Enterprise Architecture an Overview

Total Page:16

File Type:pdf, Size:1020Kb

Enterprise Architecture an Overview Enterprise Architecture An overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Wed, 29 Aug 2012 18:29:57 UTC Contents Articles Introduction 1 Enterprise architecture 1 Enterprise Architect 6 Enterprise architect 6 Enterprise Architecture 8 Enterprise Architecture Assessment Framework 8 Enterprise architecture planning 11 Enterprise Architecture Management 13 Enterprise Architecture framework 14 Architecture Patterns ( EA Reference Architecture) 21 Frameworks 24 Enterprise Architecture framework 24 Open Source or Consortia-developed frameworks 31 Enterprise Architecture Body of Knowledge 31 Generalised Enterprise Reference Architecture and Methodology 33 IDEAS Group 41 RM-ODP 43 The Open Group Architecture Framework 47 Commercial frameworks 51 Integrated Architecture Framework 51 CLEAR Framework for Enterprise Architecture 52 OBASHI 53 Information Framework 59 Zachman Framework 60 Defense industry frameworks 72 Department of Defense Architecture Framework 72 MODAF 87 NATO Architecture Framework 91 AGATE Architecture Framework 92 Government frameworks 94 Government Enterprise Architecture 94 FDIC Enterprise Architecture Framework 95 Federal Enterprise Architecture 98 NIST Enterprise Architecture Model 105 Treasury Enterprise Architecture Framework 108 Lifecycles 114 Enterprise life cycle 114 ISO 12207 117 Systems Development Life Cycle 121 Technology Life Cycle 130 Whole-life cost 133 Modelling 137 Enterprise modelling 137 Collaboration 146 Business analyst 146 Systems analysis 150 Information architecture 152 Solutions Architect 154 Software architect 156 Systems architect 159 Project manager 163 Project management office 167 Chief information officer 168 References Article Sources and Contributors 170 Image Sources, Licenses and Contributors 173 Article Licenses License 176 1 Introduction Enterprise architecture Enterprise architecture (EA) is the process of translating business vision and strategy into effective enterprise change by creating, communicating and improving the key requirements, principles and models that describe the enterprise's future state and enable its evolution.[1] Practitioners of EA call themselves enterprise architects. An enterprise architect is a person responsible for performing this complex analysis of business structure and processes and is often called upon to draw conclusions from the information collected. By producing this understanding, architects are attempting to address the goals of Enterprise Architecture: Effectiveness, Efficiency, Agility, and Durability.[2] Definition Enterprise architecture is an ongoing business function that helps an 'enterprise' figure out how to execute best the strategies that drive its development. The MIT Center for Information Systems Research (MIT CISR) defines enterprise architecture as the specific aspects of a business that are under examination: Enterprise architecture is the organizing logic for business processes and IT infrastructure reflecting the integration and standardization requirements of the company's operating model. The operating model is the desired state of business process integration and business process standardization for delivering goods and services to customers.[3] The United States Government classifies enterprise architecture as an Information Technology function, and defines the term not as the process of examining the enterprise, but rather the documented results of that examination. Specifically, US Code Title 44, Chapter 36, defines it as a 'strategic information base' that defines the mission of an agency and describes the technology and information needed to perform that mission, along with descriptions of how the architecture of the organization should be changed in order to respond to changes in the mission.[4] Scope The term enterprise is used because it is generally applicable in many circumstances, including • Public or private sector organizations • An entire business or corporation • A part of a larger enterprise (such as a business unit) • A conglomerate of several organizations, such as a joint venture or partnership • A multiply outsourced business operation • Many collaborating public and/or private organizations in multiple countries The term enterprise includes the whole complex, socio-technical system,[5] including: • people • information • technology • business (e.g. operations) Defining the boundary or scope of the enterprise to be described is an important first step in creating the enterprise architecture. Enterprise as used in enterprise architecture generally means more than the information systems employed by an organization.[6] A pragmatic enterprise architecture provides a context and a scope. The context Enterprise architecture 2 encompasses the (people), organizations, systems and technology out of scope that have relationships with the organisation(s), systems and technology in the scope. In practice, the architect is responsible for the articulation of the scope in the context, engineers are responsible for the details of the scope (just as in the building practice). The architect remains responsible for the work of the engineers, and the implementing contractors thereafter. Developing an Enterprise Level Architectural Description Paramount to the enterprise architecture is the identification of the sponsor, his/her mission, vision and strategy and the governance framework to define all roles, responsibilities and relationships involved in the anticipated transition. As the purpose of architecture is: "INSIGHT, TO DECIDE, FOR ALL STAKEHOLDERS", enterprise architects work very closely with the enterprise sponsor and key stakeholders, internal and external to