Introduction to Image Processing #5/7

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Image Processing #5/7 Outline Introduction to Image Processing #5/7 Thierry Geraud´ EPITA Research and Development Laboratory (LRDE) 2006 Thierry Geraud´ Introduction to Image Processing #5/7 Outline Outline 1 Introduction 2 Distributions About the Dirac Delta Function Some Useful Functions and Distributions 3 Fourier and Convolution 4 Sampling 5 Convolution and Linear Filtering 6 Some 2D Linear Filters Gradients Laplacian Thierry Geraud´ Introduction to Image Processing #5/7 Outline Outline 1 Introduction 2 Distributions About the Dirac Delta Function Some Useful Functions and Distributions 3 Fourier and Convolution 4 Sampling 5 Convolution and Linear Filtering 6 Some 2D Linear Filters Gradients Laplacian Thierry Geraud´ Introduction to Image Processing #5/7 Outline Outline 1 Introduction 2 Distributions About the Dirac Delta Function Some Useful Functions and Distributions 3 Fourier and Convolution 4 Sampling 5 Convolution and Linear Filtering 6 Some 2D Linear Filters Gradients Laplacian Thierry Geraud´ Introduction to Image Processing #5/7 Outline Outline 1 Introduction 2 Distributions About the Dirac Delta Function Some Useful Functions and Distributions 3 Fourier and Convolution 4 Sampling 5 Convolution and Linear Filtering 6 Some 2D Linear Filters Gradients Laplacian Thierry Geraud´ Introduction to Image Processing #5/7 Outline Outline 1 Introduction 2 Distributions About the Dirac Delta Function Some Useful Functions and Distributions 3 Fourier and Convolution 4 Sampling 5 Convolution and Linear Filtering 6 Some 2D Linear Filters Gradients Laplacian Thierry Geraud´ Introduction to Image Processing #5/7 Outline Outline 1 Introduction 2 Distributions About the Dirac Delta Function Some Useful Functions and Distributions 3 Fourier and Convolution 4 Sampling 5 Convolution and Linear Filtering 6 Some 2D Linear Filters Gradients Laplacian Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution Sampling Convolution and Linear Filtering Some 2D Linear Filters Filtering Filtering images is a low-level process can be linear or not (!) is often useful either to get “better” data e.g., with enhanced contrast, less noise, etc. or to transform data to make it suitable for further processing Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution Sampling Convolution and Linear Filtering Some 2D Linear Filters New Approach An image is a function. We have sampling: image values are only known at given points 2 Ip with p = (r, c) ∈ N quantization: image values belong to a restricted set for instance [0, 255] for a gray-level with 8 bit encoding An image is a digital signal (contrary: analog). Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution Sampling Convolution and Linear Filtering Some 2D Linear Filters Background This lecture background is digital signal processing. Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Outline 1 Introduction 2 Distributions About the Dirac Delta Function Some Useful Functions and Distributions 3 Fourier and Convolution 4 Sampling 5 Convolution and Linear Filtering 6 Some 2D Linear Filters Gradients Laplacian Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Dirac Delta Function (1/2) The Dirac delta function, denoted by ↑, is defined by: Z ∞ s(t) ↑(t) dt = s(0) −∞ where s is a test function. Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Dirac Delta Function (2/2) Please note that: ↑ is not a function, it is a distribution (or generalized function). We have: Z ∞ ↑(t) dt = 1. −∞ Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Weird Definition (1/2) Just think of ↑ being something like: 1 × ∞ if t = 0 ↑(t) = 0 if t 6= 0. but it cannot be a proper definition! Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Weird Definition (2/2) Here α is a constant in R or C. We do not have α↑ = ↑, but: α × ∞ if t = 0 ↑(t) = 0 if t 6= 0. R ∞ Indeed we should have −∞ α↑(t)dt being equal to α. Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Dirac Representation Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Outline 1 Introduction 2 Distributions About the Dirac Delta Function Some Useful Functions and Distributions 3 Fourier and Convolution 4 Sampling 5 Convolution and Linear Filtering 6 Some 2D Linear Filters Gradients Laplacian Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Foreword Understand that the Dirac delta function is the most important distribution we can think of. Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Sinc (1/2) The (unnormalized, historical, mathematical) sinc function is: sin(t) sinc(t) = . t The normalized sinc function is: sin(πt) sinc(t) = . πt so that: Z ∞ sinc(t) dt = 1. −∞ Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Sinc (2/2) Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Sign Function (1/2) The sign function is: −1 if t < 0 sgm(t) = 0 if t = 0 1 if t > 0. Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Sign Function (2/2) Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Heaviside Step Function (1/2) 0 if t < 0 1 u(t) = (1 + sgn(t)) = 1/2 if t = 0 2 1 if t > 0. We have: Z t u(t) = ↑(τ) dτ. −∞ Put differently u˙ = ↑. Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Heaviside Step Function (2/2) Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Rect (1/2) The rectangular function is: 1 if |t| < 1/2 rect(t) = 1/2 if |t| = 1/2 0 if |t| > 1/2. We have: rect(t) = u(t + 1/2) u(1/2 − t). Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Rect (2/2) Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Tri (1/2) The triangular function is: 1 − t if |t| < 1 tri(t) = 0 if |t| ≥ 1. Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Tri (2/2) Thierry Geraud´ Introduction to Image Processing #5/7 Introduction Distributions Fourier and Convolution About the Dirac Delta Function Sampling Some Useful Functions and Distributions Convolution and Linear Filtering Some 2D Linear Filters Dirac Delta Function as a Limit We can define ↑ as a limit of functions dα in the sense that: Z ∞ lim s(t) dα(t) dt = s(0). α→0 −∞ We can choose dα in: t → N (0; α)(t) normal distribution t →
Recommended publications
  • Convolution! (CDT-14) Luciano Da Fontoura Costa
    Convolution! (CDT-14) Luciano da Fontoura Costa To cite this version: Luciano da Fontoura Costa. Convolution! (CDT-14). 2019. hal-02334910 HAL Id: hal-02334910 https://hal.archives-ouvertes.fr/hal-02334910 Preprint submitted on 27 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Convolution! (CDT-14) Luciano da Fontoura Costa [email protected] S~aoCarlos Institute of Physics { DFCM/USP October 22, 2019 Abstract The convolution between two functions, yielding a third function, is a particularly important concept in several areas including physics, engineering, statistics, and mathematics, to name but a few. Yet, it is not often so easy to be conceptually understood, as a consequence of its seemingly intricate definition. In this text, we develop a conceptual framework aimed at hopefully providing a more complete and integrated conceptual understanding of this important operation. In particular, we adopt an alternative graphical interpretation in the time domain, allowing the shift implied in the convolution to proceed over free variable instead of the additive inverse of this variable. In addition, we discuss two possible conceptual interpretations of the convolution of two functions as: (i) the `blending' of these functions, and (ii) as a quantification of `matching' between those functions.
    [Show full text]
  • Eliminating Aliasing Caused by Discontinuities Using Integrals of the Sinc Function
    Sound production – Sound synthesis: Paper ISMR2016-48 Eliminating aliasing caused by discontinuities using integrals of the sinc function Fabián Esqueda(a), Stefan Bilbao(b), Vesa Välimäki(c) (a)Aalto University, Dept. of Signal Processing and Acoustics, Espoo, Finland, fabian.esqueda@aalto.fi (b)Acoustics and Audio Group, University of Edinburgh, United Kingdom, [email protected] (c)Aalto University, Dept. of Signal Processing and Acoustics, Espoo, Finland, vesa.valimaki@aalto.fi Abstract A study on the limits of bandlimited correction functions used to eliminate aliasing in audio signals with discontinuities is presented. Trivial sampling of signals with discontinuities in their waveform or their derivatives causes high levels of aliasing distortion due to the infinite bandwidth of these discontinuities. Geometrical oscillator waveforms used in subtractive synthesis are a common example of audio signals with these characteristics. However, discontinuities may also be in- troduced in arbitrary signals during operations such as signal clipping and rectification. Several existing techniques aim to increase the perceived quality of oscillators by attenuating aliasing suf- ficiently to be inaudible. One family of these techniques consists on using the bandlimited step (BLEP) and ramp (BLAMP) functions to quasi-bandlimit discontinuities. Recent work on antialias- ing clipped audio signals has demonstrated the suitability of the BLAMP method in this context. This work evaluates the performance of the BLEP, BLAMP, and integrated BLAMP functions by testing whether they can be used to fully bandlimit aliased signals. Of particular interest are cases where discontinuities appear past the first derivative of a signal, like in hard clipping. These cases require more than one correction function to be applied at every discontinuity.
