An Investigation of Composite Dropsonde Profiles for Developing

Total Page:16

File Type:pdf, Size:1020Kb

An Investigation of Composite Dropsonde Profiles for Developing 542 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 70 An Investigation of Composite Dropsonde Profiles for Developing and Nondeveloping Tropical Waves during the 2010 PREDICT Field Campaign WILLIAM A. KOMAROMI Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida (Manuscript received 15 February 2012, in final form 20 August 2012) ABSTRACT Composite dropsonde profiles are analyzed for developing and nondeveloping tropical waves in an attempt to improve the understanding of tropical cyclogenesis. These tropical waves were sampled by 25 re- connaissance missions during the 2010 Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) field campaign. Comparisons are made between mean profiles of temperature, mixing ratio, relative humidity, radial and tangential winds, relative vorticity, and virtual convective available potential energy (CAPE) for genesis and nongenesis cases. Genesis soundings are further analyzed in temporal pro- gression to investigate whether significant changes in the thermodynamic or wind fields occur during the transition from tropical wave to tropical cyclone. Significant results include the development of positive temperature anomalies from 500 to 200 hPa 2 days prior to genesis in developing waves. This is not observed in the nongenesis mean. Progressive mesoscale moistening of the column is observed within 150 km of the center of circulation prior to genesis. The genesis composite is found to be significantly moister than the nongenesis composite at the middle levels, while comparatively drier at low levels, suggesting that dry air is more detrimental to genesis when located at the middle levels. Time-varying tangential wind profiles reveal an initial delay in intensification, followed by an increase in organization 24 h pregenesis. The vertical evolution of relative vorticity, in addition to a warm- over-cold thermal structure, is more consistent with a top-down than a bottom-up genesis mechanism. Last, CAPE values are much greater for nongenesis than genesis profiles, indicating that greater instability does not necessarily favor genesis. 1. Introduction surface temperatures greater than or equal to 268C (Palmen 1948), an unstable or conditionally unstable Predicting tropical cyclogenesis remains one of the environment, and relatively high moisture content from great forecasting challenges to today’s meteorological the surface through 5 km (Gray 1979). However, despite community (Emanuel 2005). Much of our limited un- these well-known criteria, the exact sequence of events derstanding can likely be attributed to our inability to culminating in tropical cyclogenesis remains unknown. differentiate the often subtle physical differences be- Two differing views of tropical cyclone formation are tween developing and nondeveloping tropical cyclones the top-down and the bottom-up hypotheses. Ritchie (TCs), and any such differences, when observed, have and Holland (1997) and Simpson et al. (1997) describe been insufficiently documented (Dunkerton et al. 2009). a top-down mechanism for genesis by which successive Among the well-known necessary dynamic conditions mergers of mesoscale convective systems (MCSs) in- for tropical cyclogenesis are background cyclonic vor- crease the size and/or strength of the midlevel vortex, ticity, 850–200-hPa tropospheric wind shear of less than 2 2 which induces a surface circulation through vertical 15 m s 1 and preferably below 10 m s 1, and a suffi- penetration and vortex stretching. Similarly, Bister and ciently high Coriolis parameter (Gray 1968). Ther- Emanuel (1997) propose that a stratiform rain region modynamic prerequisites exist as well, including sea associated with an existing MCS acts to moisten and cool the mid- to lower levels. The level of peak cooling descends within the stratiform rain region, thereby Corresponding author address: William Komaromi, RSMAS, Di- vision of Meteorology and Physical Oceanography, 4600 Rickenbacker lowering the level of maximum potential vorticity (PV) Causeway, Miami, FL 33149. production, while moistening acts to limit the occur- E-mail: [email protected] rence of dry downdrafts. Along