USGS Scientific Investigations Map 3450 Pamphlet

Total Page:16

File Type:pdf, Size:1020Kb

USGS Scientific Investigations Map 3450 Pamphlet 156°45' 156°40' 156°30' 156°22'30'' 61°15' 61°15' 1 1 6 5 3 500 2 1 6 5 4 500 3 2 Spl 500 40 2 SOsl 500 500 Qal 12 7 8 9 10 11 12 7 8 9 10 11 500 Qs 15 SOsl 13 18 17 16 15 14 13 18 17 Qal 16 15 14 W W W H O DZwp T013N,R042 T013N,R041 H 500 T013N, R041W R040 T013N, 24 500 19 20 O 21 22 23 24 19 20 21 22 23 L I 3 T 500 Bedrock GeologicN Map of the 15' Sleetmute A-2 A 500 Quadrangle, Southwestern Alaska 25 30 29 28 27 26 25 30 29 28 27 26 750 90 500 Qs By Robert B. Blodgett, Frederic H. Wilson, Nora B. Shew, and James G. Clough SOsl 750 Dd Spl cb 36 Pamphlet31 to accompany32 R 33 34 35 36 31 32 33 34 35 I V E Scientific InvestigationsR Map 3450 750 61°10' T013N, R042W T013N, R041W T013N, R041W T013N, R040W T013N, R040W T012N, R042W T012N, R042W T012N, R041W T012N, R041W T012N, R040W 61°10' 4 35 750 4 3 2 1 6 5 4 3 2 1 6 5 Spl 4 SOsl 1000 75 750 SOsl Qs Spl Door Mountains 9 10 11 12 7 8 9 10 11 12 7 8 9 750 Qal 30 Spl 750 500 Qs 750 16 15 14 13 18 SOsl 17 16 15 14 13 18 17 16SOsl 5 500 T012N, R041W T012N, R040W T012N,R042W T012N,R041W 1250 21 21 22 23 24 19 20 21 22 23 24 19Qal 20 Dab 1500 6 1250 750 1000 27 26 25 30 Qal 26 25 500 30 29 28 28 DSwc 29 28 27 SOsl Dab 70 SOdl 84 11 1000 750 H 10 DSwc O H Dls 1000 O L Spl 1250 DZwp I T 7 Dab N 1000 9 12 A Dls 750 Dab 33 34 35 36 32 34 35 36 31 32 33 31 33 61°05' 61°05' 750 R T012N, R042W I V T012N, R040W 20 T012N, R041W E 8 T011N, R042W T011N, R041W R T011N, R040W 4 3 2 1 6 5 4 3 2 1 6 5 4 SOdl 25 13 Qs 500 Qs SOdl 14 60 37 40 SOdl 750 SOdl SOdl 15 80 9 31 9 10 11 12 7 8 1000 9 DZwp 10 11 12 7 8 500 SOdl 750 Ols Oab 30 Ols Ols x i s A dlo 1000 u m 16 202015 14 13 18 17 16 r i 15 7514 13 18 17 16 Ols DZwp n o l i c Ols i 750 t Zls 750 n 011N, R041W 011N, R040W 011N, 011N, R042W 011N, 011N, R041W 011N, T T T U.S. Department of the InteriorT A 16 56 U.S. GeologicalZls Survey dlo dlo Qal dlo 20 21 21 22 23 24 19 20 1000 21 22 23 24 19 25 1000 Qs 750 s 20 Obm 34 1000 65 750 17 20 35 24 25 50 1000 DZwp 750 Ols 18 bu 28 27ls 26 25 30 29 28 23 27 26 25 30 29 28 20 14 cp 21 750 19 Oab 500 SOdl 1000 cu Qs Zls 750 22 dlo 750 Ols 61°00' 33 34 35 36 31 32 33 34 35 36 31 32 33 61°00' 156°45' 156°40' 156°30' 156°22'30" U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2020 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Blodgett, R.B., Wilson, F.H., Shew, N.B., and Clough, J.G., 2020, Bedrock geologic map of the 15' Sleetmute A-2 quadrangle, southwestern Alaska: U.S. Geological Survey Scientific Investigations Map 3450, 18 p., 1 map sheet, scale 1:63,360, https://doi.org/10.3133/sim3450. ISSN 2329-132X (online) ii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................1 Geologic Setting .............................................................................................................................................3 Structure..........................................................................................................................................................3 Paleontology ...................................................................................................................................................4 Petroleum Potential .......................................................................................................................................4 Description of map units ...............................................................................................................................5 Unconsolidated deposits .....................................................................................................................5 Bedrock ..................................................................................................................................................5 Platform facies .............................................................................................................................5 Basinal facies ...............................................................................................................................9 Undescribed bedrock ................................................................................................................10 Acknowledgments .......................................................................................................................................11 References Cited..........................................................................................................................................11 Figures 1. Map showing location of the Sleetmute A-2 1:63,360-scale quadrangle in the Holitna Lowland of southwestern Alaska ...............................................................................................2 Tables 1. Fossil data from the Sleetmute A-2 quadrangle, southwestern Alaska. ...........................14 Conversion Factors International System of Units to U.S. customary units Multiply By To obtain Length centimeter (cm) 0.3937 inch (in.) millimeter (mm) 0.03937 inch (in.) meter (m) 3.281 foot (ft) kilometer (km) 0.6214 mile (mi) kilometer (km) 0.5400 mile, nautical (nmi) meter (m) 1.094 yard (yd) Datum Vertical coordinate information is referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29). Horizontal coordinate information is referenced to the 1927 North American Datum (NAD 27). iii iv Bedrock Geologic Map of the 15' Sleetmute A-2 Quadrangle, Southwestern Alaska By Robert Blodgett1, Frederic H. Wilson2, Nora B. Shew2, and James G. Clough3 Abstract Blodgett and others [1999a]) for a geologic bibliography of the region). Overviews of the geology of the Sleetmute 1:250,000- Twelve unnamed, bedrock stratigraphic units are recog- scale quadrangle and adjoining areas of the central Kuskokwim nized within the Sleetmute A-2 1:63,360-scale quadrangle of Bay region are found in Cady and others (1955), Miller and southwestern Alaska. These units range in age from late(?) Pro- others (1989), Decker and others (1994), Wilson and others terozoic through Devonian and can be divided into two distinct (1998), and LePain and others (2000). The bedrock units of the facies belts: 1) a southern facies of dominantly shallow-water map area provide a nearly complete record of late Proterozoic platform carbonate and minor siliciclastic rocks (including through Devonian sedimentation in southwest Alaska. Both Early Ordovician–Early Devonian platform edge algal build- shallow-water platform facies and age-equivalent deeper-water ups) with subordinate transgressive tongues of deeper-water basinal facies rocks can be recognized in the map area. The platy carbonates; and 2) a northern facies belt of approximately relatively low degree of thermal alteration of these rocks made age equivalent deep-water carbonate and siliciclastic rocks them an attractive target for petroleum exploration during the deposited in slope and basinal environments. Both facies belts early and mid-1980’s. The excellent preservation of megafossils belong to the Farewell terrane of Decker and others (1994). and much of the carbonate rock fabric make the area useful for Two structural provinces are also recognized, which correspond future detailed stratigraphic investigations. The time scale used directly with these belts. The Farewell terrane is interpreted as in this report is based on the U.S. Geological Survey time scale a continental margin sequence that rifted from Siberia. Many of (USGS, 2018) except where noted. the bedrock units recognized in the Sleetmute A-2 quadrangle The geologic data presented here for the Sleetmute A-2 are equivalent to units previously recognized to the east and 1:63,360-scale quadrangle are based on field studies conducted northeast in the Lime Hills, McGrath, and Medfra quadrangles. in the mid-1980s by the petroleum industry and the Alaska Shallow-water carbonate platform rocks make up the major- Division of Geological & Geophysical Surveys (ADGGS), in ity of the southern facies and occur primarily along the crest 1998 by ADGGS, and in 1999 by the U.S. Geological Survey. and north side (and to a lesser degree along the south side) of a The authors of this report were involved at various times and in prominent crescentic-shaped, east-west trending anticlinal axis differing capacities in the above-mentioned field investigations. exposed in the southern part of the Sleetmute A-2 quadrangle. These studies were primarily focused on geochemical sampling Because of the relatively low thermal alteration indices of the for petroleum potential and reconnaissance geologic mapping rocks of this area and the presence
