Phenotypic Variation? a Case Study from the Burgess Shale.', Palaeontology., 60 (2)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exceptional Fossil Preservation During CO2 Greenhouse Crises? Gregory J
Palaeogeography, Palaeoclimatology, Palaeoecology 307 (2011) 59–74 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Exceptional fossil preservation during CO2 greenhouse crises? Gregory J. Retallack Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA article info abstract Article history: Exceptional fossil preservation may require not only exceptional places, but exceptional times, as demonstrated Received 27 October 2010 here by two distinct types of analysis. First, irregular stratigraphic spacing of horizons yielding articulated Triassic Received in revised form 19 April 2011 fishes and Cambrian trilobites is highly correlated in sequences in different parts of the world, as if there were Accepted 21 April 2011 short temporal intervals of exceptional preservation globally. Second, compilations of ages of well-dated fossil Available online 30 April 2011 localities show spikes of abundance which coincide with stage boundaries, mass extinctions, oceanic anoxic events, carbon isotope anomalies, spikes of high atmospheric carbon dioxide, and transient warm-wet Keywords: Lagerstatten paleoclimates. Exceptional fossil preservation may have been promoted during unusual times, comparable with fi Fossil preservation the present: CO2 greenhouse crises of expanding marine dead zones, oceanic acidi cation, coral bleaching, Trilobite wetland eutrophication, sea level rise, ice-cap melting, and biotic invasions. Fish © 2011 Elsevier B.V. All rights reserved. Carbon dioxide Greenhouse 1. Introduction Zeigler, 1992), sperm (Nishida et al., 2003), nuclei (Gould, 1971)and starch granules (Baxter, 1964). Taphonomic studies of such fossils have Commercial fossil collectors continue to produce beautifully pre- emphasized special places where fossils are exceptionally preserved pared, fully articulated, complex fossils of scientific(Simmons et al., (Martin, 1999; Bottjer et al., 2002). -
Mesozoic and Cenozoic Sequence Stratigraphy of European Basins
Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3789969/9781565760936_frontmatter.pdf by guest on 26 September 2021 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3789969/9781565760936_frontmatter.pdf by guest on 26 September 2021 MESOZOIC AND CENOZOIC SEQUENCE STRATIGRAPHY OF EUROPEAN BASINS PREFACE Concepts of seismic and sequence stratigraphy as outlined in To further stress the importance of well-calibrated chronos- publications since 1977 made a substantial impact on sedimen- tratigraphic frameworks for the stratigraphic positioning of geo- tary geology. The notion that changes in relative sea level shape logic events such as depositional sequence boundaries in a va- sediment in predictable packages across the planet was intui- riety of depositional settings in a large number of basins, the tively attractive to many sedimentologists and stratigraphers. project sponsored a biostratigraphic calibration effort directed The initial stratigraphic record of Mesozoic and Cenozoic dep- at all biostratigraphic disciplines willing to participate. The re- ositional sequences, laid down in response to changes in relative sults of this biostratigraphic calibration effort are summarized sea level, published in Science in 1987 was greeted with great, on eight charts included in this volume. albeit mixed, interest. The concept of sequence stratigraphy re- This volume also addresses the question of cyclicity as a ceived much acclaim whereas the chronostratigraphic record of function of the interaction between tectonics, eustasy, sediment Mesozoic and Cenozoic sequences suffered from a perceived supply and depositional setting. An attempt was made to estab- absence of biostratigraphic and outcrop documentation. The lish a hierarchy of higher order eustatic cycles superimposed Mesozoic and Cenozoic Sequence Stratigraphy of European on lower-order tectono-eustatic cycles. -
Quantifying Morphological Variability Through the Latest Ontogeny Of
