Addressing the Challenge of Carbon-Free Energy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Photoelectrochemical Water Splitting: a Road from Stable Metal Oxides to Protected Thin Film Solar Cells
Journal of Materials Chemistry A View Article Online REVIEW View Journal | View Issue Photoelectrochemical water splitting: a road from stable metal oxides to protected thin film solar cells Cite this: J. Mater. Chem. A, 2020, 8, 10625 Carles Ros, *a Teresa Andreu ab and Joan R. Morante ab Photoelectrochemical (PEC) water splitting has attracted great attention during past decades thanks to the possibility to reduce the production costs of hydrogen or other solar fuels, by doing so in a single step and powered by the largest source of renewable energy: the sun. Despite significant efforts to date, the productivities of stable semiconductor materials in contact with the electrolyte are limited, pushing a growing scientific community towards more complex photoelectrode structures. During the last decade, several groups have focused on the strategy of incorporating state of the art photovoltaic absorber materials (such as silicon, III–V compounds and chalcogenide-based thin films). The stability of these devices in harsh acidic or alkaline electrolytes has become a key issue, pushing transparent, conductive and protective layer research. The present review offers a detailed analysis of PEC devices from metal oxide electrodes forming a semiconductor–liquid junction to protected and catalyst- Received 9th March 2020 decorated third generation solar cells adapted into photoelectrodes. It consists of a complete overview Accepted 7th May 2020 of PEC systems, from nanoscale design to full device scheme, with a special focus on disruptive DOI: 10.1039/d0ta02755c advances enhancing efficiency and stability. Fundamental concepts, fabrication techniques and cell rsc.li/materials-a schemes are also discussed, and perspectives and challenges for future research are pointed out. -
Call for Papers | 2022 MRS Spring Meeting
Symposium CH01: Frontiers of In Situ Materials Characterization—From New Instrumentation and Method to Imaging Aided Materials Design Advancement in synchrotron X-ray techniques, microscopy and spectroscopy has extended the characterization capability to study the structure, phonon, spin, and electromagnetic field of materials with improved temporal and spatial resolution. This symposium will cover recent advances of in situ imaging techniques and highlight progress in materials design, synthesis, and engineering in catalysts and devices aided by insights gained from the state-of-the-art real-time materials characterization. This program will bring together works with an emphasis on developing and applying new methods in X-ray or electron diffraction, scanning probe microscopy, and other techniques to in situ studies of the dynamics in materials, such as the structural and chemical evolution of energy materials and catalysts, and the electronic structure of semiconductor and functional oxides. Additionally, this symposium will focus on works in designing, synthesizing new materials and optimizing materials properties by utilizing the insights on mechanisms of materials processes at different length or time scales revealed by in situ techniques. Emerging big data analysis approaches and method development presenting opportunities to aid materials design are welcomed. Discussion on experimental strategies, data analysis, and conceptual works showcasing how new in situ tools can probe exotic and critical processes in materials, such as charge and heat transfer, bonding, transport of molecule and ions, are encouraged. The symposium will identify new directions of in situ research, facilitate the application of new techniques to in situ liquid and gas phase microscopy and spectroscopy, and bridge mechanistic study with practical synthesis and engineering for materials with a broad range of applications. -
Artificial Photosynthesis Challenges: Water Splitting at Nanostructured Interfaces
Artificial Photosynthesis Challenges: Water Splitting at Nanostructured Interfaces Marcella Bonchio a ITM-CNR, University of Padova, Department of Chemical Sciences, via Marzolo 1, Padova I- 35131, Italy [email protected] Solar-powered water oxidation can be exploited for hydrogen generation by direct photocatalytic water splitting. A recent breakthrough in the field of artificial photosynthesis is the discovery of innovative oxygen evolving catalysts taken from the pool of the nano-sized, water soluble, molecular metal oxides, the so-called polyoxometalates (POMs). These catalysts provide a unique mimicry of the oxygen evolving centre in photosynthetic II enzyme (PSII), sharing a common functional-motif, i.e., a redox-active tetranuclear {M4(m-O)4} core, and effecting H2O oxidation to IV O2 with unprecedented efficiency. In this scenario, the tetra-ruthenium based POM [Ru 4(m- 10- OH)2(m-O)4(H2O)4(g-SiW10O36)2] , Ru4(SiW10)2, displays fast kinetics, exceptionally light-driven performance and electrocatalytic activity powered by carbon nanotubes.1-2 Research in the field of artificial photosynthesis for the conversion of water to fuel has recently come to the awakening turning-point that a key issue is the design of efficient catalytic routines that can operate with energy and rates commensurate with the solar flux at ground level. A factual solution to this need implies the mastering of the electron transfer distance, junctions and potential gradients at the molecular level and within a nano-structured environment. Our vision points to a careful choice/design of the nano-structured support, and to a precise positioning of the catalytic domain on such templates, by tailored synthetic protocols. -