the enterprise. The architect understands the enterprise mission, vision and strategy and the sponsor's ideas about the approach. The architect articulates the existing enterprise infrastructure value-chain: market, business, systems and technology. Architects present and discuss the technology, systems, business and market options to fulfill the enterprise mission. Insight is improved by using the 'solution architecture' which is, relative to the decisions ahead, a specific blend of technology, systems, business and market options. Together with the sponsor and the main stakeholders, they make informed choices about the options. For large transitions, architectural decisions are supported by proofs-of-concept and/or business pilots. Enterprise architects use various methods and tools to capture the structure and dynamics of an enterprise. In doing so, they produce taxonomies, diagrams, documents and models, together called artifacts. These artifacts describe the logical organization of business functions, business capabilities, business processes, people, information resources, business systems, software applications, computing capabilities, information exchange and communications infrastructure within the enterprise. A collection of these artifacts, sufficiently complete to describe the enterprise in useful ways, is considered by EA practitioners an 'enterprise' level architectural description, or enterprise architecture, for short. The UK National Computing Centre EA best practice guidance[7] states Normally an EA takes the form of a comprehensive set of cohesive models that describe the structure and functions of an enterprise. and continues The individual models in an EA are arranged in a logical manner that provides an ever-increasing level of detail about the enterprise: its objectives and goals; its processes and organization; its systems and data; the technology used and any other relevant spheres of interest. This is the definition of enterprise architecture implicit in several EA frameworks including the popular TOGAF architectural framework. An enterprise architecture framework bundles tools, techniques, artifact descriptions, process models, reference models and guidance used by architects in the production of enterprise-specific architectural description. Several enterprise architecture frameworks break down the practice of enterprise architecture into a number of practice areas or domains. See the related articles on enterprise architecture frameworks and domains for further information. In 1992, Steven Spewak described a process for creating an enterprise architecture that is widely used in educational courses.[8] Enterprise architecture 3 Using an enterprise architecture Describing the architecture of an enterprise aims primarily to improve the effectiveness or efficiency of the business itself. This includes innovations in the structure of an organization, the centralization or federation of business processes, the quality and timeliness of business information, or ensuring that money spent on information technology (IT) can be justified.[2] One method of using this information to improve the functioning of a business, as described in the TOGAF architectural framework, involves developing an "architectural vision": a description of the business that represents a "target" or "future state" goal. Once this vision is well understood, a set of intermediate steps are created that illustrate the process of changing from the present situation to the target. These intermediate steps are called "transitional architectures" by TOGAF.[9] Similar methods have been described in other enterprise architecture frameworks. Benefits of enterprise architecture As new technologies arise and are implemented, the benefits of enterprise architecture continue to grow.
Recommended publications
  • Chatbot on Serverless/Lamba Architecture Nandan.A Prof.Shilpa Choudary Student, Reva University Professor, Reva University
    SECOND NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385 Chatbot on Serverless/Lamba Architecture Nandan.A Prof.Shilpa Choudary Student, Reva University Professor, Reva University Abstract—The OpenLambda, a new, opensource The logic tier contains the code required to translate platform for building next-generation web services user actions at the presentation tier to the and applications on serverless computation. The functionality key aspects of serverless computation and that drives the application’s behavior. The data tier present numerous research challenges that consists of storage media (databases, object stores, must be, addressed in the design and caches, file systems, etc.) that hold the data relevant implementation of such systems. The study of to the application. Figure 1 shows an example of a current web applications, so as to better motivate simple three-tier application. some aspects of serverless application construction. Chatbots platform are used by consumers worldwide for integrating it with backend services . It is still difficult to build and deploy chatbots developers need to handle the coordination of the backend services to build the chatbot interface, integrate the chatbot with external services, and worry about extensibility, scalability, and maintenance. The serverless architecture could be ideal platform to build the chatbot. Figure 1: Architectural pattern for a simple three- tier application Keywords: Lambda Architecture, Chat-bot, Multitier Architecture, Microservices. In Serverless Multi-Tier Architectures a backend remains private and secure. The benefits of this powerful pattern across each tier of a multi-tiered I. INTRODUCTION architecture. Example of a multitiered architecture is The multi-tier application has been a well- a three-tier web application.
