Multicomponent Reactions

Total Page:16

File Type:pdf, Size:1020Kb

Multicomponent Reactions Multicomponent reactions Edited by Thomas J. J. Müller Generated on 24 September 2021, 08:23 Imprint Beilstein Journal of Organic Chemistry www.bjoc.org ISSN 1860-5397 Email: [email protected] The Beilstein Journal of Organic Chemistry is published by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften. This thematic issue, published in the Beilstein Beilstein-Institut zur Förderung der Journal of Organic Chemistry, is copyright the Chemischen Wissenschaften Beilstein-Institut zur Förderung der Chemischen Trakehner Straße 7–9 Wissenschaften. The copyright of the individual 60487 Frankfurt am Main articles in this document is the property of their Germany respective authors, subject to a Creative www.beilstein-institut.de Commons Attribution (CC-BY) license. Multicomponent reactions Thomas J. J. Müller Editorial Open Access Address: Beilstein J. Org. Chem. 2011, 7, 960–961. Heinrich-Heine-Universität Düsseldorf, Institut für Makromolekulare doi:10.3762/bjoc.7.107 Chemie und Organische Chemie, Lehrstuhl für Organische Chemie, Universitätsstr. 1, 40225 Düsseldorf, Germany Received: 11 July 2011 Accepted: 11 July 2011 Email: Published: 13 July 2011 Thomas J. J. Müller - [email protected] This article is part of the Thematic Series "Multicomponent reactions". Guest Editor: T. J. J. Müller © 2011 Müller; licensee Beilstein-Institut. License and terms: see end of document. Chemistry as a central science is facing a steadily increasing Now the major conceptual challenge comprises the engineering demand for new chemical entities (NCE). Innovative solutions, of novel types of MCR. Most advantageously and practically, in all kinds of disciplines that depend on chemistry, require new MCR can often be extended into combinatorial, solid phase or molecules with specific properties, and their societal conse- flow syntheses promising manifold opportunities for devel- quences are fundamental and pioneering. However, NCE not oping novel lead structures of active agents, catalysts and even only demand a realistic structural space but also their feasibility novel molecule-based materials. poses challenges to synthetic chemists. Nowadays the question of how to perform a synthesis has become most crucial. This Thematic Series on multicomponent reactions represents a snapshot of a highly dynamic field and spans a broad range, What is the ideal synthesis [1,2]? Certainly it should be simulta- from recent advances in isonitrile-based MCR to transition neously simple, safe, short, selective, high yielding, environ- metal catalysis in MCR; from peptidic and depsi-peptidic to mentally benign, based on readily available starting materials, heterocyclic structures; from reactivity-based to property-based and highly diverse. Additionally, the criterion of selectivity has concepts. The sympathetic reader, expert or newcomer, will to be matched with increasing significance economical and find a tremendous degree of dynamic and exciting new results ecological aspects. In particular multicomponent reactions in this compilation of multicomponent reaction chemistry. (MCR) [3] are masterpieces of synthetic efficiency and reac- tion design. These one-pot processes consist of concatenations As the guest editor of this Thematic Series I am very grateful to of elementary organic reactions under similar conditions. Most all authors for their excellent contributions and, in particular, to interestingly, multicomponent reactions have accompanied the the staff of the Beilstein-Institut for their support and profes- field of organic chemistry since the early days, particularly sional realization. in heterocyclic chemistry, but have not been recognized as a fundamental principle until Ugi's groundbreaking Thomas J. J. Müller extension of the Passerini reaction and the conclusions he drew from this. Düsseldorf, July 2011 960 Beilstein J. Org. Chem. 2011, 7, 960–961. References 1. Wender, P. A.; Handy, S. T.; Wright, D. L. Chem. Ind. 1997, 765, 767–769. 