A Dissertation Entitled Applications of Ugi Four Component Cascade

Total Page:16

File Type:pdf, Size:1020Kb

A Dissertation Entitled Applications of Ugi Four Component Cascade A Dissertation entitled Applications of Ugi Four Component Cascade Coupling Reactions for the Synthesis of Bioactive Diverse Heterocyclic Molecules and Natural Products by Amarendar Reddy Maddirala Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry _________________________________________ Dr. Peter R. Andreana, Committee Chair _________________________________________ Dr. Joseph A. R. Schmidt, Committee Member _________________________________________ Dr. Jianglong Zhu, Committee Member _________________________________________ Dr. L. M. V. Tillekeratne, Committee Member _________________________________________ Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo May, 2016 Copyright 2016, Amarendar Reddy Maddirala This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Applications of Ugi Four Component Cascade Coupling Reactions for the Synthesis of Bioactive Diverse Heterocyclic Molecules and Natural Products by Amarendar Reddy Maddirala Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry The University of Toledo May, 2016 Isocyanide-based multicomponent reactions (IBMRs) have great advantages towards the assembly of complex molecules and are concise for the synthesis of higher ordered core structural motifs accomplished in a single synthetic transformation. Complexity generating reactions have become quite useful in assembling molecules containing a variety of stereocenters in an economical and time-saving manner. Particularly, the Ugi four component reaction sequence, followed by a variety of post condensation or transformational modifications allow the synthetic chemist to synthesize many biologically active molecules including those with diverse heterocyclic scaffolds and natural products. Of those types of molecules, 3-substituted-2-indolinone scaffolds have many important functions in biological systems including a wide-range of beneficial activities. From this perspective, the syntheses of 3-substituted-2-indolinones are an interesting target for an organic synthetic chemist to study the applications in medicinal chemistry. Our approach demands the efficient synthesis of 3-substituted-2-indolinones through microwave irradiation and selective intramolecular transamidation of the Ugi four component condensation derivative(s). Additionally, investigation for the ability of iii symmetrical versus unsymmetrical amine component(s) and carboxylic component(s) to eliminate the formation of rotameric mixtures obtained during the practice, simplifies NMR analysis and allows for further molecular design amplification. Likewise, the synthesis of spiro-[indoline-3,2'-pyrrolidine]-2,5'-diones via post-Ugi- 4CR/transamidation/cyclization sequential process has been achieved in three steps in a one-pot reaction using methyl isocyanide as a convertible isocyanide. Variation in the carboxylic acid moiety allows for the generation of new quaternary carbon centers under basic reaction conditions and provides the molecular diversity in a small library of spirocyclic oxindole -lactams. Finally, bioactive natural products, xenortides A-D and their stereoisomers, were synthesized in a one-pot, two-step reaction using the methodology learned from the Ugi four component reaction. iv Acknowledgements First of all I would like to express gratefulness to my research advisor Dr. Peter R. Andreana for giving me an opportunity to carry out my research by motivating, mentoring and teaching me through every challenge that came in my way throughout my graduate studies. I would like to thank my committee members Dr. Joseph A.R Schmidt, Dr. Jianglong Zhu, and Dr. L. M. V. Tillekeratne for helpful suggestions and criticisms for my Ph.D. Due acknowledgement is given to my past and present group members for the very useful discussions; chemistry related, maintenance of the laboratory and for keeping an extremely cordial environment in my work place. Also special thanks to my lab mate Krishnakant who was always there when I need help. My sincere appreciation for training and the help provided by Dr. Yong Wah Kim in NMR and MS experiments and Dr. Kristin Kirschbaum for providing X-ray crystallographic analysis, and Steve Moder for making new glassware and repairing broken glass ware. I really appreciated everyone from stockroom for their help and Charlene Hansen and Pam for their help related to administration and teaching. With deep gratitude I thank everyone from the department of chemistry and biochemistry at the University of Toledo, who helped me bring this graduate study to a successful completion and made my stay a meaningful one. I am extremely grateful to my family members and friends for their constant encouragement and support throughout my study which made the tedious research look simple and easy v Table of Contents Abstract .............................................................................................................................. iii Acknowledgements ..............................................................................................................v Table of Contents ............................................................................................................... vi List of Tables ................................................................................................................... ix List of Figures ......................................................................................................................x List of Schemes .................................................................................................................. xi List of Abbreviations ....................................................................................................... xiii List of Symbols ..................................................................................................................xv 1. Multicomponent Reactions Background..................................................................1 1.1. Introduction…………… ...................................................................................1 1.2. History of multicomponent reactions……………............................................2 1.3. History of isocyanides……………...................................................................3 1.3.1. Isocyanide synthesis………………...................................................3 1.4. Named isocyanide based multicomponent reactions ........................................7 1.4.1. Passerini reaction ...............................................................................7 1.4.2. Ugi reaction ........................................................................................9 1.4.3. Ugi-Smiles reaction .........................................................................10 1.5. Application of Ugi four component reaction ..................................................12 1.5.1. Heterocyclic scaffolds synthesis ......................................................12 1.5.2. Total synthesis of natural products ..................................................13 1.5.3. Applications in Drug discovery .......................................................16 vi References……. .....................................................................................................19 2. Synthesis of 3-Substituted-2-Indolinones via a Multicomponent Coupling Isocyanide Dependent Microwave-Assisted Intramolecular Transamidation Process....................................................................... ............................................25 2.1. Introduction…………… .................................................................................25 β.β. Results and Discussion…………… ...............................................................28 2.2.1. Feasibility study for intramolecular transamidation …………… ...28 2.2.2. Effect of isocyanide substitution and TFA catalyzed transamidation reactions …………… ................................................................................30 2.2.3. Rotamers formation and challenges in NMR analysis …………… 34 2.2.3.1. Studying the effect of amine component on rotamer formation………… ....................................................................................35 2.2.3.2. Studying the effect of carboxylic acid component on rotamer formation…………………………………………………………………37 β.γ. Conclusion…………… ..................................................................................38 Experimental Section …………… ........................................................................40 References…………… ..........................................................................................77 3. Methyl Isocyanide as a Convertible Functional Group for the Synthesis of Spirocyclic Oxindole –lactams via Post Ugi-4CR/Transamidation/Cyclization in a One-pot Three Step Sequence.......…..................................................................82 3.1. Introduction…………… .................................................................................82 γ.β. Results and Discussion…………… ...............................................................85 3.2.1. Feasibility studies for one pot, three step reaction …………… ......85 vii 3.2.2. Optimization studies for base catalyzed cyclization …………… ...87 3.2.3. Investigation of substrate scope …………… ..................................88
Recommended publications
  • Estimation Of'hetrazan'in Body Fluids
    No. 4183 December 31, 1949 NATURE II 35 strated by a coupled oxidation of alcohol in the blank value of about 1 (J.gm.fml. Further, trichlor­ presence of catalase6 • As an artificial ascorbic oxidase acetic acid precipitation removes about 20 per cent it had a Qo8 ((.Ll. oxygen per mgm. dry weight per hr.) of added 'Hetrazan'. Therefore, although it may at pH 7·2 and 39° C. of about 10,000. Hydrogen be more tedious, it is preferable to extract serum or cyanide inhibited this catalysed oxidation of ascorbic plasma. acid by combining with modified ferricytochrome c, Urines show a blank value of about 5 flgm.fml., thus preventing its reduction, while carbon monoxide, but occasionally, in concentrated urines, the blank by combining with modified ferrocytochrome c, may reach 20 vgm.jml. prevented its oxidation. The carbon monoxide The method is sufficiently sensitive to measure a inhibition was somewhat light-sensitive. This reaction blood concentration of 'Hetrazan' of 1 (J.gm.jml. Like was also inhibited by methyl isocyanide and nitroso­ most of these methods, it lacks specificity, but has benzene. Modified cytochrome c also catalysed the been found useful in following the concentration jn decomposition of hydrogen peroxide, being itself blood and urine after oral administration of the drug. destroyed in this reaction. Cyanide inhibited this A full account of the results of these experiments catalysed decomposition of hydrogen peroxide. will be published later. Typically, ingestion of The result of this experiment agrees with an 10 mgm.jkgm. body-weight of the hydrochloride observation of Keilin and Hartrees that when cyto­ results in a maximum plasma concentration of about chrome c is made autoxidizable it loses its catalytical 5-7 [lgm.jml., reached in three hours.