QUANTIFYING MORPHOLOGICAL VARIABILITY THROUGH THE LATEST ONTOGENY OF HOPLOSCAPHITES (JELETZKYTES) FROM THE LATE CRETACEOUS WESTERN INTERIOR USING GEOGRAPHIC INFORMATION SYSTEMS AS A MORPHOMETRIC TOOL Mathew J. Knauss A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2013 Committee: Margaret M. Yacobucci, Advisor Enrique Gomezdelcampo Sheila Roberts © 2013 Mathew J. Knauss All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor Ammonoids are known for their intraspecific and interspecific morphological variation through ontogeny, particularly in shell shape and ornamentation. Many shell features covary and individual shell elements (e.g., tubercles, ribs, etc.) are difficult to homologize, which make qualitative descriptions and widely-used morphometric tools inappropriate for quantifying these complex morphologies. However, spatial analyses such as those applied in geographic information systems (GIS) allow for quantification and visualization of global shell form. Here, I present a GIS-based methodology in which the variability of complex shell features is assessed in order to evaluate evolutionary patterns in a Cretaceous ammonoid clade. I applied GIS-based techniques to sister species from the Late Cretaceous Western Interior Seaway: the ancestral and more variable Hoploscaphites spedeni, and descendant and less variable H. nebrascensis. I created digital models exhibiting the shells’ lateral surfaces using photogrammetric software and imported the reconstructions into a GIS environment. I used the number of discrete aspect patches and the 3D to 2D area ratios of the lateral surface as terrain roughness indices. These 3D analyses exposed the overlapping morphological ranges of H. spedeni and H. -
Towards a Better Definition of the Middle Triassic
ELSEVIER Earth and Planetary Science Letters 164 (1998) 285–302 Towards a better definition of the Middle Triassic magnetostratigraphy and biostratigraphy in the Tethyan realm G. Muttoni a,b,Ł,D.V.Kenta,S.Mec¸o c, M. Balini b,A.Nicorab, R. Rettori d, M. Gaetani b, L. Krystyn e a Lamont-Doherty Earth Observatory, Palisades, NY 10964, USA b Dipartimento di Scienze della Terra, Universita` di Milano, via Mangiagalli 34, I-20133 Milan, Italy c Fakulteti i Gjeologjise–Minierave, Universiteti Politeknik, Tirana, Albania d Dipartimento di Scienze della Terra, Piazza Universita`, I-06100 Perugia, Italy e Pala¨ontologisches Institut, Universita¨tsstrasse 7, A-1010 Vienna, Austria Received 28 October 1997; revised version received 21 September 1998; accepted 21 September 1998 Abstract Magnetostratigraphic and biostratigraphic data for the Middle Triassic (Anisian) were obtained from the Han-Bulog facies in the Nderlysaj section from the Albanian Alps and the Dont and Bivera formations in the Dont–Monte Rite composite section from the Dolomites region of northern Italy. The Nderlysaj section is biochronologically bracketed between the late Bithynian and early Illyrian substages (i.e., late-early and early-late Anisian), whereas the Dont–Monte Rite section comprises the late Pelsonian and the early Illyrian substages. The data from Nderlysaj and Dont–Monte Rite, in conjunction with already published data, allow us to construct a nearly complete composite geomagnetic polarity sequence tied to Tethyan ammonoid and conodont biostratigraphy from the late Olenekian (late-Early Triassic) to the late Ladinian (late-Middle Triassic). New conodont data require revision of the published age of the Vlichos section (Greece). -
Middle Triassic) Ptychitid Ammonoids from Nevada, USA
Journal of Paleontology, 94(5), 2020, p. 829–851 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.25 Ontogenetic analysis of Anisian (Middle Triassic) ptychitid ammonoids from Nevada, USA Eva A. Bischof1* and Jens Lehmann1 1Geowissenschaftliche Sammlung, Fachbereich Geowissenschaften, Universität Bremen, Leobener Strasse 8, 28357 Bremen, Germany <[email protected]>, <[email protected]> Abstract.