2. Gaich, T.; Baran, P. S. J. Org. Chem. 2010, 75, 4657–4673. doi:10.1021/jo1006812 3. Zhu, J.; Bienaymé, H., Eds. Multicomponent Reactions; Wiley-VCH: Weinheim, Germany, 2005. License and Terms This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (http://www.beilstein-journals.org/bjoc) The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.7.107 961 A practical two-step procedure for the preparation of enantiopure pyridines: Multicomponent reactions of alkoxyallenes, nitriles and carboxylic acids followed by a cyclocondensation reaction Christian Eidamshaus, Roopender Kumar, Mrinal K. Bera and Hans-Ulrich Reissig* Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2011, 7, 962–975. Freie Universität Berlin, Institut für Chemie und Biochemie, Takustr. 3, doi:10.3762/bjoc.7.108 D-14195 Berlin, Germany Received: 07 March 2011 Email: Accepted: 06 June 2011 Hans-Ulrich Reissig* - [email protected] Published: 13 July 2011 * Corresponding author This article is part of the Thematic Series "Multicomponent reactions". Keywords: Guest Editor: T. J. J. Müller allenes; enantiopure pyridines; ketoenamides; multicomponent reactions; nonaflates © 2011 Eidamshaus et al; licensee Beilstein-Institut. License and terms: see end of document. Abstract A practical approach to highly functionalized 4-hydroxypyridine derivatives with stereogenic side chains in the 2- and 6-positions is described. The presented two-step process utilizes a multicomponent reaction of alkoxyallenes, nitriles and carboxylic acids to provide β-methoxy-β-ketoenamides which are transformed into 4-hydroxypyridines in a subsequent cyclocondensation. The process shows broad substrate scope and leads to differentially substituted enantiopure pyridines in good to moderate yields. The prepar- ation of diverse substituted lactic acid derived pyrid-4-yl nonaflates is described. Additional evidence for the postulated mechanism of the multicomponent reaction is presented. Introduction The pyridine core is ubiquitous in pharmacologically active tion compounds makes pyridines ideal ligands for transition agents, agrochemicals and natural products [1-5]. The HMG- metal-catalyzed processes and for the construction of supra- CoA reductase inhibitors Glenvastatin and Cerivastatin are molecular architectures [13]. Pyridines with chiral side chains exemplarily mentioned as pharmaceuticals that feature the pyri- are widely employed as ligands in asymmetric transformations, dine nucleus [6-10]. Natural products that contain a pyridine for instance, in the asymmetric hydrogenation of olefins, in ring include the 3-alkylpyridine alkaloid niphatesine C and the enantioselective additions of metal organyls to aldehydes and fuzanin family [11,12]. Moreover, the ability to form coordina- enones, as well as in palladium-catalyzed allylic substitution 962 Beilstein J. Org. Chem. 2011, 7, 962–975. Scheme 1: Preparation of β-ketoenamides and subsequent cyclocondensation to 4-hydroxypyridines. a) Et2O, −40 °C to r.t. 16 h, b) TMSOTf, NEt3, CH2Cl2 or ClCH2CH2Cl reflux. reactions [14-20]. Thus, the synthesis of specifically functional- Results and Discussion ized pyridines is of considerable interest, and many approaches In continuation of our previous work, we addressed the ques- toward this heterocyclic structure have been disclosed in the tion whether chiral starting materials react in the above literature [21]. In addition to classical pyridine syntheses such sequence without loss of enantiopurity [40]. Chiral carboxylic as the Kröhnke reaction, many new approaches have recently acids are readily available and their use would allow for a rapid been developed [22-26]. Despite the wide range of conceptu- access to pyridines with side chains bearing stereogenic centers. ally different syntheses, only few methods for introducing In recent years we studied intensively the multicomponent reac- chirality into pyridine side chains have been described: Enantio- tions of lithiated alkoxyallenes with nitriles and carboxylic selective reduction of pyridine carbonyl compounds, the add- acids and could demonstrate that precursor compounds with ition of lithiated pyridine derivatives to chiral ketones or the alkyl, alkenyl or aryl substituents are smoothly converted into resolution of racemates being the most common approaches. β-ketoenamides and subsequently transformed into the desired The preparation of chiral pyridine derivatives starting from 4-hydroxypyridines. The mechanism of the multicomponent simple enantiopure precursors is less common [27,28]. reaction is depicted in Scheme 2. In the first step, a lithiated Recently, we reported a new synthesis of pyridines based on the trimethylsilyl trifluoromethanesulfonate (TMSOTf) induced cyclocondensation reaction of β-ketoenamides [29-34]. This cyclocondensation step can be rationalized as a 6π-electrocy- clization of the disilylated intermediate 5 to provide dihydropy- ridine 6. Elimination of trimethylsilanol and subsequent O-desi- lylation affords the 4-hydroxypyridine 7 (Scheme 1). The desired β-ketoenamides 4 are either accessible by acylation of enaminoketones or by a multicomponent reaction of lithiated alkoxyallenes, nitriles and carboxylic