    [Show full text]
  • Interferometric Observations of Large Biologically Interesting Interstellar and Cometary Molecules
    SPECIAL FEATURE: PERSPECTIVE Interferometric observations of large biologically interesting interstellar and cometary molecules Lewis E. Snyder* Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 Edited by William Klemperer, Harvard University, Cambridge, MA, and approved May 26, 2006 (received for review March 3, 2006) Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have sub- stantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled ‘‘biomolecules.’’ Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated inter- stellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to under- standing hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from obser- vations with the next generation of sensitive, high-resolution arrays.
    [Show full text]
  • United States Patent Office Patented Jan
    3,712,911 United States Patent Office Patented Jan. 23, 1973 1. 2 Another possibility is for R1 and R2 to jointly form an 3,712,911 alkylidene radical, as in the compound METALLIZED SOCYANDES Ulrich Schoellkopf, Bovenden, and Fritz Gerhart, Gottin EC-CEI-CE=C-N=C gen, Germany, assignors to Badische Anilin- & Soda Fabrik Aktiengesellschaft, Ludwigshafen (Rhine), Ger Me many or to denote a carboxylic radical together with the alpha No Drawing. Filed Oct. 20, 1969, Ser. No. 867,941 carbon atom of the isocyanide, as in cyclohexylisocyanide. Int, C. C07c 119/02 The radicals R in the ROOC- and ROC-groups may U.S. C. 260-464 8 Claims in principle have the same meanings as the radicals R and R. In ROOC-R may also be a metal ion (Me) and in O ov-ROC-hydrogen. ABSTRACT OF THE DISCLOSURE Me in the first-mentioned general formula stands for ov-Metalated isocyanides containing the radical alkali metal, i.e. lithium, sodium or potassium, or an equivalent of magnesium, zinc or cadmium. 5 As can be seen from the details given above, the metal lized isocyanides of this invention constitute a new class Me of compounds characterized by the as an essential portion of the molecule. Me stands for alkali or an equivalent of magnesium, zinc or cadmium. Their manufacture is accomplished by replacing hydrogen 20 on the cy-carbon of an isocyanide with said metals. The portion of the molecule. compounds open up new routes for organic synthesis and Examples of individual compounds of this class are therefore have outstanding importance as intermediates, c-metal methyl isocyanide, a-metal ethyl isocyanide, c e.g.
    [Show full text]
  • Application of Multicomponent Reactions in the Total Synthesis of Natural Peptides
    The Free Internet Journal Review for Organic Chemistry Archive for Arkivoc 2019, part i, 0-0 Organic Chemistry to be inserted by editorial office Application of multicomponent reactions in the total synthesis of natural peptides Ghodsi Mohammadi Ziarani,* Razieh Moradi, and Leyla Mahammadkhani Department of Chemistry, Alzahra University, Vanak Square, P.O. Box 1993893973, Tehran, Iran E-mail address: [email protected], [email protected] Received 10-10-2018 Accepted 03-01-2019 Published on line 04-28-2019 Dates to be inserted by editorial office Abstract Multicomponent reactions (MCRs) have been widely applied for the synthesis of biologically active molecules with high complexity and diversity. Nowadays, total synthesis of natural peptides, due to their multifarious application areas, has attracted much attention of organic chemists. MCRs are a powerful and efficient method for the production of natural peptides in a limited number of steps. This review presents an overview on application of multicomponent reactions as a key step in the synthesis of natural peptides. Keywords: Natural peptides, natural products, multicomponent reactions, biological activity DOI: https://doi.org/10.24820/ark.5550190.p010.779 Page 1 ©ARKAT USA, Inc Arkivoc 2019, i, 0-0 Mohammadi-Ziarani, G. et al. Table of Contents 1. Introduction 2. Application of Multicomponent Reactions in the Total Synthesis of Natural Peptides 2.1. Syntheses based on the Ugi reaction 2.2. Syntheses based on the Passerini reaction 2.3. Miscellaneous reactions 3. Conclusions