with the necessity of DOI: 10.1175/JAS-D-12-052.1 Ó 2013 American Meteorological Society Unauthenticated | Downloaded 09/25/21 07:15 AM UTC FEBRUARY 2013 K O M A R O M I 543 a strengthening midlevel circulation, Nolan (2007) also disturbance within the pouch is repeatedly moistened by found humidification of the inner core due to moist deep moist convection within the critical layer while detrainment and precipitation from deep convective remaining somewhat protected from lateral intrusion of towers preceding genesis. However, Nolan (2007) does dry air and deformation by horizontal and vertical shear. not necessitate a top-down genesis process. Lastly, a re- This protovortex, collocated with the critical latitude, is cent study by Raymond et al. (2011) of five tropical cy- then able to keep pace with the parent wave until it has clogenesis events in the northwestern Pacific suggests strengthened into a self-maintaining entity. Hypotheti- that tropical cyclogenesis is facilitated by a preexisting cally, the marsupial paradigm could be used in conjunc- midlevel vortex. This midlevel vortex creates a cold core tion with either the top-down or bottom-up genesis at low levels, which alters deep convection as to facilitate hypotheses. Dunkerton et al. (2009) assume a bottom- spinup. up progression of genesis. A slightly differing sequence, known as bottom-up As already alluded to, much of the difficulty in iden- genesis, is proposed by Hendricks et al. (2004) and tifying the exact order of processes that occur during Montgomery et al. (2006), in which individual deep genesis, or whether top-down or bottom-up sequences moist convective updrafts or vortical hot towers (VHTs) both occur under different conditions, can be attributed develop within the tropical wave, amplify preexisting to a lack of in situ data prior to genesis. In an attempt to cyclonic vorticity, and gradually consolidate to form expand upon the limited dataset, several field campaigns a low-level center of circulation. Latent heat released have sampled tropical cyclones during and shortly after within these VHTs aids in the development of the mid- the genesis stage, including the Tropical Experiment in level warm core, and surface convergence and upper- Mexico (TEXMEX; Bister and Emanuel 1997; Raymond level divergence commence. Observational evidence et al. 1998), the Tropical Cloud Systems and Processes supporting a top-down mechanism for genesis is pre- (TCSP) experiment in 2005 (Halverson et al. 2007), the sented by Ritchie and Holland (1997) and Mapes and National Aeronautics and Space Administration (NASA) Houze (1995), while Houze et al. (2009) find evidence component of the African Monsoon Multidisciplinary that support the VHT argument, all for individual case Analyses (AMMA) project in 2006 (Zipser et al. 2009), studies. the Tropical Cyclone Structure experiment in 2008 Regardless of the exact order of processes by which (TCS-08; Elsberry and Harr 2008), as well as a handful genesis occurs, the dependence upon some initial MCS of observations from the Hurricane Rainband and In- or VHTs assumes sufficient tropospheric instability tensity Change Experiment (RAINEX) of 2005 (Houze to allow deep convection. Using in situ data, Molinari et al. 2006). Case studies using data from these experi- and Vollaro (2010) find that highly sheared, generally ments, such as Zipser et al. (2009), emphasize the diffi- weaker tropical cyclones tend to be associated with culty of achieving genesis in excessively dry air masses. higher convective available potential energy (CAPE) Ritchie and Holland (1997), Davis et al. (2008), Houze than their nonsheared, generally stronger counterparts. et al. (2009), and Braun et al. (2010) have shown that the Similarly, Braun (2010) found higher CAPE in envi- progressive strengthening of a midlevel vortex, a grad- ronments for weakening TCs compared to strengthening ual moistening of the column in a region of deep con- TCs in the days following genesis. In idealized numerical vection, and the development of a warm core are all simulations, Nolan et al. (2007) found that greater maxi- evident in observations of various tropical cyclones mum potential intensity (MPI) resulted in greater likeli- during and shortly following genesis. While these studies hood of