Metal Oxides Applied to Thermochemical Water-Splitting for Hydrogen Production Using Concentrated Solar Energy
chemengineering Review Metal Oxides Applied to Thermochemical Water-Splitting for Hydrogen Production Using Concentrated Solar Energy Stéphane Abanades Processes, Materials, and Solar Energy Laboratory, PROMES-CNRS, 7 Rue du Four Solaire, 66120 Font Romeu, France; [email protected]; Tel.: +33-0468307730 Received: 17 May 2019; Accepted: 2 July 2019; Published: 4 July 2019 Abstract: Solar thermochemical processes have the potential to efficiently convert high-temperature solar heat into storable and transportable chemical fuels such as hydrogen. In such processes, the thermal energy required for the endothermic reaction is supplied by concentrated solar energy and the hydrogen production routes differ as a function of the feedstock resource. While hydrogen production should still rely on carbonaceous feedstocks in a transition period, thermochemical water-splitting using metal oxide redox reactions is considered to date as one of the most attractive methods in the long-term to produce renewable H2 for direct use in fuel cells or further conversion to synthetic liquid hydrocarbon fuels. The two-step redox cycles generally consist of the endothermic solar thermal reduction of a metal oxide releasing oxygen with concentrated solar energy used as the high-temperature heat source for providing reaction enthalpy; and the exothermic oxidation of the reduced oxide with H2O to generate H2. This approach requires the development of redox-active and thermally-stable oxide materials able to split water with both high fuel productivities and chemical conversion rates. The main relevant two-step metal oxide systems are commonly based on volatile (ZnO/Zn, SnO2/SnO) and non-volatile redox pairs (Fe3O4/FeO, ferrites, CeO2/CeO2 δ, perovskites). -
Hydrogen Production by Photoprocesses
SERifTP• -230:3418 UC Category: 241 DE88001198 Hydrogen Production by Photoprocesses Stanley R. Bull October 1988 Prepared for the International Renewable Energy Conference Honolulu, Hawaii September 19-23, 1988 Prepared under Task No. 1 050.2300 Solar Energy Research Institute A Division of Midwest Research Institute 1617 Cole Boulevard Golden, Colorado 80401-3393 Prepared for the U.S. Department of Energy Contract No. DE-AC02-83CH1 0093 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com pleteness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily con stitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Printed in the United States of America Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Microfiche A01 Printed Copy A02 Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issue of the following publications which are generally available in most libraries: Energy Research Abstracts (ERA); Govern ment ReportsAnnouncements and Index ( GRA and I); Scientific and Technical Abstract Reports(STAR); and publication NTIS-PR-360 available from NTIS at the above address. -
H2O(G)⇔ H2 + 1 2 Because of the Small Equilibrium Constant of This
HYDROGEN PRODUCTION BY HIGH-TEMPERATURE WATER SPLITTING USING MIXED OXYGEN ION-ELECTRON CONDUCTING MEMBRANES T. H. Lee, S. Wang, S. E. Dorris, and U. Balachandran Energy Technology Division Argonne National Laboratory Argonne, IL 60439, USA ABSTRACT Hydrogen production from water splitting at high temperatures has been studied with novel mixed oxygen ion-electron conducting cermet membranes. Hydrogen production rates were investigated as a function of temperature, water partial pressure, membrane thickness, and oxygen chemical potential gradient across the membranes. The hydrogen production rate increased with both increasing moisture concentration and oxygen chemical potential gradient across the membranes. A maximum hydrogen production rate of 4.4 cm3/min-cm2 (STP) was obtained with a 0.10-mm-thick membrane at 900°C in a gas containing 50 vol.% water vapor in the sweep side. Hydrogen production rate also increased with decreasing membrane thickness, but surface kinetics play an important role as membrane thickness decreases. INTRODUCTION Water dissociates into oxygen and hydrogen at high temperatures, and the dissociation increases with increasing temperature: ⇔ + 1 H2O(g ) H2 O2 . 2 Because of the small equilibrium constant of this reaction, the concentrations of generated hydrogen and oxygen are very low even at relatively high temperatures, i.e., 0.1 and 0.042% for hydrogen and oxygen, respectively, at 1600°C (1). However, significant amounts of hydrogen or oxygen could be generated at moderate temperatures if the equilibrium were shifted toward dissociation by removing either oxygen or hydrogen using a mixed-conducting membrane. While hydrogen can also be produced by high-temperature steam electrolysis, the use of mixed-conducting membranes offers the advantage of requiring no electric power or electrical circuitry. -