—Ptychites is among the most widely distributed ammonoid genera of the Triassic and is namesake of a family and superfamily. However, representatives of the genus mostly show low-level phenotypic disparity. Furthermore, a large number of taxa are based on only a few poorly preserved specimens, creating challenges to determine ptychitid taxonomy. Consequently, a novel approach is needed to improve ptychitid diversity studies. Here, we investigate Ptychites spp. from the middle and late Anisian of Nevada. The species recorded include Ptychites embreei n. sp., which is distinguished by an average conch diameter that is much smaller and shows a more evolute coiling than most of its relatives. The new species ranges from the Gymnotoceras mimetus to the Gymnotoceras rotelliformis zones, which makes it the longest-ranging species of the genus. For the first time, the ontogenetic development of Pty- chites was obtained from cross sections where possible. Cross-sectioning highlights unique ontogenetic trajectories in ptychitids. -
Ammonoid Diversification in the Middle Triassic: Examples from the Tethys (Eastern Lombardy, Balaton Highland) and the Pacific (Nevada)
Central European Geology, Vol. 57/4, 319–343 (2014) DOI: 10.1556/CEuGeol.57.2014.4.1 Ammonoid diversification in the Middle Triassic: Examples from the Tethys (Eastern Lombardy, Balaton Highland) and the Pacific (Nevada) Attila Vörös* Hungarian Academy of Sciences; Hungarian Natural History Museum; Eötvös Loránd University Research Group for Paleontology, Budapest, Hungary The diversity dynamics of the Anisian ammonoids is analyzed in terms of generic richness and turnover rates in one North American (Nevada) and two western Tethyan (Eastern Lombardy, Balaton Highland) re- gions. Two pulses of diversification are outlined: one in the middle Anisian (Pelsonian) and another near the end of the late Anisian (late Illyrian). The Pelsonian global diversification is interpreted as an effect of global sea-level rise. In the early late Anisian the ammonoid generic richness definitely decreased both in the west- ern Tethys and in Nevada. The latest Anisian peak of ammonoid diversity was low in Nevada, which is ex- plained by the uniform local sedimentary environment and the absence of major global changes. In the west- ern Tethys the late Illyrian diversity peak was very prominent: ammonoid generic richness, turnover and proportion of originations were very high. This explosive peak is interpreted in terms of major changes of two regional environmental factors: coeval volcanic activity and the control of nearby carbonate platforms. The late Illyrian volcanic ash falls provoked a dramatic increase of ammonoid generic richness by fertiliza- tion, i.e. supplying nutrients and iron, thus increasing primary productivity in the ocean. Carbonate platform margins offered diverse habitats with new, empty niches; the microbial mats supplied suspended organic matter for the higher trophic levels and eventually the ammonoids. -
Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada
Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 322 Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada By N. J. SILBERLING GEOLOGICAL SURVEY PROFESSIONAL PAPER 322 A study of upper Paleozoic and lower Mesozoic marine sedimentary and volcanic rocks, with descriptions of Upper Triassic cephalopods and pelecypods UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Page Abstract_ ________________________________________ 1 Paleontology Continued Introduction _______________________________________ 1 Systematic descriptions-------------------------- 38 Class Cephalopoda___--_----_---_-_-_-_-_--_ 38 Location and description of the area ______________ 2 Order Ammonoidea__-__-_______________ 38 Previous work__________________________________ 2 Genus Klamathites Smith, 1927_ __ 38 Fieldwork and acknowledgments________________ 4 Genus Mojsisovicsites Gemmellaro, 1904 _ 39 Stratigraphy _______________________________________ 4 Genus Tropites Mojsisovics, 1875_____ 42 Genus Tropiceltites Mojsisovics, 1893_ 51 Cambrian (?) dolomite and quartzite units__ ______ 4 Genus Guembelites Mojsisovics, 1896__ 52 Pablo formation (Permian?)____________________ 6 Genus Discophyllites Hyatt, -
Retallack 2011 Lagerstatten