genesis, while greater CAPE did not. Nonetheless, allude to the development of a warm core, the altitude of the question of whether genesis becomes increasingly the warm-core maxima and the timing of the devel- favored with increasing instability, or whether there is opment of the warm core are generally neglected. Ear- some threshold beyond which decreasing stability is lier observational studies such as La Seur and Hawkins detrimental to genesis, has not been conclusively an- (1963) and Hawkins and Rubsam (1968) have found swered via observational evidence. maximum warm anomalies at around 250 hPa in mature A recent endeavor to better understand tropical TCs, while Hawkins and Imbembo (1976) and Stern and cyclogenesis from a wave-relative framework is under- Nolan (2012) suggest that the primary warm core is lo- taken by Dunkerton et al. (2009). Known as the mar- cated from 500 to as low as 650 hPa. The level of max- supial paradigm, tropical depression formation from imum warm anomalies for pregenesis disturbances a predepression wave trough in the lower troposphere is remains
Recommended publications
  • The Tropic Islesbreezes
    Published by On Trac Publishing, P.O. Box 985, Bradenton, FL 34206 (941) 723-5003 Tropic Isles • 1503 28th Ave. West • Palmetto, Florida 34221 • (941) 721-8888 • Website: www.TropicIsles.net Home of the Month Meet Your New Neighbors By Cindy Shaw The Tropic Isles I’d like to introduce you to our new, part-time neighbors, PAUL September and MIRIAM GROSSI. They live in their new home at 128 Capri Dr. Paul is originally from New York City, NY, but both he and Miriam now reside part-time in Millersburg, Ohio. Paul is a retired hospital administrator in Ohio and Okla- homa where he worked for 35 years. Miriam is a retired RN of 17 years and has foster parented newborns for many years. Paul and Miriam also ran a B & B in Millersburg for 13 years. They have been coming down to this area for 14 years and have been vacationing on Anna Maria Island. While on vacation, they 2017 would often ride out to Emerson Point. They would also do an exchange system with their B & B allowing interested people to September’s “Home of the Month” belongs to Tommy and stay in their B & B in exchange for staying in other peoples’ homes. Charlene Barlow at 1312 29th Ave. W. Lots of work and loving When they became interested in putting down roots, they touches, both inside and out, went into the creation of this cute began looking at vacant lots in the area where they could build little “tropical cottage”. Congratulations! a house. They went to Jacobson Homes who sent them to Tropic Isles.
    [Show full text]
  • State of the Climate in 2016
    STATE OF THE CLIMATE IN 2016 Special Supplement to the Bullei of the Aerica Meteorological Society Vol. 98, No. 8, August 2017 STATE OF THE CLIMATE IN 2016 Editors Jessica Blunden Derek S. Arndt Chapter Editors Howard J. Diamond Jeremy T. Mathis Ahira Sánchez-Lugo Robert J. H. Dunn Ademe Mekonnen Ted A. Scambos Nadine Gobron James A. Renwick Carl J. Schreck III Dale F. Hurst Jacqueline A. Richter-Menge Sharon Stammerjohn Gregory C. Johnson Kate M. Willett Technical Editor Mara Sprain AMERICAN METEOROLOGICAL SOCIETY COVER CREDITS: FRONT/BACK: Courtesy of Reuters/Mike Hutchings Malawian subsistence farmer Rozaria Hamiton plants sweet potatoes near the capital Lilongwe, Malawi, 1 February 2016. Late rains in Malawi threaten the staple maize crop and have pushed prices to record highs. About 14 million people face hunger in Southern Africa because of a drought that has been exacerbated by an El Niño weather pattern, according to the United Nations World Food Programme. A supplement to this report is available online (10.1175/2017BAMSStateoftheClimate.2) How to cite this document: Citing the complete report: Blunden, J., and D. S. Arndt, Eds., 2017: State of the Climate in 2016. Bull. Amer. Meteor. Soc., 98 (8), Si–S277, doi:10.1175/2017BAMSStateoftheClimate.1. Citing a chapter (example): Diamond, H. J., and C. J. Schreck III, Eds., 2017: The Tropics [in “State of the Climate in 2016”]. Bull. Amer. Meteor. Soc., 98 (8), S93–S128, doi:10.1175/2017BAMSStateoftheClimate.1. Citing a section (example): Bell, G., M. L’Heureux, and M. S. Halpert, 2017: ENSO and the tropical Paciic [in “State of the Climate in 2016”].