    [Show full text]
  • Ugi Four-Component Reaction (U-4CR) Under Green Conditions Designed for Undergraduate Organic Chemistry Laboratories
    World Journal of Chemical Education, 2017, Vol. 5, No. 5, 153-157 Available online at http://pubs.sciepub.com/wjce/5/5/2 ©Science and Education Publishing DOI:10.12691/wjce-5-5-2 Ugi Four-component Reaction (U-4CR) Under Green Conditions Designed for Undergraduate Organic Chemistry Laboratories Mariana Ingold, Lucia Colella, Rosina Dapueto, Gloria. V. López*, Williams Porcal* Department of Organic Chemistry, Faculty of Chemistry, University of the Republic, Montevideo, Uruguay *Corresponding author Abstract Multicomponent reactions (MCRs) are a green strategy in which a collection of molecules with a great diversity are generated with a minimum of synthetic effort, time and by-products formation. The Ugi Multi-component reaction is a chemical reaction in which an aldehyde, an amine, a carboxylic acid and an isocyanide react to form a α-bisamide. In this work, we use the Ugi reaction, as an example of MCRs, to approach organic chemistry undergraduate students to sustainable reactions. This reaction can be carried out under on-water or solvent-free conditions, both at room temperature as in combination with microwave irradiation or ultrasound. The advantages and limitations of the usage of Ugi reaction, under these conditions, in an organic chemistry laboratory course are discussed. In this context, we used different parameters to calculate how environmentally friendly the assayed conditions are. The Chemical Manufacturing Methods for the 21st Century Pharmaceutical Industries (CHEM21 project) were used with this objective. The present work could contribute to the teaching of ecofriendly synthetic strategies, demonstrating the scientific and academic benefits of green chemistry. Keywords: green chemistry, solvent-free, on-water, microwave, Multicomponent Reaction, Ugi, Metrics Toolkit Cite This Article: Mariana Ingold, Lucia Colella, Rosina Dapueto, Gloria.
    [Show full text]
  • Prevalence of Complex Organic Molecules in Prestellar Cores Within the Taurus Star Forming Region
    Prevalence of Complex Organic Molecules in Prestellar Cores Within the Taurus Star Forming Region! Samantha Scibelli! 3rd year Graduate Student and NSF Fellow! Advised by Dr. Yancy Shirley! Steward Observatory, University of Arizona Celebrating The First 40 Years Of Alexander Tielens’ Contribution To Science:! The Physics And Chemistry Of The ISM! Palais des Papes in Avignon, France. 2nd – 6th September 2019! Origins of Complex Molecules! + - Gas: CH3OH2 + e à CH3OH + H only 3% yield … too SLOW (Geppert et al. 2006) Photo- Gas-phase Chemistry desorption d Ion-molecule Reactions UV/XUV! à COM abundances several Silicate or ! Irradiation! / of orders of magnitude lower than Carbonaceous ! & Cosmic observed grain! Rays (Charnley & Tielens 1992) Chemical reactions! How do complex organics form in Ion- radiation (Burke & Brown 2010) cold (10 K), UV- shielded environments? Origins of Complex Molecules! Solid: CO + H à HCO + H à H2CO + H à CH3O + H à CH3OH Chemical Chemical Reactive desorption Desorption d Neutral-Neutral Silicate or ! / Carbonaceous ! reactions of radicals ! grain! Chemical Models predict reactions! abundances Ion- radiation (Minissale et al. 2016, which we can Vasyunin et al. 2017) constrain! COMs in Prestellar Cores! B68 Methanol When, where CH3OH and how are these molecules forming in Acetaldehyde prestellar CH3CHO cores?! Dimethyl Birthplace of low-mass stars Ether (M ≤ a few M¤) CH₃OCH₃ 4 5 -3 Dense (10 - 10 cm ) & cold (≤ 10K ) COMs in Prestellar Cores! ! ! ! (K) mb arcsec T arcsec "$ "$ V (km s-1)! "# arcsec! "# arcsec! LSR L1498 L1517B Tafalla et al. 2006! TMC-1 CH3CHO CH3CHO (5-4) A (5-4) E CH3OH (20,2 - 10,1 A ) C34S (J = 2 − 1) Soma et al.