    [Show full text]
  • Enterprise Architecture
    Enterprise Architecture The Zachman Framework: Intro to Sample Models © 1990-2011 John A. Zachman, Zachman International® Observation Enterprises are COMPLEX The US Pentagon GM Plant © 1990-2011 John A. Zachman, Zachman International® Agenda I. Enterprise Models from Literature II. Implementation Discussion III. Architecture Discussion IV. Column 1 Model Samples V. Row 1 Model Samples VI. Column 2 Model Samples VII.Etc., Etc. ‘till Time Is Up © 1990-2011 John A. Zachman, Zachman International® Models on my Bookshelf 1. "Requirements Analysis" by David C. Hay Activity Management A Complete Sarson and Gane Data Flow Diagram Physical Asset Value Constraints 2. "Information Modeling and Relational Databases" by Terry Halpin and Tony Morgan IT Company Schema and University Schema 3. "Enterprise Architecture for Integration" by Clive Finkelstein Strategic Model for sample solution Order entry data map with all attributes 5BNF data map - ORG and ROLE STRUCTURES 4. "Designing Quality Databases with IDEF1X Information Models" by Thomas A. Bruce Case Study Supplementary Material (Logical Data Model) 5. "Business Process Management"by Roger T. Burlton The Scope for Global Software Human Resources © 1990-2011 John A. Zachman, Zachman International® Models on my Bookshelf 6. "Enterprise Architecture at Work" by Marc Langhorst Services provided by Handle Claims Process Handle Claims and IT Support 7. "Business Process Engineering" by August Scheer ERM for Human Resource Planning Event-driven process chain for inbound logistics 8. "Data Model Resource
    [Show full text]
  • Download Vol 11, No 1&2, Year 2018
    The International Journal on Advances in Internet Technology is published by IARIA. ISSN: 1942-2652 journals site: http://www.iariajournals.org contact: [email protected] Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers, staff, or contractors. IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the content for quality improvements. Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print, providing the reference is mentioned and that the resulting material is made available at no cost. Reference should mention: International Journal on Advances in Internet Technology, issn 1942-2652 vol. 11, no. 1 & 2, year 2018, http://www.iariajournals.org/internet_technology/ The copyright for each included paper belongs to the authors. Republishing of same material, by authors or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and must include proper reference. Reference to an article in the journal is as follows: <Author list>, “<Article title>” International Journal on Advances in Internet Technology, issn 1942-2652 vol. 11, no. 1 & 2, year 2018, <start page>:<end page> , http://www.iariajournals.org/internet_technology/ IARIA journals are made available for free, proving the appropriate references are made when their content is used. Sponsored by IARIA www.iaria.org Copyright © 2018 IARIA International Journal on Advances in Internet Technology Volume 11, Number 1 & 2, 2018 Editors-in-Chief Mariusz Głąbowski, Poznan University of Technology, Poland Editorial Advisory Board Eugen Borcoci, University "Politehnica"of Bucharest, Romania Lasse Berntzen, University College of Southeast, Norway Michael D.