    [Show full text]
  • The Effects of Hurricane Otto on the Soil Ecosystems of Three Forest Types in the Northern
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.19.998799; this version posted March 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The effects of Hurricane Otto on the soil ecosystems of three forest types in the Northern Zone of Costa Rica William D. Eaton1#, Katie M. McGee2, Kiley Alderfer1¶, Angie Ramirez Jimenez1¶, and Mehrdad Hajibabaei2 1 Pace University Biology Department, One Pace Plaza, New York, NY 10038 2Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada. ¶These authors contributed equally to this work # Corresponding author E-mail: [email protected] William D. Eaton Roles: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, Resources, Supervision, Writing-Original Draft Preparation, Writing-Review and Editing Katie M. McGee Roles: Investigation, Formal Analysis, Writing-Original Draft Preparation, Writing-Review and Editing Kiley Alderfer Contributed equally in this work with: Kiley Aldefer and Angie Ramirez Jimenez Roles: Investigation, Formal Analysis, Writing-Original Draft Preparation Angie Ramirez Jimenez Contributed equally in this work with: Kiley Aldefer and Angie Ramirez Jimenez Roles: Investigation, Formal Analysis, Writing-Original Draft Preparation Mehrdad Hajibabaei Roles: Data Curation, Resources bioRxiv preprint doi: https://doi.org/10.1101/2020.03.19.998799; this version posted March 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • CCRIFSPC Journey Through T
    CCRIF receives the ‘Reinsurance Initiative of the Year’ Award for the reinsurance initiative that generated the most promising CARICOM Heads of Government approach change to a signifi cant area of the World Bank for assistance to design business – the award was offered and implement a cost-effective risk transfer by The Review, the leading programme for member governments magazine of the international reinsurance industry Hurricane Ivan causes CCRIF makes payout to Turks and billions of dollars of losses Caicos Islands for Hurricane Ike across the Caribbean CCRIF makes the Real-Time Forecasting System (RTFS) available CCRIF is named to members for the fi rst ‘Transaction of time – each year it is the Year’ at the available to members Insurance Day at the beginning of London Market the Atlantic Hurricane Awards Season 2007 2004 2008 The Caribbean Catastrophe Risk Insurance Facility is formed as the fi rst multi-country, multi-peril pooled catastrophe risk insurance facility in the world A Multi-donor Trust Fund (MDTF) is established to support CCRIF’s initial operations CCRIF signs fi rst MOU with the Caribbean Institute CCRIF provides tropical cyclone (hurricane) and earthquake for Meteorology and Hydrology (CIMH) – over the coverage to 16 Caribbean member governments years, CCRIF has signed MOUs with the Caribbean Community Climate Change Centre (CCCCC), United Nations Economic Commission for Latin America and the Caribbean (ECLAC), Caribbean Disaster Emergency Management Agency (CDEMA), Inter- American Development Bank (IDB), University
    [Show full text]
  • 1 a Hyperactive End to the Atlantic Hurricane Season: October–November 2020
    1 A Hyperactive End to the Atlantic Hurricane Season: October–November 2020 2 3 Philip J. Klotzbach* 4 Department of Atmospheric Science 5 Colorado State University 6 Fort Collins CO 80523 7 8 Kimberly M. Wood# 9 Department of Geosciences 10 Mississippi State University 11 Mississippi State MS 39762 12 13 Michael M. Bell 14 Department of Atmospheric Science 15 Colorado State University 16 Fort Collins CO 80523 17 1 18 Eric S. Blake 19 National Hurricane Center 1 Early Online Release: This preliminary version has been accepted for publication in Bulletin of the American Meteorological Society, may be fully cited, and has been assigned DOI 10.1175/BAMS-D-20-0312.1. The final typeset copyedited article will replace the EOR at the above DOI when it is published. © 2021 American Meteorological Society Unauthenticated | Downloaded 09/26/21 05:03 AM UTC 20 National Oceanic and Atmospheric Administration 21 Miami FL 33165 22 23 Steven G. Bowen 24 Aon 25 Chicago IL 60601 26 27 Louis-Philippe Caron 28 Ouranos 29 Montreal Canada H3A 1B9 30 31 Barcelona Supercomputing Center 32 Barcelona Spain 08034 33 34 Jennifer M. Collins 35 School of Geosciences 36 University of South Florida 37 Tampa FL 33620 38 2 Unauthenticated | Downloaded 09/26/21 05:03 AM UTC Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-20-0312.1. 39 Ethan J. Gibney 40 UCAR/Cooperative Programs for the Advancement of Earth System Science 41 San Diego, CA 92127 42 43 Carl J. Schreck III 44 North Carolina Institute for Climate Studies, Cooperative Institute for Satellite Earth System 45 Studies (CISESS) 46 North Carolina State University 47 Asheville NC 28801 48 49 Ryan E.