Recommended publications
  • Stratographic Coloumn of Iowa
    Iowa Stratographic Column November 4, 2013 QUATERNARY Holocene Series DeForest Formation Camp Creek Member Roberts Creek Member Turton Submember Mullenix Submember Gunder Formation Hatcher Submember Watkins Submember Corrington Formation Flack Formation Woden Formation West Okoboji Formation Pleistocene Series Wisconsinan Episode Peoria Formation Silt Facies Sand Facies Dows Formation Pilot Knob Member Lake Mills Member Morgan Member Alden Member Noah Creek Formation Sheldon Creek Formation Roxana/Pisgah Formation Illinoian Episode Loveland Formation Glasford Formation Kellerville Memeber Pre-Illinoian Wolf Creek Formation Hickory Hills Member Aurora Memeber Winthrop Memeber Alburnett Formation A glacial tills Lava Creek B Volcanic Ash B glacial tills Mesa Falls Volcanic Ash Huckleberry Ridge Volcanic Ash C glacial tills TERTIARY Salt & Pepper sands CRETACEOUS "Manson" Group "upper Colorado" Group Niobrara Formation Fort Benton ("lower Colorado ") Group Carlile Shale Greenhorn Limestone Graneros Shale Dakota Formation Woodbury Member Nishnabotna Member Windrow Formation Ostrander Member Iron Hill Member JURASSIC Fort Dodge Formation PENNSYLVANIAN (subsystem of Carboniferous System) Wabaunsee Group Wood Siding Formation Root Formation French Creek Shale Jim Creek Limestone Friedrich Shale Stotler Formation Grandhaven Limestone Dry Shale Dover Limestone Pillsbury Formation Nyman Coal Zeandale Formation Maple Hill Limestone Wamego Shale Tarkio Limestone Willard Shale Emporia Formation Elmont Limestone Harveyville Shale Reading Limestone Auburn
    [Show full text]
  • Smithsonian Miscellaneous Collections Volume 101
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 101. NUMBER 15 FIFTH CONTRIBUTION TO NOMENCLATURE OF CAMBRIAN FOSSILS BY CHARLES E. RESSER Curator, Division of Stratigraphic Paleontology U. S. National Museum (Publication 3682) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION MAY 22, 1942 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 101, NUMBER 15 FIFTH CONTRIBUTION TO NOMENCLATURE OF CAMBRIAN FOSSILS BY CHARLES E. RESSER Curator, Division of Stratigraphic Paleontology U. S. National Museum (Publication 3682) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION MAY 12, 1942 Z?>i Botb QBafhtnore (prcee BALTIMORE, MD., U. S. A. ' FIFTH CONTRIBUTION TO NOMENCLATURE OF CAMBRIAN FOSSILS By CHARLES E. RESSER Curator, Division of Stratigraphic Paleonlolo<jy, U. S. National Museum This is the fifth in the series of papers designed to care for changes necessary in the names of Cambrian fossils. When the fourth paper was published it was hoped that further changes would be so few and so obvious that they could be incorporated in the Cambrian bibliographic summary, and would not be required to appear first in a separate paper. But even now it is impossible to gather all of the known errors for rectification in this paper. For example, correc- tion of some errors must await the opportunity to examine the speci- mens because the published illustrations, obviously showing incorrect generic determinations, are too poor to permit a proper understanding of the fossil. In the other instances where new generic designations are clearly indicated, erection of new genera should await the pub- lication of a paper with illustrations, because better-preserved speci- mens are in hand, or undescribed species portray the generic charac- teristics more fully and should therefore be chosen as the genotypes.
    [Show full text]
  • Revised Correlation of Silurian Provincial Series of North America with Global and Regional Chronostratigraphic Units 13 and D Ccarb Chemostratigraphy
    Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units 13 and d Ccarb chemostratigraphy BRADLEY D. CRAMER, CARLTON E. BRETT, MICHAEL J. MELCHIN, PEEP MA¨ NNIK, MARK A. KLEFF- NER, PATRICK I. MCLAUGHLIN, DAVID K. LOYDELL, AXEL MUNNECKE, LENNART JEPPSSON, CARLO CORRADINI, FRANK R. BRUNTON AND MATTHEW R. SALTZMAN Cramer, B.D., Brett, C.E., Melchin, M.J., Ma¨nnik, P., Kleffner, M.A., McLaughlin, P.I., Loydell, D.K., Munnecke, A., Jeppsson, L., Corradini, C., Brunton, F.R. & Saltzman, M.R. 2011: Revised correlation of Silurian Provincial Series of North America with global 13 and regional chronostratigraphic units and d Ccarb chemostratigraphy. Lethaia,Vol.44, pp. 185–202. Recent revisions to the biostratigraphic and chronostratigraphic assignment of strata from the type area of the Niagaran Provincial Series (a regional chronostratigraphic unit) have demonstrated the need to revise the chronostratigraphic correlation of the Silurian System of North America. Recently, the working group to restudy the base of the Wen- lock Series has developed an extremely high-resolution global chronostratigraphy for the Telychian and Sheinwoodian stages by integrating graptolite and conodont biostratigra- 13 phy with carbonate carbon isotope (d Ccarb) chemostratigraphy. This improved global chronostratigraphy has required such significant chronostratigraphic revisions to the North American succession that much of the Silurian System in North America is cur- rently in a state of flux and needs further refinement. This report serves as an update of the progress on recalibrating the global chronostratigraphic correlation of North Ameri- can Provincial Series and Stage boundaries in their type area.
    [Show full text]
  • Strophomenide and Orthotetide Silurian Brachiopods from the Baltic Region, with Particular Reference to Lithuanian Boreholes
    Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes PETRAS MUSTEIKIS and L. ROBIN M. COCKS Musteikis, P. and Cocks, L.R.M. 2004. Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes. Acta Palaeontologica Polonica 49 (3): 455–482. Epeiric seas covered the east and west parts of the old craton of Baltica in the Silurian and brachiopods formed a major part of the benthic macrofauna throughout Silurian times (Llandovery to Pridoli). The orders Strophomenida and Orthotetida are conspicuous components of the brachiopod fauna, and thus the genera and species of the superfamilies Plec− tambonitoidea, Strophomenoidea, and Chilidiopsoidea, which occur in the Silurian of Baltica are reviewed and reidentified in turn, and their individual distributions are assessed within the numerous boreholes of the East Baltic, particularly Lithua− nia, and attributed to benthic assemblages. The commonest plectambonitoids are Eoplectodonta(Eoplectodonta)(6spe− cies), Leangella (2 species), and Jonesea (2 species); rarer forms include Aegiria and Eoplectodonta (Ygerodiscus), for which the new species E. (Y.) bella is erected from the Lithuanian Wenlock. Eight strophomenoid families occur; the rare Leptaenoideidae only in Gotland (Leptaenoidea, Liljevallia). Strophomenidae are represented by Katastrophomena (4 spe− cies), and Pentlandina (2 species); Bellimurina (Cyphomenoidea) is only from Oslo and Gotland. Rafinesquinidae include widespread Leptaena (at least 11 species) and Lepidoleptaena (2 species) with Scamnomena and Crassitestella known only from Gotland and Oslo. In the Amphistrophiidae Amphistrophia is widespread, and Eoamphistrophia, Eocymostrophia, and Mesodouvillina are rare. In the Leptostrophiidae Mesoleptostrophia, Brachyprion,andProtomegastrophia are com− mon, but Eomegastrophia, Eostropheodonta, Erinostrophia,andPalaeoleptostrophia are only recorded from the west in the Baltica Silurian.
    [Show full text]
  • Groundwater Issues in the Paleozoic Plateau a Taste of Karst, a Modicum of Geology, and a Whole Lot of Scenery
    GGroundwaterroundwater IssuesIssues inin tthehe PaleozoicPaleozoic PlateauPlateau A Taste of Karst, a Modicum of Geology, and a Whole Lot of Scenery Iowa Groundwater Association Field Trip Guidebook No. 1 Iowa Geological and Water Survey Guidebook Series No. 27 Dunning Spring, near Decorah in Winneshiek County, Iowa September 29, 2008 In Conjunction with the 53rd Annual Midwest Ground Water Conference Grand River Center, Dubuque, Iowa, September 30 – October 2, 2008 Groundwater Issues in the Paleozoic Plateau A Taste of Karst, a Modicum of Geology, and a Whole Lot of Scenery Iowa Groundwater Association Field Trip Guidebook No. 1 Iowa Geological and Water Survey Guidebook Series No. 27 In Conjunction with the 53rd Annual Midwest Ground Water Conference Grand River Center, Dubuque, Iowa, September 30 – October 2, 2008 With contributions by M.K. Anderson Robert McKay Iowa DNR-Water Supply Engineering Iowa DNR-Geological and Water Survey Bruce Blair Jeff Myrom Iowa DNR-Forestry Iowa DNR-Solid Waste Michael Bounk Eric O’Brien Iowa DNR-Geological and Water Survey Iowa DNR-Geological and Water Survey Karen Osterkamp Lora Friest Iowa DNR-Fisheries Northeast Iowa Resource Conservation and Development Jean C. Prior Iowa DNR-Geological and Water Survey James Hedges Luther College James Ranum Natural Resources Conservation Service John Hogeman Winneshiek County Landfi ll Operator Robert Rowden Iowa DNR-Geological and Water Survey Claire Hruby Iowa DNR-Geographic Information Systems Joe Sanfi lippo Iowa DNR-Manchester Field Offi ce Bill Kalishek Gary Siegwarth Iowa DNR-Fisheries Iowa DNR-Fisheries George E. Knudson Mary Skopec Luther College Iowa DNR-Geological and Water Survey Bob Libra Stephanie Surine Iowa DNR-Geological and Water Survey Iowa DNR-Geological and Water Survey Huaibao Liu Paul VanDorpe Iowa DNR-Geological and Water Survey Iowa DNR-Geological and Water Survey Iowa Department of Natural Resources Richard Leopold, Director September 2008 CONTENTS INTRODUCTION .
    [Show full text]
  • Evaluating the Frasnian-Famennian Mass Extinction: Comparing Brachiopod Faunas
    Evaluating the Frasnian-Famennian mass extinction: Comparing brachiopod faunas PAUL COPPER Copper, P. 1998. Evaluating the Frasnian-Famennian mass extinction: Comparing bra- chiopod faunas.- Acta Palaeontologica Polonica 43,2,137-154. The Frasnian-Famennian (F-F) mass extinctions saw the global loss of all genera belonging to the tropically confined order Atrypida (and Pentamerida): though Famen- nian forms have been reported in the literafure, none can be confirmed. Losses were more severe during the Givetian (including the extinction of the suborder Davidsoniidina, and the reduction of the suborder Lissatrypidina to a single genus),but ońgination rates in the remaining suborder surviving into the Frasnian kept the group alive, though much reduced in biodiversity from the late Earb and Middle Devonian. In the terminal phases of the late Palmatolepis rhenana and P linguifurmis zones at the end of the Frasnian, during which the last few Atrypidae dechned, no new genera originated, and thus the Atrypida were extĘated. There is no evidence for an abrupt termination of all lineages at the F-F boundary, nor that the Atrypida were abundant at this time, since all groups were in decline and impoverished. Atypida were well established in dysaerobic, muddy substrate, reef lagoonal and off-reef deeper water settings in the late Givetian and Frasnian, alongside a range of brachiopod orders which sailed through the F-F boundary: tropical shelf anoxia or hypońa seems implausible as a cause for aĘpid extinction. Glacial-interglacial climate cycles recorded in South Ameńca for the Late Devonian, and their synchronous global cooling effect in low latitudes, as well as loss of the reef habitat and shelf area reduction, remain as the most likely combined scenarios for the mass extinction events.