Recommended publications
  • Synthesis and Characterization of Oligothiophene - Based Fully Π-Conjugated Macrocycles
    Synthesis and Characterization of Oligothiophene - based Fully π-Conjugated Macrocycles Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät der Naturwissenschaften der Universität Ulm vorgelegt von Gerda Laura Fuhrmann aus Neustadt (Baia Mare) Rumänien Ulm, 2006 Amtierender Dekan: Prof. Dr. Klaus-Dieter Spindler 1. Gutachter: Prof. Dr. Peter Bäuerle 2. Gutachter: Prof. Dr. Volkhard Austel Tag der Promotionsprüfung: 15.03.2006 This thesis was elaborated and written between November 1999 and February 2006 at the department of Organic Chemistry II, University of Ulm, Germany. für meine Eltern “The chemist does a mysterious thing when he wants to make a molecule. He sees that it has got a ring, so he mixes this and that, and he takes it, and he fiddles around. And at the end of a difficult process, he usually does succeed in synthesizing what he wants.” There’s a Plenty of Room at the Bottom - R. Feynman Ich möchte mich an dieser Stelle bei all denjenigen bedanken, die mich in den zurückliegenden Jahren begleitet und unterstützt haben und damit zum Gelingen dieser Arbeit beigetragen haben. Mein besonderer Dank gilt: - Herrn Prof. Dr. Peter Bäuerle für die stete Unterstützung und Förderung bei der wissenschaftlichen Gestaltung dieser Arbeit, für sein Interesse und persönliches Engagement, sowie für die mir gewähren Freiräume bei der Bearbeitung des Themas - Frau Dr. Pinar Kilickiran für ihre moralische und inspirative Unterstützung, für ihre unermüdliche Hilfe, für die Durchsicht und sprachliche Überarbeitung des Manuskripts und für vieles mehr - Herrn Prof. Dr. V. Austel für die stets anregende wissenschaftliche Diskussionen und seine Bereitschaft diese Arbeit zu begutachten - Herrn Dr.
    [Show full text]
  • Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2015 Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids Jessica S. Lampkowski College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Organic Chemistry Commons Recommended Citation Lampkowski, Jessica S., "Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids" (2015). Dissertations, Theses, and Masters Projects. Paper 1539626985. https://dx.doi.org/doi:10.21220/s2-r9jh-9635 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids Jessica Susan Lampkowski Ida, Michigan B.S. Chemistry, Siena Heights University, 2013 A Thesis presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Master of Science Chemistry Department The College of William and Mary May, 2015 COMPLIANCE PAGE Research approved by Institutional Biosafety Committee Protocol number: BC-2012-09-13-8113-dyoung01 Date(s) of approval: This protocol will expire on 2015-11-02 APPROVAL PAGE This
    [Show full text]
  • Application of Multicomponent Reactions in the Total Synthesis of Natural Peptides
    The Free Internet Journal Review for Organic Chemistry Archive for Arkivoc 2019, part i, 0-0 Organic Chemistry to be inserted by editorial office Application of multicomponent reactions in the total synthesis of natural peptides Ghodsi Mohammadi Ziarani,* Razieh Moradi, and Leyla Mahammadkhani Department of Chemistry, Alzahra University, Vanak Square, P.O. Box 1993893973, Tehran, Iran E-mail address: [email protected], [email protected] Received 10-10-2018 Accepted 03-01-2019 Published on line 04-28-2019 Dates to be inserted by editorial office Abstract Multicomponent reactions (MCRs) have been widely applied for the synthesis of biologically active molecules with high complexity and diversity. Nowadays, total synthesis of natural peptides, due to their multifarious application areas, has attracted much attention of organic chemists. MCRs are a powerful and efficient method for the production of natural peptides in a limited number of steps. This review presents an overview on application of multicomponent reactions as a key step in the synthesis of natural peptides. Keywords: Natural peptides, natural products, multicomponent reactions, biological activity DOI: https://doi.org/10.24820/ark.5550190.p010.779 Page 1 ©ARKAT USA, Inc Arkivoc 2019, i, 0-0 Mohammadi-Ziarani, G. et al. Table of Contents 1. Introduction 2. Application of Multicomponent Reactions in the Total Synthesis of Natural Peptides 2.1. Syntheses based on the Ugi reaction 2.2. Syntheses based on the Passerini reaction 2.3. Miscellaneous reactions 3. Conclusions
    [Show full text]
  • Ugi Four-Component Reaction (U-4CR) Under Green Conditions Designed for Undergraduate Organic Chemistry Laboratories
    World Journal of Chemical Education, 2017, Vol. 5, No. 5, 153-157 Available online at http://pubs.sciepub.com/wjce/5/5/2 ©Science and Education Publishing DOI:10.12691/wjce-5-5-2 Ugi Four-component Reaction (U-4CR) Under Green Conditions Designed for Undergraduate Organic Chemistry Laboratories Mariana Ingold, Lucia Colella, Rosina Dapueto, Gloria. V. López*, Williams Porcal* Department of Organic Chemistry, Faculty of Chemistry, University of the Republic, Montevideo, Uruguay *Corresponding author Abstract Multicomponent reactions (MCRs) are a green strategy in which a collection of molecules with a great diversity are generated with a minimum of synthetic effort, time and by-products formation. The Ugi Multi-component reaction is a chemical reaction in which an aldehyde, an amine, a carboxylic acid and an isocyanide react to form a α-bisamide. In this work, we use the Ugi reaction, as an example of MCRs, to approach organic chemistry undergraduate students to sustainable reactions. This reaction can be carried out under on-water or solvent-free conditions, both at room temperature as in combination with microwave irradiation or ultrasound. The advantages and limitations of the usage of Ugi reaction, under these conditions, in an organic chemistry laboratory course are discussed. In this context, we used different parameters to calculate how environmentally friendly the assayed conditions are. The Chemical Manufacturing Methods for the 21st Century Pharmaceutical Industries (CHEM21 project) were used with this objective. The present work could contribute to the teaching of ecofriendly synthetic strategies, demonstrating the scientific and academic benefits of green chemistry. Keywords: green chemistry, solvent-free, on-water, microwave, Multicomponent Reaction, Ugi, Metrics Toolkit Cite This Article: Mariana Ingold, Lucia Colella, Rosina Dapueto, Gloria.
    [Show full text]
  • Synthesis and Biological Importance of Amide Analogues
    REVIEW ARTICLE Synthesis and biological importance of amide analogues Preeti Rajput, Abhilekha Sharma* Rajput P, Sharma A. Synthesis and biological importance of amide amide linage containing compounds. The main purpose of article is to analogues. J Pharmacol Med Chem 2018;2(1):22-31. provide information on the development of novel amide derivatives to the scientific community. Doing so, it focuses on mechanisms of action and ABSTRACT adverse events, and suggests measures to be implemented in the clinical The present research article deals with the amide analogues prepared by practice according to bioethical principles. available very well-known name reactions. The author have studied the name reactions like Beckmann rearrangement, Schmidt reaction, Passerine reaction, Key Words: Novel amide derivatives; Amide analogues; Amide formation Willgerodt–Kindler reaction and UGI reaction, which involves preparation of routes starting from substrates other than carboxylic acids and their T he Amide bond formation reactions are among the most important derivatives (5). Thus, with the help of transition metals, a plethora of transformations in organic chemistry and biochemistry because of the functional groups, such as nitriles, aldehydes, ketones, oximes, primary widespread occurrence of amides in pharmaceuticals, natural products alcohols or amines, can be now conveniently employed as starting and biologically active compounds. The amide group is widely present in materials for the construction of the amide bond. There are three types of the drugs, intermediates, pharmaceuticals, and natural products. It is also amides available in Chemistry: (i) an organic amide which is also referred available in large number of industrial materials including polymers, as carboxamide, (ii) a sulfonamide, and (iii) a phosphoramide.
    [Show full text]
  • Investigating Ugi/Passerini Multicomponent Reactions for the Site-Selective Conjugation of Native Trastuzumab C
    Investigating Ugi/Passerini Multicomponent Reactions for the Site-Selective Conjugation of Native Trastuzumab C. Sornay, S. Hessmann, S. Erb, I. Dovgan, A. Ehkirch, T. Botzanowski, S. Cianferani, A. Wagner, G. Chaubet To cite this version: C. Sornay, S. Hessmann, S. Erb, I. Dovgan, A. Ehkirch, et al.. Investigating Ugi/Passerini Mul- ticomponent Reactions for the Site-Selective Conjugation of Native Trastuzumab. Chemistry - A European Journal, Wiley-VCH Verlag, 2020, 26 (61), pp.13797-13805. 10.1002/chem.202002432. hal-02966878 HAL Id: hal-02966878 https://hal.archives-ouvertes.fr/hal-02966878 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Investigating Ugi / Passerini multicomponent reactions for the Site-Selective Conjugation of Native Trastuzumab Charlotte Sornay1, Steve Hessmann2, Stéphane Erb2, Igor Dovgan1, Anthony Ehkirch2, Thomas Botzanowski2, Sarah Cianférani2, Alain Wagner1, Guilhem Chaubet1* AUTHOR ADDRESS 1Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France 2Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), LabEx Medalis, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France KEYWORDS Bioconjugation; multicomponent reaction; antibodies; antibody-drug conjugates ABSTRACT: Site-selective modification of proteins has been the object of intense studies over the past decades, especially in the therapeutic field.
    [Show full text]
  • Organocatalyzed Three-Component Ugi and Passerini Reactions of 4-Oxoazetidine-2
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digital.CSIC Organocatalyzed Three-Component Ugi and Passerini Reactions of 4-Oxoazetidine-2- carbaldehydes and Azetidine-2,3-diones. Application to the Synthesis of -Lactams and -Lactones Benito Alcaide,*, † Pedro Almendros,‡ Cristina Aragoncillo,† Ricardo Callejo,† and M. Pilar Ruiz† †Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040-Madrid, Spain, ‡Instituto de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006-Madrid, Spain, and [email protected] ABSTRACT X 2 1 H H 2 H H "ring-opening" R NHR R2 CHO "U-3CR" R NHR 3 "P-3CR" "cyclization" NHR 3 N O O N PhP(OH)2 (cat.) 1 X O R1 O R O 1 4 4 4 2 for: R NH2, X = NHR 6 X = NR 3 for: H2O, X = OH 7 X = O O O O O O H O HO H "P-3CR" 2 N PhP(OH) (cat.) R HN 1 2 N O R O R1 4 syn-5 Organocatalyzed U-3CR of 4-oxoazetidine-2-carbaldehydes has been studied. Besides, it the organocatalyzed P-3CR of 4-oxoazetidine-2-carbaldehydes and azetidine-2,3-diones has been described for the first time. U-3CR and P-3CR adducts have been obtained in good yields and reasonable diastereoselectivities. Phenyl phosphinic acid has been the catalyst of choice to study the scope of both organocatalyzed multicomponent reactions using a variety of -lactams, isocyanides and amines.