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Palaeogeography, Palaeoclimatology, Palaeoecology 307 (2011) 59–74 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Exceptional fossil preservation during CO2 greenhouse crises? Gregory J. Retallack Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA article info abstract Article history: Exceptional fossil preservation may require not only exceptional places, but exceptional times, as demonstrated Received 27 October 2010 here by two distinct types of analysis. First, irregular stratigraphic spacing of horizons yielding articulated Triassic Received in revised form 19 April 2011 fishes and Cambrian trilobites is highly correlated in sequences in different parts of the world, as if there were Accepted 21 April 2011 short temporal intervals of exceptional preservation globally. Second, compilations of ages of well-dated fossil Available online 30 April 2011 localities show spikes of abundance which coincide with stage boundaries, mass extinctions, oceanic anoxic events, carbon isotope anomalies, spikes of high atmospheric carbon dioxide, and transient warm-wet Keywords: Lagerstatten paleoclimates. -
Dinosaur Diversification Linked with the Carnian Pluvial Episode
ARTICLE DOI: 10.1038/s41467-018-03996-1 OPEN Dinosaur diversification linked with the Carnian Pluvial Episode Massimo Bernardi 1,2, Piero Gianolla 3, Fabio Massimo Petti 1,4, Paolo Mietto5 & Michael J. Benton 2 Dinosaurs diversified in two steps during the Triassic. They originated about 245 Ma, during the recovery from the Permian-Triassic mass extinction, and then remained insignificant until they exploded in diversity and ecological importance during the Late Triassic. Hitherto, this 1234567890():,; Late Triassic explosion was poorly constrained and poorly dated. Here we provide evidence that it followed the Carnian Pluvial Episode (CPE), dated to 234–232 Ma, a time when climates switched from arid to humid and back to arid again. Our evidence comes from a combined analysis of skeletal evidence and footprint occurrences, and especially from the exquisitely dated ichnofaunas of the Italian Dolomites. These provide evidence of tetrapod faunal compositions through the Carnian and Norian, and show that dinosaur footprints appear exactly at the time of the CPE. We argue then that dinosaurs diversified explosively in the mid Carnian, at a time of major climate and floral change and the extinction of key herbivores, which the dinosaurs opportunistically replaced. 1 MUSE—Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38122 Trento, Italy. 2 School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. 3 Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, via Saragat 1, 44100 Ferrara, Italy. 4 PaleoFactory, Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy. 5 Dipartimento di Geoscienze, Universitàdegli studi di Padova, via Gradenigo 6, I-35131 Padova, Italy. -
Chapter 5. Paleozoic Invertebrate Paleontology of Grand Canyon National Park
Chapter 5. Paleozoic Invertebrate Paleontology of Grand Canyon National Park By Linda Sue Lassiter1, Justin S. Tweet2, Frederick A. Sundberg3, John R. Foster4, and P. J. Bergman5 1Northern Arizona University Department of Biological Sciences Flagstaff, Arizona 2National Park Service 9149 79th Street S. Cottage Grove, Minnesota 55016 3Museum of Northern Arizona Research Associate Flagstaff, Arizona 4Utah Field House of Natural History State Park Museum Vernal, Utah 5Northern Arizona University Flagstaff, Arizona Introduction As impressive as the Grand Canyon is to any observer from the rim, the river, or even from space, these cliffs and slopes are much more than an array of colors above the serpentine majesty of the Colorado River. The erosive forces of the Colorado River and feeder streams took millions of years to carve more than 290 million years of Paleozoic Era rocks. These exposures of Paleozoic Era sediments constitute 85% of the almost 5,000 km2 (1,903 mi2) of the Grand Canyon National Park (GRCA) and reveal important chronologic information on marine paleoecologies of the past. This expanse of both spatial and temporal coverage is unrivaled anywhere else on our planet. While many visitors stand on the rim and peer down into the abyss of the carved canyon depths, few realize that they are also staring at the history of life from almost 520 million years ago (Ma) where the Paleozoic rocks cover the great unconformity (Karlstrom et al. 2018) to 270 Ma at the top (Sorauf and Billingsley 1991). The Paleozoic rocks visible from the South Rim Visitors Center, are mostly from marine and some fluvial sediment deposits (Figure 5-1). -