    [Show full text]
  • Enterprise Architecture As Explanatory Information Systems Theory for Understanding Small- and Medium-Sized Enterprise Growth
    sustainability Article Enterprise Architecture as Explanatory Information Systems Theory for Understanding Small- and Medium-Sized Enterprise Growth Aurona Gerber 1,2,* , Pierre le Roux 1,3 and Alta van der Merwe 1 1 Department of Informatics, University of Pretoria, 0083 Pretoria, South Africa; [email protected] (P.R.); [email protected] (A.v.d.M.) 2 CAIR, Center for Artificial Intelligence Research, 0083 Pretoria, South Africa 3 Moyo, 0157 Centurion, South Africa * Correspondence: [email protected] Received: 31 July 2020; Accepted: 7 October 2020; Published: 15 October 2020 Abstract: Understanding and explaining small- and medium-sized enterprise (SME) growth is important for sustainability from multiple perspectives. Research indicates that SMEs comprise more than 80% of most economies, and their cumulative impact on sustainability considerations is far from trivial. In addition, for sustainability concerns to be prioritized, an SME has to be successful over time. In most developing countries, SMEs play a major role in solving socio-economic challenges. SMEs are an active research topic within the information systems (IS) discipline, often within the enterprise architecture (EA) domain. EA fundamentally adopts a systems perspective to describe the essential elements of a socio-technical organization and their relationships to each other and to the environment in order to understand complexity and manage change. However, despite rapid adoption originally, EA research and practice often fails to deliver on expectations. In some circles, EA became synonymous with projects that are over-budget, over-time and costly without the expected return on investment. In this paper, we argue that EA remains indispensable for understanding and explaining enterprises and that we fundamentally need to revisit some of the applications of EA.
    [Show full text]
  • Technology Update on the Unified Architecture Framework (UAF)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KTUePubl (Repository of Kaunas University of Technology) Technology Update on the Unified Architecture Framework (UAF) Matthew Hause Graham Bleakley Engineering Fellow Solution Architect PTC IBM Analytics [email protected] [email protected] Aurelijus Morkevicius Senior Solution Architect No Magic [email protected] Copyright © 2016 by Matthew Hause, Graham Bleakley, Aurelijus Morkevicius. Abstract. Architecture frameworks continue to evolve. The Unified Profile for the Department of Defense (DoD) Architecture Framework (DoDAF) and the UK’s Ministry of Defence Architecture Framework (MODAF) (UPDM) provides a standard means of representing DoDAF, MODAF, and NATO Architecture Framework (NAF) conformant architectures using the Unified Modeling Language (UML), and Systems Modeling Language (SysML). Since the UPDM V2.0 publication, further information has emerged such as the June 2011 NATO study entitled: “Development of The AMN (Afghanistan Mission Network) Architecture In 2010 – Lessons Learned,” by Torsten Graeber of the NATO C3 Agency. This report identified the following in section 4.1-ARCHITECTURE FRAMEWORKS, sub-section 4.1.2 Observations (Need for a Unified Architecture Framework) and stated that: • differences in DoDAF, MODAF, and NAF make it difficult to match the metamodel one to one. • some of the concepts in the frameworks have the same name but different definitions, i.e. different semantics. • difficult to cross-walk the concepts between the different frameworks leads to miscommunication between architects using different frameworks. Based on the above, the NATO Architecture Capability Team (Architecture CaT) meeting on Sept. 10-11, 2012 committed to move to a single world-wide Architecture Framework.
    [Show full text]
  • Study of Implementing Zachman Framework for Modeling Information Systems for Manufacturing Enterprises Aggregate Planning
    Proceedings of the 2011 International Conference on Industrial Engineering and Operations Management Kuala Lumpur, Malaysia, January 22 – 24, 2011 Study of Implementing Zachman Framework for Modeling Information Systems for Manufacturing Enterprises Aggregate Planning Radwan, A., and Majid Aarabi Department of Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, MALAYSIA [email protected] , [email protected] Abstract Response time on orders of customers is becoming a critical issue to achieve a competitive advantage. A major problem is a lack of strategic perspective of information systems. A need for adequate tools and methodologies to model the system structure and to define integrated requirements is a must for the manufacturing enterprises. This paper presents a study of implementing Zachman Framework ZF to model information systems for aggregate planning activities within the manufacturing enterprises. An Information System for simulating the aggregate planning activities such as evaluating the various planes for determining the production rate, inventory levels, subcontracting and the required human resources is modeled. This is assumed to provide control over the order processes and reporting the orders status online. It is assumed that the customer can have access to the system to follow up with his order progressing status. Managers would have control on orders transactions, and workshop floor supervisors could monitor and control the orders processing online. Some artifacts are introduced to ZF to enhance its capability for modeling of information systems for Aggregate Planning in Manufacturing Enterprises. Keywords: Manufacturing Information Systems, Zachman Framework, Enterprise architecture, Aggregate planning, Modeling. 1. Introduction Nowadays, the enterprises encounter with numerous amount of data.
