standards. 1 INTRODUCTION Enterprise Modelling (EM) is the art of extemalising enterprise knowl edge, which adds value to the enterprise, be it a single enterprise, a private or government organisation, or a networked enterprise (e.g. extended enter prise, virtual enterprise or smart organisation). Enterprise Integration (EI) deals with facilitating information flows, systems interoperability and knowledge sharing among any kind of organisation. Enterprise Interopera bility, as one of the many facets ofEI, provides two or more business entities (of the same organisation or from different organisations and irrespective of their location) with the facility to exchange or share information (wherever it is and at any time) and to use functionalities of one another in a distributed and heterogeneous environment (Kosanke, Nell, 1997, OAG. OAGIS, 2001, Petrie 1992, Vemadat, 1996). With the emergence of A2A (application-to-application) and X2X tech nologies in business (B2B: business-to-business, B2C: business-to-customer, The original version of this chapter was revised: The copyright line was incorrect. -
Organizational Engineering: an Overview of Current Perspectives
Organizational Engineering: An Overview of Current Perspectives Miguel Godinho de Matos 1 Professor Orientador: José Tribolet 1,2 Professor Co-Orientador: Rodrigo Magalhães 2,3 1Insituto Superior Técnico 2Organizational Engineering Center, INESC Inovação 3 Kuwait Masstricht Business School, Kuwait Abstract: The increasing development of communication and information technologies have catalyzed numerous organizational changes while our knowledge of organizations remains segmented and disperse throughout many disciplines and fields of study. The task of managing a particular enterprise at a particular point in time is getting increasingly difficult and while as a field, Organizational Engineering has tried to gather some of this organizational knowledge together, until now, many angles remain unaddressed. Keywords: Organizational Engineering, Organizational Design and Engineering, Change, Process, Enterprise Architecture, Social Networks 1 Introduction (Organizations such as) Manufacturing firms, Schools, Hospitals, Armies, Insurance Companies, etc., are ubiquous in modern societies, they serve us on a daily basis and it is natural that we seek solutions for improving their way of addressing our needs. Organizations are socio-technical arrangements which pursue collective goals , control their own performance and have more or less defined boundaries which separate them from the environment. They act and are expected to produce specific results, but their performances depend on the individual agents within them (both human and artificial) [1] and with the growing complexity of systems, there is a corresponding increase in the complexity of the enterprises that develop, operate, sustain and are supported by those systems in the business environment [2]. Individuals are finding it increasingly difficult to control the enterprises of which they are part and it seems that every enterprise is facing uncertainty and change and being pushed to the limit in every aspect of its environment [3]. -
Framework for Enterprise Systems Engineering Oscar Alejandro Saenz Florida International University
Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-10-2005 Framework for Enterprise Systems Engineering Oscar Alejandro Saenz Florida International University DOI: 10.25148/etd.FI08081544 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Recommended Citation Saenz, Oscar Alejandro, "Framework for Enterprise Systems Engineering" (2005). FIU Electronic Theses and Dissertations. 32. https://digitalcommons.fiu.edu/etd/32 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida FRAMEWORK FOR ENTERPRISE SYSTEMS ENGINEERING A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in INDUSTRIAL AND SYSTEMS ENGINEERING by Oscar Alejandro Saenz 2005 To: Dean Vish Prasad College of Engineering and Computing The dissertation, written by Oscar Alejandro Saenz, and entitled Framework for Enterprise Systems Engineering, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. ________________________________ Ronald Giachetti ________________________________ Paulette Johnson ________________________________ Shih-Ming Lee ________________________________ Martha A. Centeno, Co-Major Professor ________________________________ Chin-Sheng Chen, Major Professor Date of Defense: November 10, 2005 The dissertation of Oscar Alejandro Saenz is approved. ________________________________ Dean Vish Prasad College of Engineering and Computing ________________________________ Dean Douglas Wartzok University Graduate School Florida International University, 2005 ii Copyright 2005 by Oscar Alejandro Saenz All rights reserved. -
Enterprise Architecture Process
BA HONOURS GENERIC PAPER SEM II ENTREPRENEURSHIP BAUNIT -V ENTERPRISE LIFE CYCLE Enterprise life cycle (ELC) in enterprise architecture is the dynamic, iterative process of changing the enterprise over time by incorporating new business processes, new technology, and new capabilities, as well as maintenance, disposition and disposal of existing elements of the enterprise. Overview The enterprise life cycle is a key concept in enterprise architecture (EA), enterprise engineering[2] and systems engineering. The Enterprise Architecture process is closely related to similar processes, as program management cycle or systems development life cycle, and has similar properties to those found in the product life cycle. The concept of enterprise life cycle aids in the implementation of an enterprise architecture, and the capital planning and investment control (CPIC) process that selects, controls, and evaluates investments. Overlying these processes are human capital management and information security management. When these processes work together effectively, the enterprise can effectively manage information technology as a strategic resource and business process enabler. When these processes are properly synchronized, systems migrate efficiently from legacy technology environments through evolutionary and incremental developments, and the Agency is able to demonstrate its return on investment (ROI). The figure on top illustrates the interaction of the dynamic and interactive cycles as they would occur over time Enterprise architecture process Enterprise Architecture Process.[1] As a prerequisite to the development of every enterprise architecture, each Agency should establish the need to develop an EA and formulate a strategy that includes the definition of a vision, objectives, and principles. The figure shows a representation of the EA process.