Resume of the Geology of Arizona," Prepared by Dr
, , A RESUME of the GEOWGY OF ARIZONA by Eldred D. Wilson, Geologist THE ARIZONA BUREAU OF MINES Bulletin 171 1962 THB UNIVBR.ITY OP ARIZONA. PR••• _ TUC.ON FOREWORD CONTENTS Page This "Resume of the Geology of Arizona," prepared by Dr. Eldred FOREWORD _................................................................................................ ii D. Wilson, Geologist, Arizona Bureau of Mines, is a notable contribution LIST OF TABLES viii to the geologic and mineral resource literature about Arizona. It com LIST OF ILLUSTRATIONS viii prises a thorough and comprehensive survey of the natural processes and phenomena that have prevailed to establish the present physical setting CHAPTER I: INTRODUCTION Purpose and scope I of the State and it will serve as a splendid base reference for continued, Previous work I detailed studies which will follow. Early explorations 1 The Arizona Bureau of Mines is pleased to issue the work as Bulletin Work by U.S. Geological Survey.......................................................... 2 171 of its series of technical publications. Research by University of Arizona 2 Work by Arizona Bureau of Mines 2 Acknowledgments 3 J. D. Forrester, Director Arizona Bureau of Mines CHAPTER -II: ROCK UNITS, STRUCTURE, AND ECONOMIC FEATURES September 1962 Time divisions 5 General statement 5 Methods of dating and correlating 5 Systems of folding and faulting 5 Precambrian Eras ".... 7 General statement 7 Older Precambrian Era 10 Introduction 10 Literature 10 Age assignment 10 Geosynclinal development 10 Mazatzal Revolution 11 Intra-Precambrian Interval 13 Younger Precambrian Era 13 Units and correlation 13 Structural development 17 General statement 17 Grand Canyon Disturbance 17 Economic features of Arizona Precambrian 19 COPYRIGHT@ 1962 Older Precambrian 19 The Board of Regents of the Universities and Younger Precambrian 20 State College of Arizona. -
Brachiopods from the Lower-Middle Cambrian Láncara Formation of the Cantabrian Mountains, Northwest Spain
Brachiopods from the Lower-Middle Cambrian Láncara Formation of the Cantabrian Mountains, Northwest Spain THOMAS WOTTE & MICHAL MERGL WOTTE, T. & MERGL, M., 2007:09:03. Brachiopods from the Lower-Middle Cambrian Láncara Formation of the Cantabrian Mountains, Northwest Spain. Memoirs of the Association of Australasian Palaeontologists 33, 101-122. ISSN 0810-8889. Micro- and macrobrachiopods from eight stratigraphic sections of the carbonate upper member of the Middle Cambrian Láncara Formation (comprising lower Beleño facies and upper Barrios facies) in the Cantabrian Mountains are analysed. They comprise ten species, two of which are new, assigned to nine genera, two of which are new. They are: Acrothele primaeva (de Verneuil & Barrande in de Prado, 1860), Acrothele sp., Eoobolidae gen. et sp. indet., Genetreta trilix gen. et sp. nov., Iberotreta sampelayoi gen. et sp. nov., Luhotreta? proclinis (Mergl & Elicki, 2004), Micromitra cf. sculptilis (Meek, 1873), Nisusia vaticina (de Verneuil & Barrande in de Prado, 1860), Trematobolus simplex (Vogel, 1962) and Yorkia zafrensis (Gil-Cid & Mélou, 1986). Stratigraphic distribution patterns of the brachiopod fauna mirror the drowning of the environment. Trematobolus simplex is exclusively found in the carbonates of the Beleño facies, whereas Nisusia vaticina and Yorkia zafrensis are typical representatives of the nodular limestones of the Barrios facies. The species of the genera Trematobolus, Nisusia and Yorkia demonstrate the affinity of the upper Láncara brachiopod association with faunas of the Siberian platform, New South Wales and some Avalonian terranes (Newfoundland, New Brunswick). Thomas Wotte ([email protected]), Geological Institute, Freiberg University of Mining and Technology, Bernhard-von-Cotta Street 2, D-09599 Freiberg, Germany; Michal Mergl ([email protected]), Department of Biology, University of West Bohemia at Plzeň, Klatovská 51, CZ-306 19, Plzeň, Czech Republic.