Anti-Doping Manual Revised Dec. 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Androgen Receptor: a Complex Therapeutic Target for Breast Cancer
cancers Review Androgen Receptor: A Complex Therapeutic Target for Breast Cancer Ramesh Narayanan 1 and James T. Dalton 2,* 1 Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; [email protected] 2 College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA * Correspondence: [email protected] Academic Editor: Emmanuel S. Antonarakis Received: 28 September 2016; Accepted: 23 November 2016; Published: 2 December 2016 Abstract: Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER) and human epidermal growth factor receptor (HER2) are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR) is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer. Keywords: androgen receptor; breast cancer; selective androgen receptor modulator (SARM); estrogen receptor; triple-negative breast cancer (TNBC) 1. Introduction Over 240,000 women will develop breast cancer and ~40,000 will die from the disease in the United States in 2016 [1]. Globally, about 1.7 million women were diagnosed with breast cancer in 2012, emphasizing the urgent need for effective and safe therapeutic approaches [2]. -
AO-Klasifikácia Faktúr →Zlomeniny
AO-klasifikácia faktúr →zlomeniny. AOP-syndróm – skr. syndroma adipositas–oligomenorrhoea–parotis. aorta – [g. aorté srdcovnica] srdcovnica. Začína sa z ľavej komory a vystupuje kraniálne aţ do výšky 2. pravého sternokostálneho kĺbu ako aorta ascendens, pokračovaním je oblúk arcus aortae, aorta descendens, aorta thoracia a aorta abdominalis. Aorta ascendens – začína sa v ľavej komore nad polmesiačikovitými chlopňami a skoro celá sa nachádza v perikarde. Je dlhá asi 4 – 5 cm, jej priemer je 22 – 30 mm. Ihneď nad chlop-ňami je následkom spätných nárazov krvi mierne vydutá do tzv. sinus aortae, výraznejšie u starších osôb. Oddiely a. obsahujúce sinus aortae sa nazývajú bulbus aortae. U starších osôb býva následkom nárazov krvi širší aj koncový úsek vzostupnej a. pred jej prechodom do oblúka, tzv. sinus maximus (quartus) aortae. Tu býva u starších osôb a. často rozširená. A. ascendens, ako aj začiatok arcus aortae majú špeciálne vasa vasorum pochádzajúce z vencovitých tepien (aa. cardiaortales). Tento úsek osobitne patogeneticky rizikový. Začiatok aorta ascendens je ešte obalený vo vagina serosa arteriarum, kt. tvorí na ventrálnom obvode a. priečnu krkvu podloţenú subseróznym tukovým väzivom (Concatova-Bacceli tuková krkva). Vnútri vagina arteriarum je aorta ascendens a začiatrok a. pulmonalis spojené tuhým väzivom (vincula aortae Rindfleischi). Výstup aorta ascendens kryje spredu začiatok a. pulmonalis, ventrálne a vpravo je auricula dextra, dorzálne je uloţený r. dexter a. pulmonalis. Kraniálne vpravo od a. je v. cava superior, vľavo kmeň a. pulmonalis. Z ventrálneho a ľavého sinus aortae sa začína a. coronaria cordis dextra et sinistra. Aorta ascendens a arcus aortae Arcus aortae – je dlhý asi 6 cm, začína sa za sternom vo výške úponu 2. -
New Rules Pertaining to the Banning of Anabolic Steroids in the Western Australian Harness Racing Industry to Be Introduced 1St September 2014
NEW RULES PERTAINING TO THE BANNING OF ANABOLIC STEROIDS IN THE WESTERN AUSTRALIAN HARNESS RACING INDUSTRY TO BE INTRODUCED 1ST SEPTEMBER 2014 Notice is hereby given that the Board of Racing and Wagering WA have resolved that the RWWA Rules of Harness Racing 2004 be amended. In accordance with section 45 (1) (b) of the Racing and Wagering Western Australia Act 2003 the Board of Racing and Wagering WA on the 10th April 2014 resolved that these amendments be adopted accordingly into the RWWA Rules of Harness Racing. The Harness Racing Board had advised of these amendments and the RWWA Board has determined that these amendments will