    [Show full text]
  • 1St View 1 January 2011
    1ST VIEW 1 January 2011 Page TABLE OF CONTENTS RENEWALS – 1 January 2011 Introduction 3 Casualty Territory and Comments 4 Rates 6 Specialties Line of Business and Comments 6 Rates 8 Property Territory and Comments 9 Rates Rate Graphs 3 Capital Markets Comments 5 Workers’ Compensation Territory and Comments 5 Rates 5 1st View This thrice yearly publication delivers the very first view on current market conditions to our readers. In addition to real-time Event Reports, our clients receive our daily news brief, Willis Re Rise ’ n shinE, periodic newsletters, white papers and other reports. Willis Re Global resources, local delivery For over 00 years, Willis Re has proudly served its clients, helping them obtain better value solutions and make better reinsurance decisions. As one of the world’s premier global reinsurance brokers, with 40 locations worldwide, Willis Re provides local service with the full backing of an integrated global reinsurance broker. © Copyright 00 Willis Limited / Willis Re Inc. All rights reserved: No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, whether electronic, mechanical, photocopying, recording, or otherwise, without the permission of Willis Limited / Willis Re Inc. Some information contained in this report may be compiled from third party sources we consider to be reliable; however, we do not guarantee and are not responsible for the accuracy of such. This report is for general guidance only, is not intended to be relied upon, and action based on or in connection with anything contained herein should not be taken without first obtaining specific advice.
    [Show full text]
  • Deciphering Key Processes Controlling Rainfall Isotopic Variability During Extreme Tropical Cyclones
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335991660 Deciphering key processes controlling rainfall isotopic variability during extreme tropical cyclones Article · September 2019 CITATION READS 1 105 13 authors, including: Ricardo Sánchez-Murillo Ana M. Durán‐Quesada National University of Costa Rica University of Costa Rica 155 PUBLICATIONS 497 CITATIONS 50 PUBLICATIONS 869 CITATIONS SEE PROFILE SEE PROFILE Germain Esquivel Hernández Christian Birkel National University of Costa Rica University of Costa Rica 102 PUBLICATIONS 285 CITATIONS 157 PUBLICATIONS 2,070 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Ocean Acidification and their impact in HABs View project TROPISECA: Multi-lateral University Cooperation on the Management of Droughts in Tropical Catchments View project All content following this page was uploaded by Carlos M Alonso-Hernandez on 24 September 2019. The user has requested enhancement of the downloaded file. ARTICLE https://doi.org/10.1038/s41467-019-12062-3 OPEN Deciphering key processes controlling rainfall isotopic variability during extreme tropical cyclones Ricardo Sánchez-Murillo 1*, Ana M. Durán-Quesada2, Germain Esquivel-Hernández1, Daniela Rojas-Cantillano3, Christian Birkel4,5, Kristen Welsh6, Minerva Sánchez-Llull7, Carlos M. Alonso-Hernández7, Doerthe Tetzlaff 8,9,5, Chris Soulsby5, Jan Boll10, Naoyuki Kurita11 & Kim M. Cobb12 1234567890():,; The Mesoamerican and Caribbean (MAC) region is characterized by tropical cyclones (TCs), strong El Niño-Southern Oscillation events, and climate variability that bring unique hazards to socio-ecological systems. Here we report the first characterization of the isotopic evolution of a TC (Hurricane Otto, 2016) in the MAC region.