    [Show full text]
  • Air Force Human Systems Integration Handbook
    Air Force Human Systems Integration Handbook: Planning and Execution of Human Systems Integration Distribution A: Unlimited Distribution Prepared by: Directorate of Human Performance Integration Human Performance Optimization Division 711 HPW/HPO 2485 Gillingham Drive Brooks City-Base, TX 78235-5105 This page intentionally left blank. 2 TABLE OF CONTENTS EXECUTIVE SUMMARY...........................................................................................................................................7 1. INTRODUCTION TO AIR FORCE HUMAN SYSTEMS INTEGRATION ......................................................8 1.1 HANDBOOK PURPOSE........................................................................................................................................8 1.2 HISTORY .............................................................................................................................................................8 1.3 KEY CONCEPTS................................................................................................................................................10 1.4 DOMAINS ..........................................................................................................................................................10 2. IMPLEMENTING AIR FORCE HUMAN SYSTEMS INTEGRATION...........................................................12 2.1 PRIMARY AFHSI ORGANIZATIONS..................................................................................................................12 2.1.1 Air Force
    [Show full text]
  • Web-Based Content Management System
    Maciej Dobecki, Wojciech Zabierowski / Computing, 2010, Vol. 9, Issue 2, 127-130 [email protected] ISSN 1727-6209 www.computingonline.net International Journal of Computing WEB-BASED CONTENT MANAGEMENT SYSTEM Maciej Dobecki, Wojciech Zabierowski Technical University of Lodz, al. Politechniki 11, 90-924 Łódź, Poland, e-mail: [email protected], [email protected] http://www.dmcs.p.lodz.pl Abstract: This paper describes how to design content management system using the newest web-based techniques. It contains helpful information that can be used during selecting programming language. It introduces multi layer architecture with description and functionality of each layer. It provides description of Model View Controller pattern and how to use it in multi-layer application design. It shows the most powerful Java frameworks that can be applied for each layer and how to connect them in simple way, using Inversion of Control container. It shows power of Spring Framework as business layer, Hibernate as integration layer and ZK Ajax as presentation layer. It proves, that Java combined with applicable libraries can be very powerful tool in good hands. Keywords: CMS, JEE, Spring, Hibernate, AJAX. 1. INTRODUCTION CMS is prepared through a simple-to-use user interface. Usually it is a set of web pages containing The Internet – today is the most powerful and complex forms and modules. popular information media. What was impossible The primary task of the CMS platform is even few years ago is now available by “clicking separation of data content from presentation (the the mouse”. Both small firms and global giants do way of its look).
    [Show full text]
  • MV* Design Patterns
    MV* Design Patterns Alexander Nelson August 30, 2021 University of Arkansas - Department of Computer Science and Computer Engineering Reminders Course Mechanics Course Webpage: https://ahnelson.uark.edu/courses/ csce-4623-mobile-programming-fall-2021/ Syllabus is on the website. Course Communication: https://csce4623-uark.slack.com/ This slack channel is to be the primary mode of communication Projects Choose a project idea and team for the final project ASAP First project report is due September 10th Multitier Architectures What is a multitier architecture? Physical separation of data concerns Examples: • Presentation (UI) • Application Processing • Data Management Why split into layers? OSI Model Why split into layers? Separation of concerns! A change to one layer can have no bearing on the rest of the model e.g. Fiberoptic instead of Coax at the PHY layer OSI Model How does this apply to mobile? Application designers often want separation of UI and logic! Three tier architecture These software engineering abstractions relate to the MV* architectures that are common in mobile computing systems Model View Controller (MVC) Model View Controller 1 1Krasner 1988 Definitions Model: Models are those components of the system application that actually do the work View: Display aspects of the models Controller: Used to send messages to the model, provide interface between model, views, and UI devices. Models Models enable encapsulation Model encapsulates all data as well as methods to change them • Can change the underlying data structures without
    [Show full text]
  • Integration of Product, Process and Functional Orientations: Principles and a Case Study
    Integration of product, process and functional orientations: principles and a case study Ruth Sara Saven and Jan Olhager LinkiJping Institute of Technology, Department of Production Economics, SE- 581 83 LinkiJping, SWEDEN Email: [email protected]. [email protected] Abstract Companies are traditionally divided in specialised areas in a hierarchical organisation, usually referred to as functions. On the other hand, during the last decade companies have realised the importance of their processes. When they change towards a "process orientation" they must overcome some organisational problems to integrate the new process orientation into the already existing functional organisation. Besides, more and more importance is given to the specific characteristics of products, leading to product-driven manufacturing e.g. focussing on the product life cycles. Thus, one may find companies dealing with three different ways of working at the same time: product orientation, function orientation and process orientation. This paper addresses how product, process and functional orientations can be integrated, with the purpose of improving collaborative production management. In supply chains and networks it is of vital importance that concepts and terminology are shared among the collaborative partners. Even though this paper focuses on these issues for internal operations, the results can easily be transferred to multi-plant collaborative production environments. The proposed framework aims at providing a bridge between the Enterprise Integration and Operation Management fields. We identify important issues and factors to be considered, as well as point to approaches for analysing production systems based on an integrative view. Specifically we discuss the application of "model views" in analysing product, process and functional orientations in an empirical study of a large telecommunications company.