    [Show full text]
  • Mediated Azide-Alkyne Cycloaddition Reactions Using Chelating Azides Wendy S
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2012 Development of Copper(II)-Mediated Azide-Alkyne Cycloaddition Reactions Using Chelating Azides Wendy S. Brotherton Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES DEVELOPMENT OF COPPER(II)-MEDIATED AZIDE-ALKYNE CYCLOADDITION REACTIONS USING CHELATING AZIDES By WENDY S. BROTHERTON A Dissertation submitted to the Department of Chemistry and Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Spring Semester, 2012 Wendy S. Brotherton defended this dissertation on December 8, 2011. The members of the supervisory committee were: Lei Zhu Professor Directing Dissertation P. Bryant Chase University Representative Gregory B. Dudley Committee Member Igor V. Alabugin Committee Member Michael G. Roper Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii This manuscript is dedicated to my mother for all of her encouragement and sacrifices over the many years of my education. I would also like to dedicate this to my fiancé, Travis Ambrose, who has been so supportive and encouraging throughout this entire process. iii ACKNOWLEDGEMENTS I would like to thank Professor Lei Zhu for his guidance, support and assistance over the course of my graduate studies. I would like to express my gratitude to the past and present members of the Zhu group for their support and friendship over the years: Dr.
    [Show full text]
  • Synthesis of Silsesquioxanes with Substituted Triazole Ring Functionalities and Their Coordination Ability †
    molecules Article Synthesis of Silsesquioxanes with Substituted Triazole Ring Functionalities and Their Coordination Ability † Monika Rzonsowska 1,2,* , Katarzyna Kozakiewicz 1, Katarzyna Mituła 1,2 , Julia Duszczak 1,2, Maciej Kubicki 3 and Beata Dudziec 1,2,* 1 Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Pozna´n, Uniwersytetu Pozna´nskiego8, 61-614 Pozna´n,Poland; [email protected] (K.K.); [email protected] (K.M.); [email protected] (J.D.) 2 Centre for Advanced Technologies, Adam Mickiewicz University in Pozna´n,Uniwersytetu Pozna´nskiego10, 61-614 Pozna´n,Poland 3 Faculty of Chemistry, Adam Mickiewicz University in Pozna´n,Uniwersytetu Pozna´nskiego8, 61-614 Pozna´n,Poland; [email protected] * Correspondence: [email protected] (M.R.); [email protected] (B.D.); Tel.: +48-618291878 (B.D.) † Dedicated to Professor Julian Chojnowski on the occasion of his 85th birthday. Abstract: A synthesis of a series of mono-T8 and difunctionalized double-decker silsesquioxanes bearing substituted triazole ring(s) has been reported within this work. The catalytic protocol for their formation is based on the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) process. Diverse alkynes were in the scope of our interest—i.e., aryl, hetaryl, alkyl, silyl, or germyl—and the latter was shown to be the first example of terminal germane alkyne which is reactive in the applied process’ conditions. From the pallet of 15 compounds, three of them with pyridine-triazole and Citation: Rzonsowska, M.; thiophenyl-triazole moiety attached to T8 or DDSQ core were verified in terms of their coordinating Kozakiewicz, K.; Mituła, K.; properties towards selected transition metals, i.e., Pd(II), Pt(II), and Rh(I).
    [Show full text]
  • An Exceptional Scientist and Human Being. in Memorial Ivar Ugi
    HETEROCYCLES, Vol. 73, 2007 1 Ivar Ugi: An exceptional scientist and human being. In Memorial Ivar Ugi Ivar Ugi, a great scientist and exceptional human being recently left us. He died after a long and painful disease at the 27 September 2005. In memoriam Ivar Ugi this special issue of Heterocyles is edited with many contributions of his scientific friends and colleagues. He was born 1930 in Kuresare on the island Sareemma in Estonia. In 1941 the family Ugi left Estonia and moved to Dillingen an der Donau in Bavaria/Germany. There he went to high school. He studied mathematics and chemistry at the University of Tübingen. At the Ludwig Maximilian Universität in München he performed his PhD under the guidance of Prof. Rolf Huisgen. At the same university he performed his Habilitation “Isonitrile und Pentazole”. In 1962 he become married with his wife Helga and his son Ian was born. In the same year the family Ugi went to Leverkusen, where he joints the central research laboratory of the Bayer AG. Soon he became promoted to the “Research Director” and “Chairman of Bayer‘s Basic Research Committee”. During his time at Bayer Ivar Ugi and Otto Bayer became very good friends. However he realized that his managerial positions at Bayer mostly involved organisational work and prevented him from following his scientific ideas in the lab. Therefore, he was very lucky when he got a full chair for chemistry offered at the University of Southern California (USC) in the US. He stayed there form 1969 to 1971 and partially till 1973.