    [Show full text]
  • The Best Approximation of the Sinc Function by a Polynomial of Degree N with the Square Norm
    Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 307892, 12 pages doi:10.1155/2010/307892 Research Article The Best Approximation of the Sinc Function by a Polynomial of Degree n with the Square Norm Yuyang Qiu and Ling Zhu College of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China Correspondence should be addressed to Yuyang Qiu, [email protected] Received 9 April 2010; Accepted 31 August 2010 Academic Editor: Wing-Sum Cheung Copyright q 2010 Y. Qiu and L. Zhu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The polynomial of degree n which is the best approximation of the sinc function on the interval 0, π/2 with the square norm is considered. By using Lagrange’s method of multipliers, we construct the polynomial explicitly. This method is also generalized to the continuous function on the closed interval a, b. Numerical examples are given to show the effectiveness. 1. Introduction Let sin cxsin x/x be the sinc function; the following result is known as Jordan inequality 1: 2 π ≤ sin cx < 1, 0 <x≤ , 1.1 π 2 where the left-handed equality holds if and only if x π/2. This inequality has been further refined by many scholars in the past few years 2–30. Ozban¨ 12 presented a new lower bound for the sinc function and obtained the following inequality: 2 1 4π − 3 π 2 π2 − 4x2 x − ≤ sin cx.
    [Show full text]
  • Oversampling of Stochastic Processes
    OVERSAMPLING OF STOCHASTIC PROCESSES by D.S.G. POLLOCK University of Leicester In the theory of stochastic differential equations, it is commonly assumed that the forcing function is a Wiener process. Such a process has an infinite bandwidth in the frequency domain. In practice, however, all stochastic processes have a limited bandwidth. A theory of band-limited linear stochastic processes is described that reflects this reality, and it is shown how the corresponding ARMA models can be estimated. By ignoring the limitation on the frequencies of the forcing function, in the process of fitting a conventional ARMA model, one is liable to derive estimates that are severely biased. If the data are sampled too rapidly, then maximum frequency in the sampled data will be less than the Nyquist value. However, the underlying continuous function can be reconstituted by sinc function or Fourier interpolation; and it can be resampled at a lesser rate corresponding to the maximum frequency of the forcing function. Then, there will be a direct correspondence between the parameters of the band-limited ARMA model and those of an equivalent continuous-time process; and the estimation biases can be avoided. 1 POLLOCK: Band-Limited Processes 1. Time-Limited versus Band-Limited Processes Stochastic processes in continuous time are usually modelled by filtered versions of Wiener processes which have infinite bandwidth. This seems inappropriate for modelling the slowly evolving trajectories of macroeconomic data. Therefore, we shall model these as processes that are limited in frequency. A function cannot be simultaneously limited in frequency and limited in time. One must choose either a band-limited function, which extends infinitely in time, or a time-limited function, which extents over an infinite range of frequencies.
    [Show full text]
  • Shannon Wavelets Theory
    Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2008, Article ID 164808, 24 pages doi:10.1155/2008/164808 Research Article Shannon Wavelets Theory Carlo Cattani Department of Pharmaceutical Sciences (DiFarma), University of Salerno, Via Ponte don Melillo, Fisciano, 84084 Salerno, Italy Correspondence should be addressed to Carlo Cattani, [email protected] Received 30 May 2008; Accepted 13 June 2008 Recommended by Cristian Toma Shannon wavelets are studied together with their differential properties known as connection coefficients. It is shown that the Shannon sampling theorem can be considered in a more general approach suitable for analyzing functions ranging in multifrequency bands. This generalization R ff coincides with the Shannon wavelet reconstruction of L2 functions. The di erential properties of Shannon wavelets are also studied through the connection coefficients. It is shown that Shannon ∞ wavelets are C -functions and their any order derivatives can be analytically defined by some kind of a finite hypergeometric series. These coefficients make it possible to define the wavelet reconstruction of the derivatives of the C -functions. Copyright q 2008 Carlo Cattani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction Wavelets 1 are localized functions which are a very useful tool in many different applications: signal analysis, data compression, operator analysis, and PDE solving see, e.g., 2 and references therein. The main feature of wavelets is their natural splitting of objects into different scale components 1, 3 according to the multiscale resolution analysis.
    [Show full text]
  • Observational Astrophysics II January 18, 2007
    Observational Astrophysics II JOHAN BLEEKER SRON Netherlands Institute for Space Research Astronomical Institute Utrecht FRANK VERBUNT Astronomical Institute Utrecht January 18, 2007 Contents 1RadiationFields 4 1.1 Stochastic processes: distribution functions, mean and variance . 4 1.2Autocorrelationandautocovariance........................ 5 1.3Wide-sensestationaryandergodicsignals..................... 6 1.4Powerspectraldensity................................ 7 1.5 Intrinsic stochastic nature of a radiation beam: Application of Bose-Einstein statistics ....................................... 10 1.5.1 Intermezzo: Bose-Einstein statistics . ................... 10 1.5.2 Intermezzo: Fermi Dirac statistics . ................... 13 1.6 Stochastic description of a radiation field in the thermal limit . 15 1.7 Stochastic description of a radiation field in the quantum limit . 20 2 Astronomical measuring process: information transfer 23 2.1Integralresponsefunctionforastronomicalmeasurements............ 23 2.2Timefiltering..................................... 24 2.2.1 Finiteexposureandtimeresolution.................... 24 2.2.2 Error assessment in sample average μT ................... 25 2.3 Data sampling in a bandlimited measuring system: Critical or Nyquist frequency 28 3 Indirect Imaging and Spectroscopy 31 3.1Coherence....................................... 31 3.1.1 The Visibility function . ................... 31 3.1.2 Young’sdualbeaminterferenceexperiment................ 31 3.1.3 Themutualcoherencefunction....................... 32 3.1.4 Interference
    [Show full text]
  • Rational Approximation of the Absolute Value Function from Measurements: a Numerical Study of Recent Methods
    Rational approximation of the absolute value function from measurements: a numerical study of recent methods I.V. Gosea∗ and A.C. Antoulasy May 7, 2020 Abstract In this work, we propose an extensive numerical study on approximating the absolute value function. The methods presented in this paper compute approximants in the form of rational functions and have been proposed relatively recently, e.g., the Loewner framework and the AAA algorithm. Moreover, these methods are based on data, i.e., measurements of the original function (hence data-driven nature). We compare numerical results for these two methods with those of a recently-proposed best rational approximation method (the minimax algorithm) and with various classical bounds from the previous century. Finally, we propose an iterative extension of the Loewner framework that can be used to increase the approximation quality of the rational approximant. 1 Introduction Approximation theory is a well-established field of mathematics that splits in a wide variety of subfields and has a multitude of applications in many areas of applied sciences. Some examples of the latter include computational fluid dynamics, solution and control of partial differential equations, data compression, electronic structure calculation, systems and control theory (model order reduction reduction of dynamical systems). In this work we are concerned with rational approximation, i.e, approximation of given functions by means of rational functions. More precisely, the original to be approximated function is the absolute value function (known also as the modulus function). Moreover, the methods under consideration do not necessarily require access to the exact closed-form of the original function, but only to evaluations of it on a particular domain.