come into effect on 1st September 2014. The details of the relevant rules pertaining to this ban of anabolic steroids for reference can be found following this advice. There are many implications arising from the introduction of these rules, and to assist trainers and veterinarians to comply with the new rules the following explanatory statement has been prepared. Which steroids are banned under these rules? The new rules ban the use of "anabolic androgenic steroids" in Standardbred horses at any time from birth until retirement. "Anabolic androgenic steroids" include those that are currently registered in Australia by the APVMA for use in horses, such as boldenone, ethylestrenol (in Nitrotain), methandriol, nandrolone, stanozolol and testosterone. Exogenous anabolic androgenic steroids that are banned also include but are not limited to those listed in the WADA prohibited list, such as 1-androstenediol; 1-androstenedione; -
The Stimulants and Hallucinogens Under Consideration: a Brief Overview of Their Chemistry and Pharmacology
Drug and Alcohol Dependence, 17 (1986) 107-118 107 Elsevier Scientific Publishers Ireland Ltd. THE STIMULANTS AND HALLUCINOGENS UNDER CONSIDERATION: A BRIEF OVERVIEW OF THEIR CHEMISTRY AND PHARMACOLOGY LOUIS S. HARRIS Dcparlmcnl of Pharmacology, Medical College of Virginia, Virginia Commonwealth Unwersity, Richmond, VA 23298 (U.S.A.) SUMMARY The substances under review are a heterogenous set of compounds from a pharmacological point of view, though many have a common phenylethyl- amine structure. Variations in structure lead to marked changes in potency and characteristic action. The introductory material presented here is meant to provide a set of chemical and pharmacological highlights of the 28 substances under con- sideration. The most commonly used names or INN names, Chemical Abstract (CA) names and numbers, and elemental formulae are provided in the accompanying figures. This provides both some basic information on the substances and a starting point for the more detailed information that follows in the individual papers by contributors to the symposium. Key words: Stimulants, their chemistry and pharmacology - Hallucinogens, their chemistry and pharmacology INTRODUCTION Cathine (Fig. 1) is one of the active principles of khat (Catha edulis). The structure has two asymmetric centers and exists as two geometric isomers, each of which has been resolved into its optical isomers. In the plant it exists as d-nor-pseudoephedrine. It is a typical sympathomimetic amine with a strong component of amphetamine-like activity. The racemic mixture is known generically in this country and others as phenylpropanolamine (dl- norephedrine). It is widely available as an over-the-counter (OTC) anti- appetite agent and nasal decongestant. -
Cancer Palliative Care and Anabolic Therapies
Cancer Palliative Care and Anabolic Therapies Aminah Jatoi, M.D. Professor of Oncology Mayo Clinic, Rochester, Minnesota USA • 2 Androgens • Creatine • Comments von Haehling S, et al, 2017 Oxandrolone: androgen that causes less virilization oxandrolone RANDOMIZE megestrol acetate #1: Oxandrolone (Lesser, et al, ASCO abstract 9513; 2008) • N=155 patients receiving chemotherapy • oxandrolone (10 mg twice a day x 12 weeks) versus megestrol acetate (800 mg/day x 12 weeks) • oxandrolone led to – a non-statistically significant increase in lean body mass (bioelectrical impedance) at 12 weeks (2.67 versus 0.82 pounds with megestrol acetate, p = 0.12), but – a decrease in overall weight as compared with megestrol acetate (-3.3 versus +5.8 pounds, respectively). • more oxandrolone patients dropped out prior to completing 12 weeks (63% versus 39 %). #2: Oxandrolone (von Roenn, et al, ASCO, 2003) • N=131 • Single arm • 81% of patients gained/maintained weight • Safe (PRIMARY