    [Show full text]
  • Synthesis and Biological Importance of Amide Analogues
    REVIEW ARTICLE Synthesis and biological importance of amide analogues Preeti Rajput, Abhilekha Sharma* Rajput P, Sharma A. Synthesis and biological importance of amide amide linage containing compounds. The main purpose of article is to analogues. J Pharmacol Med Chem 2018;2(1):22-31. provide information on the development of novel amide derivatives to the scientific community. Doing so, it focuses on mechanisms of action and ABSTRACT adverse events, and suggests measures to be implemented in the clinical The present research article deals with the amide analogues prepared by practice according to bioethical principles. available very well-known name reactions. The author have studied the name reactions like Beckmann rearrangement, Schmidt reaction, Passerine reaction, Key Words: Novel amide derivatives; Amide analogues; Amide formation Willgerodt–Kindler reaction and UGI reaction, which involves preparation of routes starting from substrates other than carboxylic acids and their T he Amide bond formation reactions are among the most important derivatives (5). Thus, with the help of transition metals, a plethora of transformations in organic chemistry and biochemistry because of the functional groups, such as nitriles, aldehydes, ketones, oximes, primary widespread occurrence of amides in pharmaceuticals, natural products alcohols or amines, can be now conveniently employed as starting and biologically active compounds. The amide group is widely present in materials for the construction of the amide bond. There are three types of the drugs, intermediates, pharmaceuticals, and natural products. It is also amides available in Chemistry: (i) an organic amide which is also referred available in large number of industrial materials including polymers, as carboxamide, (ii) a sulfonamide, and (iii) a phosphoramide.
    [Show full text]
  • Supporting Information Activation Chemistry Drives the Emergence of Functionalised Protocells
    Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020 Supporting information Activation chemistry drives the emergence of functionalised protocells Claudia Bonfio§,*, David A. Russell§, Nicholas J. Green, Angelica Mariani and John D. Sutherland Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom * Correspondence: [email protected] Materials and methods Supporting Figures 1 to 49 Supporting References Materials and methods Reagents and solvents were bought from Nu-Chek Prep, Avanti Polar Lipids, Sigma-Aldrich, VWR International, Alfa-Aesar and Acros Organics and were used without further purification unless otherwise stated. Oligonucleotides were purchased from IDT. For membrane growth studies, the phospholipids N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn- glycero-3-phosphoethanolamine (NBD PE) and Lissamine rhodamine B 1,2-dihexadecanoyl- sn-glycero-3-phosphoethanolamine (Rh-DHPE) were used (Life Technologies). A Mettler Toledo SevenEasy pH Meter S20 was used to monitor the pH of the solutions, adjusted with either NaOH or HCl solutions as appropriate. Deoxygenation of H2O:D2O 9:1 mixtures was achieved by sparging anhydrous argon through the solution for 30 min. All reactions were carried out at room temperature unless otherwise stated. Purification of the synthesised molecules was performed by reverse-phase chromatography using a preparative Varian Prostar HPLC System equipped with an Atlantis T3 C18 Prep Column OBD 10 μm (19× 250 mm). Analytical HPLC was used for hydrolysis experiments, using a Waters Atlantis T3 C18 column (5 μm, 4.6 mm x 150 mm).
    [Show full text]
  • Investigating Ugi/Passerini Multicomponent Reactions for the Site-Selective Conjugation of Native Trastuzumab C
    Investigating Ugi/Passerini Multicomponent Reactions for the Site-Selective Conjugation of Native Trastuzumab C. