New Vistas in Electrochemical Energy Storage
Total Page:16
File Type:pdf, Size:1020Kb
MIT Energy Initiative Cambridge MA New Vistas in Electrochemical Energy Storage Sept 7, 2016 Prof. Linda Nazar, FRSC Senior Canada Research Chair Electrochemical Energy Materials Laboratory Amiens BASF International Scientific Network for Electrochemistry and Batteries Joint Center for Energy Storage Research DOE, USA Thanks to: C. Xia, R. Black, R. Fernandes, D. Kundu, X. Liang, X. Sun, P. Bonnick, V. Duffort, B. Adams Waterloo Institute for Nanotechnology and the Quantum-Nano Centre University of Waterloo, Waterloo ON Canada Agenda : Waterloo Institute for Nanotechnology and the Introduction: Li-ion Quantum-Nano Centre Storing electrons and ions: - Chemical transformation Li-Sulfur and metal-oxygen batteries- Storing electrons and ions: - Multivalent intercalation batteries: Mg and Zn -ion Conclusions 3 Global Energy Assessment: Cambridge Univ Press, 2012 GEA – the first global and interdisciplinary assessment of energy challenges and solutions – identifies 41 pathways to provide sustainable energy for the world by 2050 “Integrated energy storage is an area where technology lags and needs intense development if systems with optimum overall efficiency gains are to be attained” 4 Energy Storage: A Challenge of the 21st Century New electrochemical energy storage chemistry needed Exploit renewable energy Power the world: big Enable low cost, high resources computing, small devices range electric vehicles Different materials Different energy needs Different cost point Wind Solar Smart energy delivery Electric (+ solar): Kiira Motors MWh Wh - MWh kWh Chemical energy to electrical energy and work (downhill, discharge) Chemicals Batteries Electricity Electrical energy back to chemical energy (uphill, charge) Progress in Li-ion technology: driven by portable devices Capacity: 2014 Electrons stored per mass (mAh/g) or volume (mAh/L) Light weight/dense Source: Sony (Japan) Capacity * Voltage = Energy density Wh/kg or Wh/L Increase in energy density by year for 18650 cells Limit ~ 280 Wh/kg based on “intercalation” chemistry Problems: cost, safety 6 Energy storage perspective: 2x in ED, -2x in cost 2 MW Li-ion battery Li - miEV / C0 / Lion air density 250 Wh/kg, 800Wh/l Li oxides - Li S Zn - M - LiFeO Sony air - O metal metal O Sony Zn Energy - 4 ion LiMnO 1990 2004 2005 2007 2015 Future Development Li-Ion Cell Operation (+) I (-) Li+ - Li+ A Li+ Li+ Li+ A- A- Li+ Li+ Li+ Li+ Li+ + A- Li Li+ A- (V) Voltage Li+ Li+ Li+ Li+ A- Li+ Li+ Li+ Li+ Li+ A- A- Li+ Capacity (mAh/g) LiCoO graphite 2 8/75 Li-Ion Cell Operation (Charge) (+) I (-) Li+ - Li+ A Li+ Li+ Li+ Li+ A- A- e- Li+ Li+ Li+ Li+ Li+ cell voltage + A- - Li Li+ Li+ e A- (V) Voltage Li+ Li+ Li+ Li+ A- Li+ Li+ + + + + Li Li Li -Li A- e A- Li+ Capacity (mAh/g) + - + - LiCoO2 Li1-xCoO2 + xLi + xe xLi + xe + C LixC 9/75 Li-Ion Cell Operation (Discharge) (+) (-) Li+ - Li+ A Li+ Li+ Li+ Li+ A- A- e- Li+ + + + + Li Li Li Li cell voltage + A- - Li Li+ Li+ e A- (V) Voltage Li+ Li+ Li+ Li+ A- Li+ Li+ + + + + Li