    [Show full text]
  • Paleozoic Geology of the Dobbin Summit-Clear Creek Area, Monitor
    AN ABSTRACT OF THE THESIS OF DIANE CAROL WISE for the degree of MASTER OF SCIENCE in Geology presented on August 13, 1976 Title: PALEOZOIC GEOLOGY OF THE DOBBIN SUMMIT- CLEAR CREEK AREA, MONITOR RANGE, NYiE COUNTY, NEVADA Abstract approved: Redacted for Privacy son Paleozoic limestones, dolomites, quartz arenites, and other clastic rocks were mapped in the vicinity of Dobbin Summit and Clear Creek in the central Monitor Range. Sedimentary rock units present in this area represent the shallow-shelf eastern assemblage and basin and also the basin-slope facies of the traditional limestone- clastic assemblage. The four oldest, Ordovician, units were deposited in shallow shelf environments. The Lower Ordovician Goodwin Formation is composed of about 1200 feet of calcareous shales and thin-bedded limestones. The overlying Antelope Valley Limestone is about 500 feet thick and consists of wackestones, packstones, and rare algal grainstones.The Copenhagen Formation (135 feet thick) is the highest regressive deposit of sandstone, siltstone, and limestone below the transgressive Eureka Quartzite.The Eureka is a quartz arenite 181 feet thick, with an intercalated shallow marine dolomite member. The transition from shallow to deep water conditions can be seen in the change from algal boundstones to laminated lime mud- stones in the Hanson Creek Formation (190 feet thick).The super- jacent Roberts Mountains Formation (285 feet thick) is composed of lime mudstones and allodapic beds deposited in basinal, deep water conditions.During earliest Devonian
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • Early and Middle Cambrian Trilobites from Antarctica
    Early and Middle Cambrian Trilobites From Antarctica GEOLOGICAL SURVEY PROFESSIONAL PAPER 456-D Early and Middle Cambrian Trilobites From Antarctica By ALLISON R. PALMER and COLIN G. GATEHOUSE CONTRIBUTIONS TO THE GEOLOGY OF ANTARCTICA GEOLOGICAL SURVEY PROFESSIONAL PAPER 456-D Bio stratigraphy and regional significance of nine trilobite faunules from Antarctic outcrops and moraines; 28 species representing 21 genera are described UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1972 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-190734 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 70 cents (paper cover) Stock Number 2401-2071 CONTENTS Page Page Abstract_ _ ________________________ Dl Physical stratigraphy______________________________ D6 I&troduction. _______________________ 1 Regional correlation within Antarctica ________________ 7 Biostratigraphy _____________________ 3 Systematic paleontology._____-_______-____-_-_-----_ 9 Early Cambrian faunules.________ 4 Summary of classification of Antarctic Early and Australaspis magnus faunule_ 4 Chorbusulina wilkesi faunule _ _ 5 Middle Cambrian trilobites. ___________________ 9 Chorbusulina subdita faunule _ _ 5 Agnostida__ _ _________-____-_--____-----__---_ 9 Early Middle Cambrian f aunules __ 5 Redlichiida. __-_--------------------------_---- 12 Xystridura mutilinia faunule- _ 5 Corynexochida._________--________-_-_---_----_
    [Show full text]
  • An Appraisal of the Great Basin Middle Cambrian Trilobites Described Before 1900
    An Appraisal of the Great Basin Middle Cambrian Trilobites Described Before 1900 By ALLISON R. PALMER A SHORTER CONTRIBUTION TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 264-D Of the 2ty species described prior to I(?OO, 2/ are redescribed and 2C} refigured, and a new name is proposedfor I species UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $1 (paper cover) CONTENTS Page Abstract..__________________________________ 55 Introduction ________________________________ 55 Original and present taxonomic names of species. 57 Stratigraphic distribution of species ____________ 57 Collection localities._________________________ 58 Systematic descriptions.______________________ 59 Literature cited____________________________ 82 Index __-_-__-__---_--______________________ 85 ILLUSTRATIONS [Plates 13-17 follow page 86] PLATE 13. Agnostidae and Dolichometopidae 14. Dorypygidae 15. Oryctocephalidae, Dorypygidae, Zacanthoididae, and Ptychoparioidea 16. Ptychoparioidea 17. Ptychoparioidea FIGUBE 3. Index map showing collecting localities____________________________ . Page 56 in A SHORTER CONTRIBUTION TO GENERAL GEOLOGY AN APPRAISAL OF THE GREAT BASIN MIDDLE CAMBRIAN TRILOBITES DESCRIBED BEFORE 1900 By ALLISON R. PALMER ABSTRACT the species and changes in their generic assignments All 29 species of Middle Cambrian trilobites