    [Show full text]
  • Isocyanide-Based Multicomponent Reactions for the Synthesis of Heterocycles
    Review Isocyanide-Based Multicomponent Reactions for the Synthesis of Heterocycles András Váradi, Travis C. Palmer, Rebecca Notis Dardashti and Susruta Majumdar * Received: 10 October 2015 ; Accepted: 17 December 2015 ; Published: 23 December 2015 Academic Editor: Romano V. A. Orru Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; [email protected] (A.V.); [email protected] (T.C.P.); [email protected] (R.N.D.) * Correspondence: [email protected]; Tel.: +1-646-888-3669 Abstract: Multicomponent reactions (MCRs) are extremely popular owing to their facile execution, high atom-efficiency and the high diversity of products. MCRs can be used to access various heterocycles and highly functionalized scaffolds, and thus have been invaluable tools in total synthesis, drug discovery and bioconjugation. Traditional isocyanide-based MCRs utilize an external nucleophile attacking the reactive nitrilium ion, the key intermediate formed in the reaction of the imine and the isocyanide. However, when reactants with multiple nucleophilic groups (bisfunctional reactants) are used in the MCR, the nitrilium intermediate can be trapped by an intramolecular nucleophilic attack to form various heterocycles. The implications of nitrilium trapping along with widely applied conventional isocyanide-based MCRs in drug design are discussed in this review. Keywords: Ugi reaction; heterocycles; nitrilium trapping 1. Introduction Multicomponent reactions are powerful tools for the rapid generation of molecular diversity and complexity. In a typical multicomponent process, more than two components are combined in a single reaction, thereby providing an operationally effective and highly modular approach towards the synthesis of structurally diverse molecular entities. Multicomponent reactions (MCRs) represent an excellent tool for the generation of libraries of small-molecule compounds and are indispensable for structure–activity relationship (SAR) studies.
    [Show full text]
  • Recent Progress Concerning the N-Arylation of Indoles
    molecules Review Review RecentRecent ProgressProgress Concerningconcerning the the NN-Arylation-Arylation of of Indoles Indoles Petr Oeser, Jakub Koudelka, Artem Petrenko and Tomáš Tobrman * Petr Oeser, Jakub Koudelka , Artem Petrenko and Tomáš Tobrman * Department of Organic Chemistry, University of Chemistry and Technology, 16628 Prague, Czech Republic; [email protected] of Organic (P.O.); Chemistry, [email protected] University of Chemistry (J.K.); [email protected] and Technology, 16628 (A.P.) Prague, Czech Republic; [email protected]* Correspondence: (P.O.); [email protected] [email protected] (J.K.); [email protected] (A.P.) * Correspondence: [email protected] Abstract: This review summarizes the current state-of-the-art procedures in terms of the prepara- Abstract:tion of N-arylindoles.This review summarizesAfter a short the intr currentoduction, state-of-the-art the transition-metal procedures-free in procedures terms of the available preparation for oftheN N-arylindoles.-arylation of After indoles a short are briefly introduction, discussed. the Th transition-metal-freeen, the nickel-catalyzed procedures and palladium-catalyzed available for the NN-arylation-arylation ofof indoles are brieflyboth discussed. discussed. In Then,the next the section, nickel-catalyzed copper-catalyzed and palladium-catalyzed procedures for the NN-arylation-arylation ofof indolesindoles areare bothdescribed. discussed. The final In the sectio nextn section,focuses copper-catalyzedon recent findings procedures in the field forof bio- the Nlogically-arylation active of indolesN-arylindoles. are described. The final section focuses on recent findings in the field of biologically active N-arylindoles. Keywords: N-arylation; indole; Buchwald–Hartwig amination; Ullmann condensation; Chan–Lam Keywords:coupling N-arylation; indole; Buchwald–Hartwig amination; Ullmann condensation; Chan– Lam coupling 1.
    [Show full text]