Li Li -Li A- e A- Li+ Capacity (mAh/g) + - + - Li1-xCoO2 + xLi + xe LiCoO2 LixC xLi + xe + C 10/75 Vehicular energy storage: looking to the far future (Toyota, MRS Bull 2015) All-solid-state batteries (Li, Na, Li-S, etc) have in common with Lithium-air the requirement of strict control of electrochemical interfaces 11 Ion intercalation vs chemical transformations Transition metal oxides: good e- transport 21 22 23 24 25 26 27 28 29 30 Chalcogens Sc Ti V Cr Mn Fe Co Ni Cu Zn 16 O Intercalation cell Chemical Transformation cell - - 32 e e light : S - + Li+ 3 weight charge Se 52 Li+ discharge Te Graphite + 84 Li conducting LiCoO2 S ↔ Li S electrolyte 2 Po Step change Dissolution-precipitation 12 Lithium-chalcogenide (O2, Sulfur) batteries: similar Li-Sulfur Li-Oxygen Earth abundant inexpensive + - + - 2Li + 2e + S Li2S (E°= 2.27 V ) 2Li + 2e + O2 Li2O2 (E°= 2.96V) Energy density = 2500 Wh/kg Energy density = 3500 Wh/kg + - Factor of 7 0,7Li + 0.7e + Li07MO2 LiMO2 Factor of 3.5 Energy density = 220 Wh/kg ≈ 350 Wh/kg ≈ 1000 Wh/kg x 3 ..but limited cycling ≈ 200 Wh/kg 650 Wh/kg possible? Redox transform electrochemical systems + - + - + - Li + e + 2 Li0.5CoO2→ 2 LiCoO2 S2 + 2 Li /e ↔ Li2S O2 + 2 Li /e ↔ Li2O2 - MW/e- = 196 MW/e- = 23 MW/e = 23 • Dissolution-crystallization and disproportionation chemistry e- e- e- 2- 2- 2- S8 (solid) S8 Sn (n: 3 to 6) S2 Li2S (soluble) (insoluble) 2- - S8 + S6 2S 3 solids) reactive - 2- O2 (gas) O2 O2 (Li2O2) 2LiO 2 ” + O2) 1. 14 Redox transform electrochemical systems • Dissolution-crystallization and disproportionation chemistry e- e- e- 2- (-0.25) S8 S (soluble) (insoluble) 2- - S8 + S6 2S3 reactive - O2 (gas) O2 2LiO2 (Li2O2) + O2) Prone to disproportionation reactions Intermediates in the electrochemical reactions very problematic 1. 15 Reactive radicals Aging 1. 16 Li-O2 batteries: a lot of hype, a lot of challenges + - O2 + 2 Li /e ↔ 2 LiO2 → Li2O2 + O2 Positive Electrode ● minimal overpotential for oxygen reduction ● reactivity of host electrode with Li2O2 nanoporous, stable conductive host ● Overcome large overpotential on charge Organic Electrolyte .- ● O2 solubility, diffusivity ● electrolyte reacts with superoxide O2 ● Li salt solubility Review of Li-O2: D. Aurbach, B. McCloskey, L.F. Nazar, P. Bruce* Nature Energy (in press, 2016) A long term prospect 17 But….steps forward in understanding + - + - Discharge: Li /e + O2 → LiO2 → Charge: Li2O2 → Li2-xO2 + x Li /e Superoxide formed on surface: dissolution competes with 2nd reduction : dependent on current density and solvation Micron-sized Li2O2 L. Nazar et al., JACS 2013; EES (2013); Y. Shao- Horn, JPCL, 2013 + - -• Li2-xO2 → O2 + x Li + x e Favour large aggregates via O2 transport M. Wagemaker, Nazar et al., JACS (2015), JPCL 2016 18 Inherent solution mediation in Na-oxygen cells Theor: 1600 Wh/kg + - O2 + Na /e ↔ NaO2 19 Na-O2 Battery: phase transfer catalysis, high capacity ] ) -2 2 10 ppm H O 10 ppm benzoic acid 2.4 - 2 4 2.4 cm ) + mAh cm 1111111111 [ mAh 2 ( 2.2 dis 2.2 C [V] 0 Capacity cell 0 5 10 15 E Water content [ppm] 2.0 