    [Show full text]
  • Chapter 11: Fourier Transform Pairs
    CHAPTER 11 Fourier Transform Pairs For every time domain waveform there is a corresponding frequency domain waveform, and vice versa. For example, a rectangular pulse in the time domain coincides with a sinc function [i.e., sin(x)/x] in the frequency domain. Duality provides that the reverse is also true; a rectangular pulse in the frequency domain matches a sinc function in the time domain. Waveforms that correspond to each other in this manner are called Fourier transform pairs. Several common pairs are presented in this chapter. Delta Function Pairs For discrete signals, the delta function is a simple waveform, and has an equally simple Fourier transform pair. Figure 11-1a shows a delta function in the time domain, with its frequency spectrum in (b) and (c). The magnitude is a constant value, while the phase is entirely zero. As discussed in the last chapter, this can be understood by using the expansion/compression property. When the time domain is compressed until it becomes an impulse, the frequency domain is expanded until it becomes a constant value. In (d) and (g), the time domain waveform is shifted four and eight samples to the right, respectively. As expected from the properties in the last chapter, shifting the time domain waveform does not affect the magnitude, but adds a linear component to the phase. The phase signals in this figure have not been unwrapped, and thus extend only from -B to B. Also notice that the horizontal axes in the frequency domain run from -0.5 to 0.5. That is, they show the negative frequencies in the spectrum, as well as the positive ones.
    [Show full text]
  • On the Duality of Regular and Local Functions
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 May 2017 doi:10.20944/preprints201705.0175.v1 mathematics ISSN 2227-7390 www.mdpi.com/journal/mathematics Article On the Duality of Regular and Local Functions Jens V. Fischer Institute of Mathematics, Ludwig Maximilians University Munich, 80333 Munich, Germany; E-Mail: jens.fi[email protected]; Tel.: +49-8196-934918 1 Abstract: In this paper, we relate Poisson’s summation formula to Heisenberg’s uncertainty 2 principle. They both express Fourier dualities within the space of tempered distributions and 3 these dualities are furthermore the inverses of one another. While Poisson’s summation 4 formula expresses a duality between discretization and periodization, Heisenberg’s 5 uncertainty principle expresses a duality between regularization and localization. We define 6 regularization and localization on generalized functions and show that the Fourier transform 7 of regular functions are local functions and, vice versa, the Fourier transform of local 8 functions are regular functions. 9 Keywords: generalized functions; tempered distributions; regular functions; local functions; 10 regularization-localization duality; regularity; Heisenberg’s uncertainty principle 11 Classification: MSC 42B05, 46F10, 46F12 1 1.2 Introduction 13 Regularization is a popular trick in applied mathematics, see [1] for example. It is the technique 14 ”to approximate functions by more differentiable ones” [2]. Its terminology coincides moreover with 15 the terminology used in generalized function spaces. They contain two kinds of functions, ”regular 16 functions” and ”generalized functions”. While regular functions are being functions in the ordinary 17 functions sense which are infinitely differentiable in the ordinary functions sense, all other functions 18 become ”infinitely differentiable” in the ”generalized functions sense” [3].
    [Show full text]
  • Techniques of Variational Analysis
    J. M. Borwein and Q. J. Zhu Techniques of Variational Analysis An Introduction October 8, 2004 Springer Berlin Heidelberg NewYork Hong Kong London Milan Paris Tokyo To Tova, Naomi, Rachel and Judith. To Charles and Lilly. And in fond and respectful memory of Simon Fitzpatrick (1953-2004). Preface Variational arguments are classical techniques whose use can be traced back to the early development of the calculus of variations and further. Rooted in the physical principle of least action they have wide applications in diverse ¯elds. The discovery of modern variational principles and nonsmooth analysis further expand the range of applications of these techniques. The motivation to write this book came from a desire to share our pleasure in applying such variational techniques and promoting these powerful tools. Potential readers of this book will be researchers and graduate students who might bene¯t from using variational methods. The only broad prerequisite we anticipate is a working knowledge of un- dergraduate analysis and of the basic principles of functional analysis (e.g., those encountered in a typical introductory functional analysis course). We hope to attract researchers from diverse areas { who may fruitfully use varia- tional techniques { by providing them with a relatively systematical account of the principles of variational analysis. We also hope to give further insight to graduate students whose research already concentrates on variational analysis. Keeping these two di®erent reader groups in mind we arrange the material into relatively independent blocks. We discuss various forms of variational princi- ples early in Chapter 2. We then discuss applications of variational techniques in di®erent areas in Chapters 3{7.