ENDPOINT): 19% edema; 18% dyspnea; mild liver function test abnormalities #3: Oxandrolone: placebo controlled trial • results unknown SUMMARY OF OXANDROLONE: • Multiple studies (not yet peer-reviewed) • Hints of augmentation of lean tissue • High drop out in the phase 3 oxandrolone arm raises concern Enobosarm: selective androgen receptor modulator (less virilizing) ENOBOSARM RANDOMIZE* PLACEBO *All patients had non-small cell lung cancer, and chemotherapy was given concomittantly. percentage of subjects at day 84 with stair climb power change >=10% from their baseline value percentage of subjects at day 84 with lean body mass change >=0% from their baseline value SUMMARY OF ENOBOSARM: • Leads to incremental lean body mass, but functionality not demonstrated • Pivotal registration trial (not yet peer- reviewed (but FDA-reviewed….)) • 2 Androgens • Creatine • Comments Creatine: an amino acid derivative This study was funded by R21CA098477 and the Alliance for Clinical Trials NCORP grant. -
Campro Catalog Stable Isotope
Introduction & Welcome Dear Valued Customer, We are pleased to present to you our Stable Isotopes Catalog which contains more than three thousand (3000) high quality labeled compounds. You will find new additions that are beneficial for your research. Campro Scientific is proud to work together with Isotec, Inc. for the distribution and marketing of their stable isotopes. We have been working with Isotec for more than twenty years and know that their products meet the highest standard. Campro Scientific was founded in 1981 and we provide services to some of the most prestigious universities, research institutes and laboratories throughout Europe. We are a research-oriented company specialized in supporting the requirements of the scientific community. We are the exclusive distributor of some of the world’s leading producers of research chemicals, radioisotopes, stable isotopes and environmental standards. We understand the requirements of our customers, and work every day to fulfill them. In working with us you are guaranteed to receive: - Excellent customer service - High quality products - Dependable service - Efficient distribution The highly educated staff at Campro’s headquarters and sales office is ready to assist you with your questions and product requirements. Feel free to call us at any time. Sincerely, Dr. Ahmad Rajabi General Manager 180/280 = unlabeled 185/285 = 15N labeled 181/281 = double labeled (13C+15N, 13C+D, 15N+18O etc.) 186/286 = 12C labeled 182/282 = d labeled 187/287 = 17O labeled 183/283 = 13C labeleld 188/288 = 18O labeled 184/284 = 16O labeled, 14N labeled 189/289 = Noble Gases Table of Contents Ordering Information.................................................................................................. page 4 - 5 Packaging Information .............................................................................................. -
Steroids 78 (2013) 44–52
Steroids 78 (2013) 44–52 Contents lists available at SciVerse ScienceDirect Steroids journal homepage: www.elsevier.com/locate/steroids Alternative long-term markers for the detection of methyltestosterone misuse ⇑ C. Gómez a,b, O.J. Pozo a, J. Marcos a,b, J. Segura a,b, R. Ventura a,b, a Bioanalysis Research Group, IMIM-Hospital del Mar, Barcelona, Spain b Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain article info abstract Article history: Methyltestosterone (MT) is one of the most frequently detected anabolic androgenic steroids in doping Received 21 May 2012 control analysis. MT misuse is commonly detected by the identification of its two main metabolites Received in revised form 28 September excreted as glucuronide conjugates, 17a-methyl-5a-androstan-3a,17b-diol and 17a-methyl-5b-andro- 2012 stan-3a,17b-diol. The detection of these metabolites is normally