E (V vs. Na/Na E (V vs. Crystalline NaO2 cubes 1.8 0 1 2 3 4 5 High capacity Sol’n Mechanism -2-2 CapacityCapacity ( mAh[ mAh cmcm] ) - 0 ppm H2O HA + O2•- ⇆ HO2 + A + + Quasi-amorphous NaO films HO2 + Na → NaO2 + H 2 reverse on charge Negligible capacity Xia, Nazar et al. Nature Chemistry 2015, 7, 496–501 Surface Mechanism Phase transfer catalysis not possible for Li-O2 2.6 b) 4.5 Li-O2 echem superoxide Na-O2 echem ) 2.5 not stable + ) + 4.0 2.4 3.5 Charge 2.3 E° = 2.27 V E° = 2.96 V V vs. Na/Na V vs. Li/Li 3.0 ( ( 2.2 E E 2.5 2.1 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 2 2 Capacity (mAh/cm ) Capacity (mAh/cm ) + H+ + O HO 2H + O2 H2O2 2 2 O2 O2 + + + H2O2 Li2-xO2 + H HO2 + Na NaO2 + H + NaO Na+ + O Li2O2 2Li + O2 2 2 21 Redox Mediators – THE solution on charge (& discharge) Soluble molecules in the electrolyte oxidized at a potential slightly above the equilibrium potential of Li2O2. - Br /Br2 D. Aurbach et al, TTF- TTF+/3.5-3.7V Angew Chemie, 2016 P.G. Bruce et al, Nature Chemistry, 2014 + 2+ TDPA - TDPA - TDPA TEMPO- TEMPO+ 3.1/3.5 V 3.8V L. Nazar et al, J. Janek et al, JACS, 2015 ACS Central Sci, 2015 22 A Dual Step Redox Mediator for Li-O2 Cell RM/RM+ RM/RM2+ TTF 3.5 V 3.7 V quantitative TEMPO 3.8 V TDPA 3.1 V 3.5 V Kundu, Nazar et al., ACS Central Science, 2015 Requires that the negative Li electrode be passivated 23 Detrimental reactivity of HO2 with glyme electrolyte Charge “Operando” ESR studies show HO2 generates glyme radicals electrolyte decomposition products 10 ppm 120 min Charge = 6.4 G N = 19.5 G H = 6.4 G N = 19.7 G H 500 ppm 15 min Charge 3300 3320 3340 3360 3380 Find electrolytes stable to radical (HO2) hydrogen abstraction C. Xia, L. Nazar, J. Baugh et al., J. Am Chem. Soc (2016) 24 Down the Periodic Table 25 The Li-S Battery and the Redox Shuttle 2Li + S Li2Sx Li2S theoretical capacity 1675 mAh/g @ 2V cheese milk cheese 500 - 1000 mAh/g today -> 350 Wh/kg 2500 Wh/kg (full cell) Discharge e- e- Charge Polysulfide shuttle 2 Li+ Li S 2 8 Li+ a(Li S ) Lithium 2 6 + + Li Separator Lithium b(Li2S4) (Li2S) Li2Sx Li2Sx/2 internal “short circuit” Li2—S maintain active mass? 1. 26 Desirable shuttles 1. 27 The Crossroads All solid state sulfur batteries The Problem with Carbon Porous carbons Low sulfur loading, low sulfur fractions decreased funding no large scale commercialization High electrolyte ratios “catholyte” – like cells 150 Wh/L solve the problems with multipronged approaches - find ways for dissolution/precipitation to function in low electrolyte and high sulfur loading LiPS very soluble LiPS poorly soluble High donor number solvents, “Pb-acid battery” Protected negative electrode – like Li-O2 28 Li-S for transportation applications: critical metrics Challenges: high current densities (∼7 mA/cm2) high sulfur loading ~ 7 mg/cm2 electrolyte ~1.3 – 1.9 μl/mg ---- Kevin G. Gallagher et al Calculated cell-level energy density and specific energy for a 100 kWhuse, 80 kW and 360 V Li-S battery as a function of the electrolyte vol% in the cathode (50–90%) and excess Li amount in the anode (50–400%).