SOCIETY NEWS Water and Sanitation Challenges to Be Focus of 4Th Electrochemical Energy Summit by Dan Fatton
SOCIETY NEWS Water and Sanitation Challenges To Be Focus of 4th Electrochemical Energy Summit by Dan Fatton ECS is partnering with the Bill & Melinda Gates Foundation’s Water, Foundation to help address the urgent water and sanitation challenges Sanitation & Hygiene (WASH) initiative to host a multi-day workshop the world is facing,” says ECS President Paul Kohl. “This partnership at the 2014 International Electrochemical Energy Summit (E2S) in provides a unique opportunity for researchers to generate potential Cancun, Mexico being held October 5-9, 2014. The workshop will solutions and then almost immediately start testing them.” culminate in the on-the-spot distribution of over $200,000 in seed The workshop will kick off with remarks from current awardees funding from ECS, addressing critical technology gaps in water, of the Bill & Melinda Gates Foundation. Participants will be guided sanitation, and hygiene challenges being faced around the world. through facilitated brainstorming and working group sessions by ECS hopes to improve access to clean water and sanitation in Brandy Salmon of RTI International. Attendees will work in full developing countries by leveraging the brainpower of the many group and breakout sessions to address complex scientific issues, gaps scientists in electrochemistry and solid state science and technology and needs. They will be encouraged create partnerships and surface attending the 2014 ECS and SMEQ Joint International Meeting. (See new approaches to existing challenges within the WASH portfolio. page 21 for more information about this meeting.) At least two grants will be distributed on the last day of the meeting Priority topic areas will include interfaces, disinfection, energy from the more than $200,000 available, each in the range of $25,000- generation, energy storage, chemical conversion, monitoring and $100,000. -
A Consortium on Advanced Water Splitting Materials H.N
HydroGEN Overview: A Consortium on Advanced Water Splitting Materials H.N. Dinh, G. Groenewold, E. Fox, A. McDaniel, T. Ogitsu, A. Weber Presenter: Huyen Dinh, NREL Date: 5/20/2020 Venue: 2020 DOE Annual Merit Review Project ID # P148 This presentation does not contain any proprietary, confidential, or otherwise restricted information. HydroGEN Overview Timeline and Budget Partners • Start date (launch): June 2016 • FY17 DOE funding: $3.5M • FY18 DOE funding: $9.9M • FY19 DOE funding: $8.4M • FY20 planned DOE funding: $10.6M • Total DOE funding received to date: $30M Barriers • Cost • Efficiency • Durability HydroGEN: Advanced Water Splitting Materials 2 Collaboration: HydroGEN Steering Committee Huyen Dinh Adam Weber Anthony McDaniel (Director) (Deputy Director) (Deputy Director) Richard Boardman Tadashi Ogitsu Elise Fox Ned Stetson and Katie Randolph, DOE-EERE-FCTO HydroGEN: Advanced Water Splitting Materials 3 H2@Scale Energy System Vision Relevance and Impact Transportation and Beyond Large-scale, low-cost hydrogen from diverse domestic resources enables an economically competitive and environmentally beneficial future energy system across sectors Materials innovations are key to enhancing performance, durability, and cost of hydrogen generation, storage, distribution, and utilization technologies key to H2@Scale *Illustrative example, not comprehensive Hydrogen at Scale (H2@Scale): Key to a Clean, Economic, and Sustainable Energy System, Bryan Pivovar, Neha Rustagi, https://energy.gov/eere/fuelcells/h2-scale Sunita Satyapal, Electrochem. -
Joint Center for Artificial Photosynthesis: Corrosion Protection Schemes to Enable Durable Solar Water Splitting Devices
II.G.11 Joint Center for Artificial Photosynthesis: Corrosion Protection Schemes to Enable Durable Solar Water Splitting Devices enable the development of a new generation of robust Principal Investigator: Carl Koval integrated devices for efficient solar water splitting. California Institute of Technology, Pasadena, CA Abstract Team Members • Ian Sharp ([email protected], Team Lead), Jinhui Yang, Fabrication of overall water splitting devices requires Yongjing Lin, Ali Javey, Joel Ager (Project Lead) the incorporation of all elements - catalysts, light absorbers, Lawrence Berkeley National Laboratory membranes, and interfacial layers - into an integrated system • Shu Hu, Michael Lichterman, Nate Lewis (Scientific in which all materials are stable under identical conditions. Director and Project Lead) Durability and compatibility of materials remain critical California Institute of Technology hurdles in the field. In addition to the discovery of new materials, a primary strategy for overcoming this limitation DOE Program Manager: Gail McLean is aimed at utilizing thin film surface coatings for preventing Phone: (301) 903-7807 corrosion of photoelectrodes, while also allowing efficient Email: [email protected] charge transfer between the semiconductor light absorber and catalysts. Here, we present a series of case examples highlighting approaches for thin film corrosion protection Objectives that enable sustained operation of both photocathodes and photoanodes. Each of these examples represents a significant The mission of the Joint Center for Artificial technical advancement and provides complimentary insight Photosynthesis (JCAP) is to produce fundamental scientific into the important roles of interfacial energetics, physical discoveries and major technological breakthroughs to enable and chemical structure, photon management, and defect the development of energy-efficient, cost-effective, and engineering. -