    [Show full text]
  • Natural Disasters in Latin America and the Caribbean
    NATURAL DISASTERS IN LATIN AMERICA AND THE CARIBBEAN 2000 - 2019 1 Latin America and the Caribbean (LAC) is the second most disaster-prone region in the world 152 million affected by 1,205 disasters (2000-2019)* Floods are the most common disaster in the region. Brazil ranks among the 15 548 On 12 occasions since 2000, floods in the region have caused more than FLOODS S1 in total damages. An average of 17 23 C 5 (2000-2019). The 2017 hurricane season is the thir ecord in terms of number of disasters and countries affected as well as the magnitude of damage. 330 In 2019, Hurricane Dorian became the str A on STORMS record to directly impact a landmass. 25 per cent of earthquakes magnitude 8.0 or higher hav S America Since 2000, there have been 20 -70 thquakes 75 in the region The 2010 Haiti earthquake ranks among the top 10 EARTHQUAKES earthquak ory. Drought is the disaster which affects the highest number of people in the region. Crop yield reductions of 50-75 per cent in central and eastern Guatemala, southern Honduras, eastern El Salvador and parts of Nicaragua. 74 In these countries (known as the Dry Corridor), 8 10 in the DROUGHTS communities most affected by drought resort to crisis coping mechanisms. 66 50 38 24 EXTREME VOLCANIC LANDSLIDES TEMPERATURE EVENTS WILDFIRES * All data on number of occurrences of natural disasters, people affected, injuries and total damages are from CRED ME-DAT, unless otherwise specified. 2 Cyclical Nature of Disasters Although many hazards are cyclical in nature, the hazards most likely to trigger a major humanitarian response in the region are sudden onset hazards such as earthquakes, hurricanes and flash floods.
    [Show full text]
  • Cranking up the Intensity: Climate Change and Extreme Weather Events
    CRANKING UP THE INTENSITY: CLIMATE CHANGE AND EXTREME WEATHER EVENTS CLIMATECOUNCIL.ORG.AU Thank you for supporting the Climate Council. The Climate Council is an independent, crowd-funded organisation providing quality information on climate change to the Australian public. Published by the Climate Council of Australia Limited ISBN: 978-1-925573-14-5 (print) 978-1-925573-15-2 (web) © Climate Council of Australia Ltd 2017 This work is copyright the Climate Council of Australia Ltd. All material Professor Will Steffen contained in this work is copyright the Climate Council of Australia Ltd Climate Councillor except where a third party source is indicated. Climate Council of Australia Ltd copyright material is licensed under the Creative Commons Attribution 3.0 Australia License. To view a copy of this license visit http://creativecommons.org.au. You are free to copy, communicate and adapt the Climate Council of Australia Ltd copyright material so long as you attribute the Climate Council of Australia Ltd and the authors in the following manner: Cranking up the Intensity: Climate Change and Extreme Weather Events by Prof. Lesley Hughes Professor Will Steffen, Professor Lesley Hughes, Dr David Alexander and Dr Climate Councillor Martin Rice. The authors would like to acknowledge Prof. David Bowman (University of Tasmania), Dr. Kathleen McInnes (CSIRO) and Dr. Sarah Perkins-Kirkpatrick (University of New South Wales) for kindly reviewing sections of this report. We would also like to thank Sally MacDonald, Kylie Malone and Dylan Pursche for their assistance in preparing the report. Dr David Alexander Researcher, — Climate Council Image credit: Cover Photo “All of this sand belongs on the beach to the right” by Flickr user Rob and Stephanie Levy licensed under CC BY 2.0.