performed by gas chromatography–mass Accepted 10 October 2012 spectrometry, after previous hydrolysis with b-glucuronidase enzymes, extraction and derivatization Available online 2 November 2012 steps. The aim of the present work was to study the sulphate fraction of MT and to evaluate their potential to improve the detection of the misuse of the drug in sports. MT was administered to healthy volunteers Keywords: and urine samples were collected up to 30 days after administration. After an extraction with ethyl ace- Methyltestosterone Sulphate tate, urine extracts were analysed by liquid chromatography tandem mass spectrometry using electro- Metabolism spray ionisation in negative mode by monitoring the transition m/z 385 to m/z 97. Three diol sulphate LC–MS/MS metabolites (S1, S2 and S3) were detected. -
(12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig. -
Prohibited Substances Shall Be Considered As “Specified Substances” Except Substances in Classes S1, S2, S.4.4, S.4.5, S6.A, and Prohibited Methods M1, M2 and M3
BGBl. III - Ausgegeben am 27. Dezember 2019 - Nr. 237 1 von 8 THE 2020 PROHIBITED LIST - WORLD ANTI-DOPING CODE DATE OF ENTRY INTO FORCE: 1 JANUARY 2020 SUBSTANCES AND METHODS PROHIBITED AT ALL TIMES (IN- AND OUT-OF-COMPETITION) IN ACCORDANCE WITH ARTICLE 4.2.2 OF THE WORLD ANTI-DOPING CODE, ALL PROHIBITED SUBSTANCES SHALL BE CONSIDERED AS “SPECIFIED SUBSTANCES” EXCEPT SUBSTANCES IN CLASSES S1, S2, S.4.4, S.4.5, S6.A, AND PROHIBITED METHODS M1, M2 AND M3. PROHIBITED SUBSTANCES Androstenediol (androst-5-ene-3β,17β-diol); Androstenedione (androst-4-ene-3,17-dione); S0. NON-APPROVED SUBSTANCES Bolasterone; Boldenone; Any pharmacological substance which is not Boldione (androsta-1,4-diene-3,17-dione); addressed by any of the subsequent sections of Calusterone; the List and with no current approval by any Clostebol; governmental regulatory health authority for Danazol ([1,2]oxazolo[4',5':2,3]pregna-4-en- human therapeutic use (e.g. drugs under pre- 20-yn-17α-ol); clinical or clinical development or discontinued, Dehydrochlormethyltestosterone (4-chloro- designer drugs, substances approved only for 17β-hydroxy-17α-methylandrosta-1,4-dien-3- veterinary use) is prohibited at all times. one); Desoxymethyltestosterone (17α-methyl-5α- S1. ANABOLIC AGENTS androst-2-en-17β-ol); Drostanolone; Anabolic agents are prohibited. Epiandrosterone (3β-hydroxy-5α-androstan- …………………………………………………… 17-one); 1. ANABOLIC ANDROGENIC STEROIDS Epi-dihydrotestosterone (17β-hydroxy-5β- (AAS) androstan-3one); Epitestosterone; when administered exogenously, including but -
Ranvet's Filybol
Ranvet's Filybol Ranvet Chemwatch Hazard Alert Code: 2 Chemwatch: 4787-83 Issue Date: 08/02/2016 Version No: 5.1.1.1 Print Date: 10/28/2016 Safety Data Sheet according to WHS and ADG requirements S.GHS.AUS.EN SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING Product Identifier Product name Ranvet's Filybol Chemical Name peanut oil Synonyms Not Available Other means of Not Available identification Relevant identified uses of the substance or mixture and uses advised against Relevant identified Non-virilising anabolic combination for fillies, mares, colts and stallions. uses Details of the supplier of the safety data sheet Registered company Ranvet name Address 10-12 Green Street Banksmeadow NSW 2019 Australia Telephone +61 2 9666 1744 Fax +61 2 9666 1755 Website https://www.ranvet.com.au/other_msds.htm Email [email protected] Emergency telephone number Association / Not Available Organisation Emergency telephone +61 425 061 584 numbers Other emergency Not Available telephone numbers SECTION 2 HAZARDS IDENTIFICATION Classification of the substance or mixture Poisons Schedule S4 Carcinogenicity Category 2, Reproductive Toxicity Category 2, Acute Aquatic Hazard Category 2, Chronic Aquatic Hazard Classification [1] Category 2 1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex Legend: VI Label elements GHS label elements SIGNAL WORD WARNING Continued... Chemwatch: 4787-83 Page 2 of 10 Issue Date: 08/02/2016 Version No: 5.1.1.1 Ranvet's Filybol Print Date: 10/28/2016 Hazard statement(s) H351 Suspected of causing cancer. H361 Suspected of damaging fertility or the unborn child. -