    [Show full text]
  • Arthropod Pattern Theory and Cambrian Trilobites
    Bijdragen tot de Dierkunde, 64 (4) 193-213 (1995) SPB Academie Publishing bv, The Hague Arthropod pattern theory and Cambrian trilobites Frederick A. Sundberg Research Associate, Invertebrate Paleontology Section, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007, USA Keywords: Arthropod pattern theory, Cambrian, trilobites, segment distributions 4 Abstract ou 6). La limite thorax/pygidium se trouve généralementau niveau du node 2 (duplomères 11—13) et du node 3 (duplomères les les 18—20) pour Corynexochides et respectivement pour Pty- An analysis of duplomere (= segment) distribution within the chopariides.Cette limite se trouve dans le champ 4 (duplomères cephalon,thorax, and pygidium of Cambrian trilobites was un- 21—n) dans le cas des Olenellides et des Redlichiides. L’extrémité dertaken to determine if the Arthropod Pattern Theory (APT) du corps se trouve généralementau niveau du node 3 chez les proposed by Schram & Emerson (1991) applies to Cambrian Corynexochides, et au niveau du champ 4 chez les Olenellides, trilobites. The boundary of the cephalon/thorax occurs within les Redlichiides et les Ptychopariides. D’autre part, les épines 1 4 the predicted duplomerenode (duplomeres or 6). The bound- macropleurales, qui pourraient indiquer l’emplacement des ary between the thorax and pygidium generally occurs within gonopores ou de l’anus, sont généralementsituées au niveau des node 2 (duplomeres 11—13) and node 3 (duplomeres 18—20) for duplomères pronostiqués. La limite prothorax/opisthothorax corynexochids and ptychopariids, respectively. This boundary des Olenellides est située dans le node 3 ou près de celui-ci. Ces occurs within field 4 (duplomeres21—n) for olenellids and red- résultats indiquent que nombre et distribution des duplomères lichiids.
    [Show full text]
  • Age and Palaeoenvironments of the Manacapuru Formation, Presidente Figueiredo (AM) Region, Lochkovian of the Amazonas Basin
    SILEIR RA A D B E E G D E A O D L E O I G C I A O ARTICLE BJGEO S DOI: 10.1590/2317-4889201920180130 Brazilian Journal of Geology D ESDE 1946 Age and palaeoenvironments of the Manacapuru Formation, Presidente Figueiredo (AM) region, Lochkovian of the Amazonas Basin Patrícia Ferreira Rocha1* , Rosemery Rocha da Silveira1 , Roberto Cesar de Mendonça Barbosa1 Abstract The Manacapuru Formation, Amazonas Basin, outcrops on the margins of a highway in the region of Presidente Figueiredo, state of Amazo- nas. A systematic palynological and a lithofaciological analysis was carried out aiming to contribute to the paleoenvironmental understanding of the Manacapuru Formation and its respective age. The present work uses the analysis of the chitinozoan for biostratigraphic purposes as a tool. A total of 27 samples were collected in which an assemblage of lower Lochkovian can be recognized, whose characteristic species are Angochitina filosa, Cingulochitina ervensis, Lagenochitina navicula, and Pterochitina megavelata. It was possible to identify an intense reworking in the exposure, evidenced by the presence of paleofaunas ranging from Ludfordian to Pridolian, which may be associated to the constant storm events that reached the shelf. The lithofaciological analysis allowed the recognition of 6 predominantly muddy sedimentary lithofacies with sandy intercalations that suggest deposition in an offshore region inserted in a shallow marine shelf and influenced by storms. KEYWORDS: Chitinozoan; Devonian; Manacapuru Formation; Amazonas Basin. INTRODUCTION the results with more intensively investigated areas in Brazil and In the Silurian and Devonian period, the South Pole proposed five chitinozoan assemblages. Reworking was recog- was located close to the South American paleoplate margins nized in some sections.
    [Show full text]