    [Show full text]
  • Algorithmic Framework for X-Ray Nanocrystallographic Reconstruction in the Presence of the Indexing Ambiguity
    Algorithmic framework for X-ray nanocrystallographic reconstruction in the presence of the indexing ambiguity Jeffrey J. Donatellia,b and James A. Sethiana,b,1 aDepartment of Mathematics and bLawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 Contributed by James A. Sethian, November 21, 2013 (sent for review September 23, 2013) X-ray nanocrystallography allows the structure of a macromolecule over multiple orientations. Although there has been some success in to be determined from a large ensemble of nanocrystals. How- determining structure from perfectly twinned data, reconstruction is ever, several parameters, including crystal sizes, orientations, and often infeasible without a good initial atomic model of the structure. incident photon flux densities, are initially unknown and images We present an algorithmic framework for X-ray nanocrystal- are highly corrupted with noise. Autoindexing techniques, com- lographic reconstruction which is based on directly reducing data monly used in conventional crystallography, can determine ori- variance and resolving the indexing ambiguity. First, we design entations using Bragg peak patterns, but only up to crystal lattice an autoindexing technique that uses both Bragg and non-Bragg symmetry. This limitation results in an ambiguity in the orienta- data to compute precise orientations, up to lattice symmetry. tions, known as the indexing ambiguity, when the diffraction Crystal sizes are then determined by performing a Fourier analysis pattern displays less symmetry than the lattice and leads to data around Bragg peak neighborhoods from a finely sampled low- that appear twinned if left unresolved. Furthermore, missing angle image, such as from a rear detector (Fig. 1). Next, we model phase information must be recovered to determine the imaged structure factor magnitudes for each reciprocal lattice point with object’s structure.
    [Show full text]
  • Best L1 Approximation of Heaviside-Type Functions in a Weak-Chebyshev Space
    Best L1 approximation of Heaviside-type functions in Chebyshev and weak-Chebyshev spaces Laurent Gajny,1 Olivier Gibaru1,,2 Eric Nyiri1, Shu-Cherng Fang3 Abstract In this article, we study the problem of best L1 approximation of Heaviside-type functions in Chebyshev and weak-Chebyshev spaces. We extend the Hobby-Rice theorem [2] into an appro- priate framework and prove the unicity of best L1 approximation of Heaviside-type functions in an even-dimensional Chebyshev space under the condition that the dimension of the subspace composed of the even functions is half the dimension of the whole space. We also apply the results to compute best L1 approximations of Heaviside-type functions by polynomials and Her- mite polynomial splines with fixed knots. Keywords : Best approximation, L1 norm, Heaviside function, polynomials, polynomial splines, Chebyshev space, weak-Chebyshev space. Introduction Let [a, b] be a real interval with a < b and ν be a positive measure defined on a σ-field of subsets of [a, b]. The space L1([a, b],ν) of ν-integrable functions with the so-called L1 norm : b k · k1 : f ∈ L1([a, b],ν) 7−→ kfk1 = |f(x)| dν(x) Za forms a Banach space. Let f ∈ L1([a, b],ν) and Y be a subset of L1([a, b],ν) such that f∈ / Y where Y is the closure of Y . The problem of the best L1 approximation of the function f in Y consists in finding a function g∗ ∈ Y such that : ∗ arXiv:1407.0228v3 [math.FA] 26 Oct 2015 kf − g k1 ≤ kf − gk1, ∀g ∈ Y.
    [Show full text]