    [Show full text]
  • Summary of 2010 Atlantic Seasonal Tropical Cyclone Activity and Verification of Author's Forecast
    SUMMARY OF 2010 ATLANTIC TROPICAL CYCLONE ACTIVITY AND VERIFICATION OF AUTHOR’S SEASONAL AND TWO-WEEK FORECASTS The 2010 hurricane season had activity at well above-average levels. Our seasonal predictions were quite successful. The United States was very fortunate to have not experienced any landfalling hurricanes this year. By Philip J. Klotzbach1 and William M. Gray2 This forecast as well as past forecasts and verifications are available via the World Wide Web at http://hurricane.atmos.colostate.edu Emily Wilmsen, Colorado State University Media Representative, (970-491-6432) is available to answer various questions about this verification. Department of Atmospheric Science Colorado State University Fort Collins, CO 80523 Email: [email protected] As of 10 November 2010* *Climatologically, about two percent of Net Tropical Cyclone activity occurs after this date 1 Research Scientist 2 Professor Emeritus of Atmospheric Science 1 ATLANTIC BASIN SEASONAL HURRICANE FORECASTS FOR 2010 Forecast Parameter and 1950-2000 Climatology 9 Dec 2009 Update Update Update Observed (in parentheses) 7 April 2010 2 June 2010 4 Aug 2010 2010 Total Named Storms (NS) (9.6) 11-16 15 18 18 19 Named Storm Days (NSD) (49.1) 51-75 75 90 90 88.25 Hurricanes (H) (5.9) 6-8 8 10 10 12 Hurricane Days (HD) (24.5) 24-39 35 40 40 37.50 Major Hurricanes (MH) (2.3) 3-5 4 5 5 5 Major Hurricane Days (MHD) (5.0) 6-12 10 13 13 11 Accumulated Cyclone Energy (ACE) (96.2) 100-162 150 185 185 163 Net Tropical Cyclone Activity (NTC) (100%) 108-172 160 195 195 195 Note: Any storms forming after November 10 will be discussed with the December forecast for 2011 Atlantic basin seasonal hurricane activity.
    [Show full text]
  • MASARYK UNIVERSITY BRNO Diploma Thesis
    MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION DEPARTMENT OF ENGLISH LANGUAGE AND LITERATURE Presentation Sentences in Wikipedia: FSP Analysis Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský Declaration I declare that I have worked on this thesis independently, using only the primary and secondary sources listed in the bibliography. I agree with the placing of this thesis in the library of the Faculty of Education at the Masaryk University and with the access for academic purposes. Brno, 30th March 2018 …………………………………………. Bc. Lukáš Opavský Acknowledgements I would like to thank my supervisor, doc. Mgr. Martin Adam, Ph.D. for his kind help and constant guidance throughout my work. Bc. Lukáš Opavský OPAVSKÝ, Lukáš. Presentation Sentences in Wikipedia: FSP Analysis; Diploma Thesis. Brno: Masaryk University, Faculty of Education, English Language and Literature Department, 2018. XX p. Supervisor: doc. Mgr. Martin Adam, Ph.D. Annotation The purpose of this thesis is an analysis of a corpus comprising of opening sentences of articles collected from the online encyclopaedia Wikipedia. Four different quality categories from Wikipedia were chosen, from the total amount of eight, to ensure gathering of a representative sample, for each category there are fifty sentences, the total amount of the sentences altogether is, therefore, two hundred. The sentences will be analysed according to the Firabsian theory of functional sentence perspective in order to discriminate differences both between the quality categories and also within the categories.
    [Show full text]
  • & ~ Hurricane Season Review ~
    & ~ Hurricane Season Review ~ St. Maarten experienced drought conditions in 2016 with no severe weather events. All Photos compliments Paul G. Ellinger Meteorological Department St. Maarten Airport Rd. # 114, Simpson Bay (721) 545-2024 or (721) 545-4226 www.meteosxm.com MDS Climatological Summary 2016 The information contained in this Climatological Summary must not be copied in part or any form, or communicated for the use of any other party without the expressed written permission of the Meteorological Department St. Maarten. All data and observations were recorded at the Princess Juliana International Airport. This document is published by the Meteorological Department St. Maarten, and a digital copy is available on our website. Prepared by: Sheryl Etienne-LeBlanc Published by: Meteorological Department St. Maarten Airport Road #114, Simpson Bay St. Maarten, Dutch Caribbean Telephone: (721) 545-2024 or (721) 545-4226 Fax: (721) 545-2998 Website: www.meteosxm.com E-mail: [email protected] www.facebook.com/sxmweather www.twitter.com/@sxmweather MDS © March 2017 Page 2 of 28 MDS Climatological Summary 2016 Table of Contents Introduction.............................................................................................................. 4 Island Climatology……............................................................................................. 5 About Us……………………………………………………………………………..……….……………… 6 2016 Hurricane Season Local Effects.....................................................................................................
    [Show full text]