Highly Efficient Solar Water-Splitting Using 3D/2D Hydrophobic
Highly efficient solar water‐splitting using 3D/2D hydrophobic perovskites with corrosion resistant barriers Aditya Mohite Rice University P193 May 30, 2020 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project Overview Project Partners Award # DE-FOA-0002022 Aditya Mohite, Rice University Start/End Date 01/01/20-01/01/23 Michael Wong, Rice University Total Project $ 1M (DOE + Cost Value* Share) Project Vision Cost Share % 200K Achieve cost‐effective solar water‐splitting by combining high‐efficiency, low‐cost perovskite solar cells with HER and OER catalysts made from earth abundant materials Project Impact The development of a durable and efficient water splitting system for hydrogen production using low‐cost, abundant materials is a game‐ changer for renewable solar energy storage and chemical transformations * this amount does not cover support for HydroGEN resources leveraged by the project (which is provided separately by DOE) HydroGEN: Advanced Water Splitting Materials 2 Approach: Summary Project Motivation Key Impact Our team has published high‐impact papers Metric State of the Art Expected Advance in optoelectronics, device integration, and Stability [h] 150h 500h perovskites, as well as catalyst material synthesis, corrosion chemistry, and catalyst STH 19.3% 20% optimization. Preliminary results show >1h efficiency device lifetime in aqueous media and 14% Cost [$/m2] 20K $2/gge efficiency as a PV. Partnerships LBNL, Toma: Understanding degradation Barriers mechanisms in -
New Approaches for High Energy Density Lithium–Sulfur Battery
New Approaches for High Energy Density LithiumÀSulfur Battery Cathodes SCOTT EVERS AND LINDA F. NAZAR* Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada RECEIVED ON MAY 25, 2012 CONSPECTUS he goal of replacing combustion engines or reducing their use presents a daunting problem for society. Current lithium-ion T technologies provide a stepping stone for this dramatic but inevitable change. However, the theoretical gravimetric capacity (∼300 mA h gÀ1) is too low to overcome the problems of limited range in electric vehicles, and their cost is too high to sustain the commercial viability of electrified transportation. Sulfur is the one of the most promising next generation cathode materials. Since the 1960s, researchers have studied sulfur as a cathode, but only recently have great strides been made in preparing viable composites that can be used commercially. Sulfur batteries implement inexpensive, earth-abundant elements at the cathode while offering up to a five-fold increase in energy density compared with present Li-ion batteries. Over the past few years, researchers have come closer to solving the challenges associated with the sulfur cathode. Using carbon or conducting polymers, researchers have wired up sulfur, an excellent insulator, successfully. These conductive hosts also function to encapsulate the active sulfur mass upon reduction/oxidation when highly soluble lithium polysulfides are formed. These soluble discharge products remain a crux of the LiÀS cell and need to be contained in order to increase cycle life and capacity retention. The use of mesoporous carbons and tailored designs featuring porous carbon hollow spheres have led to highly stable discharge capacities greater than 900 mA h gÀ1 over 100 cycles. -
Usaid Grid-Scale Energy Storage Technologies Primer
USAID GRID-SCALE ENERGY STORAGE TECHNOLOGIES PRIMER www.greeningthegrid.org | www.nrel.gov/usaid-partnership USAID GRID-SCALE ENERGY STORAGE TECHNOLOGIES PRIMER Authors Thomas Bowen, Ilya Chernyakhovskiy, Kaifeng Xu, Sika Gadzanku, Kamyria Coney National Renewable Energy Laboratory July 2021 A companion report to the USAID Energy Storage Decision Guide for Policymakers www.greeningthegrid.org | www.nrel.gov/usaid-partnership Prepared by NOTICE This work was authored, in part, by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the United States Agency for International Development (USAID) under Contract No. IAG-17-2050. The views expressed in this report do not necessarily represent the views of the DOE or the U.S. Government, or any agency thereof, including USAID. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov. Front cover: photo from iStock 506609532; Back cover: photo from iStock 506611252 NREL prints on paper that contains recycled content. Acknowledgments The authors are greatly indebted to several individuals for their support and guidance. We wish to thank Dominique Bain, Marcus Bianchi, Nate Blair, Anthony Burrell, Paul Denholm, Greg Stark, and Keith Wipke at the National Renewable Energy Laboratory (NREL), and Oliver Schmidt at Imperial College London for their reviews. And we wish to thank Isabel McCan, Christopher Schwing, and Liz Breazeale for communications, design, and editing support.