The 2014 Prohibited List International Standard
The World Anti-Doping Code THE 2014 PROHIBITED LIST INTERNATIONAL STANDARD Version 2.0 (revised 2014 version) The official text of the Prohibited List shall be maintained by WADA and shall be published in English and French. In the event of any conflict between the English and French versions, the English version shall prevail. This List shall come into effect on 1 September 2014 The revised 2014 Prohibited List 17 May 2014 THE 2014 PROHIBITED LIST WORLD ANTI-DOPING CODE Valid 1 September 2014 In accordance with Article 4.2.2 of the World Anti-Doping Code, all Prohibited Substances shall be considered as “Specified Substances” except Substances in classes S1, S2, S4.4, S4.5, S6.a, and Prohibited Methods M1, M2 and M3. SUBSTANCES AND METHODS PROHIBITED AT ALL TIMES (IN- AND OUT-OF-COMPETITION) PROHIBITED SUBSTANCES S0. NON-APPROVED SUBSTANCES Any pharmacological substance which is not addressed by any of the subsequent sections of the List and with no current approval by any governmental regulatory health authority for human therapeutic use (e.g drugs under pre-clinical or clinical development or discontinued, designer drugs, substances approved only for veterinary use) is prohibited at all times. S1. ANABOLIC AGENTS Anabolic agents are prohibited. 1. Anabolic Androgenic Steroids (AAS) a. Exogenous* AAS, including: 1-androstenediol (5α-androst-1-ene-3β,17β-diol ); 1-androstenedione (5α- androst-1-ene-3,17-dione); bolandiol (estr-4-ene-3β,17β-diol ); bolasterone; boldenone; boldione (androsta-1,4-diene-3,17-dione); calusterone; clostebol; -
Properties and Units in Clinical Pharmacology and Toxicology
Pure Appl. Chem., Vol. 72, No. 3, pp. 479–552, 2000. © 2000 IUPAC INTERNATIONAL FEDERATION OF CLINICAL CHEMISTRY AND LABORATORY MEDICINE SCIENTIFIC DIVISION COMMITTEE ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)# and INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY CHEMISTRY AND HUMAN HEALTH DIVISION CLINICAL CHEMISTRY SECTION COMMISSION ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)§ PROPERTIES AND UNITS IN THE CLINICAL LABORATORY SCIENCES PART XII. PROPERTIES AND UNITS IN CLINICAL PHARMACOLOGY AND TOXICOLOGY (Technical Report) (IFCC–IUPAC 1999) Prepared for publication by HENRIK OLESEN1, DAVID COWAN2, RAFAEL DE LA TORRE3 , IVAN BRUUNSHUUS1, MORTEN ROHDE1, and DESMOND KENNY4 1Office of Laboratory Informatics, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; 2Drug Control Centre, London University, King’s College, London, UK; 3IMIM, Dr. Aiguader 80, Barcelona, Spain; 4Dept. of Clinical Biochemistry, Our Lady’s Hospital for Sick Children, Crumlin, Dublin 12, Ireland #§The combined Memberships of the Committee and the Commission (C-NPU) during the preparation of this report (1994–1996) were as follows: Chairman: H. Olesen (Denmark, 1989–1995); D. Kenny (Ireland, 1996); Members: X. Fuentes-Arderiu (Spain, 1991–1997); J. G. Hill (Canada, 1987–1997); D. Kenny (Ireland, 1994–1997); H. Olesen (Denmark, 1985–1995); P. L. Storring (UK, 1989–1995); P. Soares de Araujo (Brazil, 1994–1997); R. Dybkær (Denmark, 1996–1997); C. McDonald (USA, 1996–1997). Please forward comments to: H. Olesen, Office of Laboratory Informatics 76-6-1, Copenhagen University Hospital (Rigshospitalet), 9 Blegdamsvej, DK-2100 Copenhagen, Denmark. E-mail: [email protected] Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible.