<<

Chapter 11S Poisson summation formula Masatsugu Sei Suzuki Department of Physics, SUNY at Bimghamton (Date: January 08, 2011)

Poisson summation formula Convolution Random walk Diffusion Magnetization Gaussian distribution function

11S.1 Poisson summataion formula For appropriate functions f(x), the Poisson summation formula may be stated as

   f (x  n)  2  F(k  m) , (1) n m where m and n are integers, and F(k) is the of f(x) and is defined by

1  F(k)  F[ f (x)]  eikx f (x)dx . 2 

Note that the inverse Fourier transform is given by

1  f (x)  eikx F(k)dk . 2 

The factor of the right hand side of Eq.(1) arises from the definition of the Fourier transform. ((Proof)) The proof of Eq.(1) is given as follows.

 1    f (x  n)   F(k)dk eikn n 2  n

1

We evaluate the factor

 I  eikn . n

It is evident that I is not equal to zero only when k = 2m (m; integer). Therefore I can be expressed by

 I  A  (k  2m) , m where A is the normalization factor. Then

 1    f (x  n)   F(k)dk[A  (k  2m)] n 2  m A    F(k) (k  2m)dk 2   m  A    F(k  2m) 2 m A    F(k  2n) 2 n

The normalization factor, A, is readily shown to be 2 by considering the symmetrical case

n2 f (x  n)  e ,

1 2 F(k  2n)  en 2 ______((Mathematica))

2

f x_  Exp  x2 ; FourierTransform f x , x, k, FourierParameters  0, 1     2  k  4       2  ______Since

2 f (x  n) A   2 . F(k  2n) or

  I  eikn  2  (k  2m) . (2) n m

Using this formula, we have

   f (x  n)  2  F(k  2n) . (Poisson sum formula) n n

11S.2 Summary When we put k  2x in I of Eq.(2)

  e2ixn  2  (2x  2m) n m 2    (x  m) 2 m    (x  m) m or

3

  e2ixn   (x  m) . (3) n m

11S.3. Convolution of Dirac comb: another method in the derivation of Poisson sum formula The convolution of functions f(x) and g(x) is defined by

1  1  f * g   f (x   )g( )d   f ( )g(x   )d 2  2 

The Fourier transform of the convolution is given by

F[ f * g]  F[ f ]F[g].

Here we assume that

 g(x)   (x  na) . (Dirac comb) n

The Fourier transform of g(x) is

1   1  G(k)  F[g(x)]   eikx  (x  na)dx  eikna . 2  n 2 n

The convolution f*g is obtained as

1   1  f * g   f (x   )  (  na)d   f (x  na) . (4) 2  n 2 n

The Fourier transform of the convolution is

1  F[ f * g]  F(k)G(k)  F(k) eikna . 2 n

We use the Poisson summation formula;

4

   ka eikna  eikna    (  m) n n m 2  a 2m   [ (k  )] m 2 a 2  2m   (k  ) a m a where

  e2ixn   (x  m) . n m

ka with x  . Then we get 2

1  1  F[ f * g]  F(k) eikna  F(k) eikna 2 n 2 n 1 2  2m    (k  )F(k) 2 a m a 1 2  2m 2m    (k  )F(k  ) 2 a m a a

The inverse Fourier transform of F[ f * g] is obtained as

1  1  1 2  2m 2m f * g  F[ f * g]eikxdk   eikxdk   (k  )F(k  ) 2  2  2 a m a a 1  2  2m   F(k  m)  eikxdk (k  ) a m a  a 2m 1  2 i x   F(k  m)e a a m a where

5

 2 2 1 i mx F(k  m)   e a f (x)dx . a 2 

Finally we get

2m 1  1  2m i x f * g   f (x  na)   F(k  )e a . (5) 2 n a m a or

2m  2  2m i x  f (x  na)   F(k  )e a . n a m a

When a = 1, we get

   f (x  n)  2  F(k  2m)ei2mx . (6) n m

When x = 0,

   f (x  n)  2  F(k  2m) . (7) n m

This is the Poisson sum formula.

11S.3 Fourier transform of periodic function We consider a periodic function N(x);

N(x  a)  N(x) , where a is the periodicity. The function N(x) can be described by

2m  2  2m i x N(x)   f (x  na)   F(k  )e a n a m a iGx   NGe G

6

Note that f(x) is defined only in the limited region (for example, -a/2≤x≤a/2). G is the reciprocal lattice defined by

2 G  m . a

The Fourier coefficient NG is given by

2 N  F(k  G) G a . 1  1 a / 2  eiGx f (x)dx  eiGx f (x)dx a  a a / 2 where f(x) is just like a Gaussian distribution function around x = 0.

N x

 

x

a

Fig. Plot of N(x) as a function of x. a is the lattice constant of the one-dimensional chain.

((Example)) Suppose that f(x) is given by a Gaussian distribution,

7

1 x2 f (x)  exp( ) . 2 2 2

Then we get

1 a / 2 1 1 1 2iG 2 1 2iG 2 N  eiGx f (x)dx  exp( G2 2 )[erf ( )  erf ( )] , G  a a / 2 2 2 2 2 2 2 where erf(x) is the error function and is defined by

z 2 2 erf (z)  et dt  0

2 2 Figure shows the intensity N vs n, where G  n . G a 2 NG 1.0   0.8

0.6

0.4

0.2

n 2 4 6 8 10

2 2 Fig. a = 1.  = 0.1. G  n . The intensity N vs n (= integer). a G

11S.10 Fourier series

8

Suppose that the function N(x) is a periodic function of x with the periodicity a. Then we have

2m  2  2m i x N(x)   f (x  na)   F(k  )e a n a m a iGx   NGe G

2 where G  m (m: integer). a

((Example-1))

f(x) = x for |x|

1 1 2i(1)n F(k  G  n)   xexp(inx)dx  for n ≠ 0. 2 1 n 2

1 1 F(k  G  0)   xdx  0 for n = 0. 2 1

1  i(1)n 1  i(1)n N(x)   eimx   eimx  n n  n n n0

We make a plot of N(x) as a function of x for the summation for n = -nmax and nmax with nmax = 50.

9

N x

1.0   nmax = 50

0.5

x -3 -2 -1 1 2 3

-0.5

-1.0

Fig. nmax = 50. The Gibbs phenomenon is clearly seen.

((Example-2))

f(x) = 0 for -1

1 1 i(1)n[1 (1)n ] F(k  G  n)  exp(inx)dx   for n ≠ 0. 2 0 n 2

1 1 1 F(k  G  0)   dx  , for n = 0. 2 0 2

1 1  i(1)n[1 (1)n ] N(x)    eimx 2  n 2n n0

10

N x

1.0  

0.8 nmax = 100

0.6

0.4

0.2

x -2 -1 1 2 Fig. nmax = 100. The Gibbs phenomenon is clearly seen. ______11S.11 Fourier transform of function having values at inetger x-value We consider a function defined by

 f (x)   f (m) (x  m) . (8) m

y

x

Fig. Plot of f(x) which is described by a combination of the with f(m) at x = m.

The Fourier transform of f(x) is given by

11

1  F(k)   f (x)eikxdx 2  1    f (m) (x  m)eikxdx 2    m 1    f (m)  (x  m)eikxdx   2 m 1   eikm f (m) 2 m

We note that

1  1  F(k  2 )  ei(k 2 )m f (m)  eikm f (m)  F(k) , 2 m 2 m

In other words, F(k) is a periodic function of k with a periodicity 2. We can also show that

1  f (m)   F(k)eikm dk , (9) 2  where  eik (mm')dk  2 , (10)  m,m'  since

1  1 1    F(k)eikmdk   f (m')  eik (mm')dk 2  2 2 m'  1    f (m')2 m,m' 2 m'  f (m)

Note that the inverse Fourier transform of F(k) is obtained as

12

1  1  1  f (x)   F(k)eikxdk   dkeikx eikm f (m) 2  2  2 m 1    f (m) dkeik (xm) 2   m  1    f (m)2 (x  m) 2 m    f (m) (x  m) m

((Note)) The proof where the Poisson summation formula is used. We have another method for the derivation of Eq.(9):

1  1  (2n1) f (x)   F(k)eikx dk    F(k)eikx dk 2  2 n (2n1)

We put

k' k  2n

Then we have

1  1   f (x)   F(k)eikx dk    F(k'2n )ei(k '2n )xdk' 2  2 n   1    ei2nx  F(k')eik 'x dk' n 2   1    (x  m)  F(k)eikx dk m 2  1      (x  m)  F(k)eikmdk 2 m     (x  m) f (m) m

Here we use the Poisson summation formula

13

  ei2xn   (x  m) . n m

11S.11 Random walk in the one-dimensional chain We consider the case when a particle moves on the one dimensional chain. The particle can be located only on a discrete position [x = m (m; integer)]. the particle starts from the origin x = 0. The particle can move from x = m to x = m+1, or from x = m to x = m-1 for each jump. We assume that the probability W(m, N) such that the particle reaches at the position x = m after jumps with N times. The probability W(m, N+1) can be described by

m-1 m m+1 N N+1 N Fig. Random walk model.

1 1 W (m, N 1)  W (m 1, N)  W (m 1, N) , 2 2 where one is a jump from x = m-1 to x = m for the (N+1)-th jump, and the another is a jump from x = m+1 to x = m for the (N+1)-th jump. The probability for these jumps is 1/2. In order to find the expression of W (m, N) we define the Fourier transform

1  (k, N)  eikmW (m, N) . 2 m

Note that (k, N) is a periodic function of k with a periodicity 2, and

1  1  eikmW (m 1, N)  eik eik (m1)W (m 1, N) 2 m 2 m ,  eik (k, N)

14

1  1  eikmW (m 1, N)  eik eik (m1)W (m 1, N) 2 m 2 m .  eik(k, N)

Then we have

1  (k, N 1)  eikmW (m, N 1) 2 m 1  (eik  eik )(k, N) 2  (cosk)(k, N) or

(k, N)  (cosk)N (k, N  0) .

We use the initial condition that the particle is located at x = 0 at the probability of 1;

W (m, N  0)   m,0 . or

  1 ikm 1 ikm 1 (k, N  0)  e W (m, N  0)  e  m,0  . 2 m 2 m 2

So we get

1 (k, N)  (cosk)N . 2

15

F k,N 0.4

 

0.3 N=200

0.2 N=400

0.1

N=1000 k -0.3 -0.2 -0.1 0.1 0.2 0.3 Fig. Plot of (k, N) vs k, where N = 200, 400, 600, 800, and 1000. In the large limit of N, (k, N ) approaches a Gaussian distribution.

The inverse Fourier transform of (k, N) is

1  1  1 W (m, N)  (k, N)eikmdk  dkeikm (cosk) N 2  2  2   1    dkeikm (cosk) N 2 

Here we use the binomial theorem to get

N  1  (cosk)N    (eik  eik )N  2 

N  1  N N!     eik (2l  N )  2  l 0 (N  l)!l!

Then we have

16

N 1   1  N N! W (m, N)   dkeikm    eik (2l N ) 2   2  l0 (N  l)!l! N  1  N N! 1       dkeik (m2lN )  2  l0 (N  l)!l! 2  N  1  N N! 1     (2 ) m2lN ,0  2  l0 (N  l)!l! 2 N  1  N N!      m2lN ,0  2  l0 (N  l)!l! N  1  N N!      m2lN ,0  2  l0 (N  l)!l! 1 N!  2 N N  m  N  m  ( )! ! 2  2  where

N  m m  N  2l , or l  . 2

This implies that for N = even, m should be even. In other words, W(N = even, m = odd) = 0. For N = odd, m should be odd. In other words, W(N = odd, m = even) = 0.

11S.13 Numerical calculation of W(m, N) Using the Mathematica, we calculate numerically the value of W (m, N) given by

1  1  W (m, N)   dkeikm (cosk) N   dk cos(km)(cosk) N , 2   0 for the cases with N = 12 (even) and N = 13 (odd).

(i) N = 12.

17

W m,N

0.20  N=12

0.15

0.10

0.05

m -10 -5 5 10

This figure clearly shows that W(m, N = 12) = 0 for m = -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, and 11 (m = odd).

(ii) N = 13. W m,N

0.20   N=13

0.15

0.10

0.05

m -10 -5 5 10

This figure clearly shows that W(m, N = 13) = 0 for m = -12, -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, and 12 (m = even).

((Mathematica))

18

Clear "Gobal`" ;

1  J1 m_, N1_ : Cos k m Cos k N1 k   0

d12  Table m,J1 m,12 , m, 12, 12, 1 ;        f1  ListPlot d12, PlotStyle  Red, PointSize 0.02 , AxesLabel  "m", "W m,N " ; f2  Graphics Text Style "N12", Black, 15 , 6, 0.18 ;      Show f1, f2         W m,N         0.20  N=12

0.15

0.10

0.05

m -10 -5 5 10

d13  Table m,J1 m,13 , m, 13, 13, 1 ; g1  ListPlot d13, PlotStyle  Red, PointSize 0.02 , AxesLabel  "m", "W m,N " ; g2  Graphics Text Style "N13", Black, 15 , 6, 0.18 ;      Show g1, g2         W m,N         0.20   N=13