    [Show full text]
  • Transport Network Architecture
    T MU AM 06011 TI Technical Information Transport Network Architecture Version0 1. Issued date: 29 March 2017 © State of NSW through Transport for NSW 2017 Superseded by T MU AM 06011 v2.0, 11/07/2017 TI T MU AM 06011 TI Transport Network Architecture Version 1.0 Issued date: 29 March 2017 Important message This document is one of a set of standards developed solely and specifically for use on Transport Assets (as defined in the Asset Standards Authority Charter). It is not suitable for any other purpose. The copyright and any other intellectual property in this document will at all times remain the property of the State of New South Wales (Transport for NSW). You must not use or adapt this document or rely upon it in any way unless you are providing products or services to a NSW Government agency and that agency has expressly authorised you in writing to do so. If this document forms part of a contract with, or is a condition of approval by a NSW Government agency, use of the document is subject to the terms of the contract or approval. To be clear, the content of this document is not licensed under any Creative Commons Licence. This document may contain third party material. The inclusion of third party material is for illustrative purposes only and does not represent an endorsement by NSW Government of any third party product or service. If you use this document or rely upon it without authorisation under these terms, the State of New South Wales (including Transport for NSW) and its personnel does not accept any liability to you or any other person for any loss, damage, costs and expenses that you or anyone else may suffer or incur from your use and reliance on the content contained in this document.
    [Show full text]
  • Paper 080: Service-Orientated Representations of the Military Business
    11th ICCRTS COALITION COMMAND AND CONTROL IN THE NETWORKED ERA Title: Paper 080: Service-orientated representations of the military business. Topic: C2 Concepts and Organisation Author 1 (POC): Author 2: Author 3: Geoff Markham Harry Duncan Robert Symonds QinetiQ plc QinetiQ plc QinetiQ plc St Andrew’s Road St Andrew’s Road St Andrew’s Road MALVERN MALVERN MALVERN WR14 3PS WR14 3PS WR14 3PS United Kingdom United Kingdom United Kingdom Tel: +44 1684 896399 E-mail: mailto:[email protected] This abstract is based on research undertaken for the United Kingdom Ministry of Defence and is covered in whole by Crown Copyright. v.0.2.6 GM 12th July 2006 REVISED ABSTRACT In the context of the deployment of military forces, command is the director and integrator of other capabilities, i.e. the structures, processes and assets associated with Inform, Prepare, Project, Operate, Protect and Sustain1. Command is the ‘builder’ or ‘composer’ of the military organization (and its extra-military affiliations) in response to current operational needs. The commander may wish to adopt any of a variety of organizational configurations, yet is constrained to build his organization out of the existing military fabric (e.g. procedures, staff, equipment, HQ facilities). This is the architectural thesis of composition (the whole being constructed from known building blocks through the satisfaction of an architectural ruleset), being applied in the context of the command of a specific operation. Re-composition (re-build) continues in theatre in the form of Task Organization, and the ‘run-time’ behaviour of the organization are then excitations of features of the ‘built’ structure under the conditions of executing operational activities.
    [Show full text]