0.15

0.10

0.05

m -10 -5 5 10

11S.14 Limit of long distance and long time Using the Stirling's formula,

19

1 1 ln(x!)  ln(2 )  (x  )ln(x)  x for large x, 2 2 and the Mathematica, we have the series expansion to the order of (m/N)8,

N  m N  m lnW (m, N)  N ln(2)  ln(N!)  ln( )!ln( )! 2 2 2 4 1 N 1  m  1  m    ln( )  (1 N)   (3  N)  2 2 2  N  12  N  6 8 1  m  1  m   (5  N)   (7  N)   ... 30  N  56  N  1 N 1 m2   ln( )  2 2 2 N or

1 N 1 m2 W (m, N)  exp[ ln( )  ] 2 2 2 N 1 2 N  1 m  exp[ln( ) 2  ] 2 2 N 1 2 N  1 m  ( ) 2 exp( ) 2 2 N 1 2  2  2 1 m    exp( )  N  2 N

((Mathematica))

20

Clear "Gobal`" ;

1 1 f1 x_ : Log 2   x  Log x  x;  2  2 N  m N  m g1N Log 2  f1 N  f1 f1 ; 2 2 rule1  m  N x ;         g11  g1 . rule1; Series g11, x,0,8 Simplify Normal  1 1 1  N x2  3  N x4     2 12 1 1 1 N  5  N x6  7  N x8  Log 30  56  2 2

11S.15  Diffusion     We assume that the distance between the nearest neighbor lattices is x and the time taken for each jump is t. Then we have

t  Nt , x  mx .

The probability of finding particle between x and x + dx is

1   2   x t dx 1 1 x 2 P(x,t)dx  W ( , )  dx  exp( ) x t 2x  (x)2  4t x 2  4 t   2t  2t 1 x 2  dx exp( ) 4Dt 4Dt where D is the diffusion constant and is defined by

(x)2 D  . 2t

21

x t dx Here we note that the factor 2x of the W ( , ) arises from the fact that (i) for x t 2x every jump (N = even), the probability of finding the particle at the sites with even m is zero, and that (ii) for every jump (N = odd), the probability of finding the particle at the sites with odd m is zero. The distance for the jump is 2x, but not x. The final form of P(x, t) is obtained as

1 x2 P(x,t)  exp( ) . 4Dt 4Dt

We note that P(x, t) satisfies the diffusion equation given by

P(x,t) 2P(x,t)  D , t x2 with the initial condition

P(x,t  0)   (x) .

11.S16 Gaussian distribution in magnetization; analogy of random walk We consider a system consisting of N independent spins. Each spin has a magnetic moment . In the absence of an external magnetic field, each spin has the magnetic moment (±) along the z axis. We assume that the number of spins having the z component magnetic moment (+) is N and the number of spins having the z-component magnetic moment (-):

1 1 N  (N  n) , N  (N  n)  2  2 where

N  N  N .

Here we discuss the of total magnetic moment, M, which is given by

22

M  (N  N )  n .

The probability that the total magnetization has M = n is obtained as

1 N! 1 N! W (M )   2 N N !N ! 2 N 1 1   [ (N  n)]![( (N  n)]! 2 2

Using the Stirling's formula, we have

1 N n2 lnW (M )   ln( )  2 2 2N for n<

2 n2 W (M )  ( )1/ 2 exp( ). N 2N where M = n. The average of magnetization is equal to zero.

  M    n    nW (M )dn  0 . 

Since   M 2   2  n   2  n2W (M )dn  2 2 N ,  the standard deviation is obtained as

2 2 M   M    M   2N  .

Since

M 2N 1   2N 2N 2N

23

the relative width of the Gaussian distribution becomes sharp as N increases. We make a plot of W(M = n) as a function of N, where N = 100.

W M=nm 0.08

 

0.06

0.04

0.02

n -40 -20 20 40

Fig. Plot of W(M) vs n. M = 2n. N = 100. ______REFERENCES C. Kittel, Elementary Statistical Physics (Dover Publications, Inc, Mineola, NY, 2004). K. Kitahara, Nonequilibrium Statistical Physics, 2nd edition (Iwanami, Tokyo, 1998). [in Japanese]. R. Reif, Statistical Thermal Physics, McGraw-Hill, New York, 1965). C. Kittel and H. Kroemer, Thermal Physics, 2nd edition (W.H. Freeman and Company, New York, 1980).

24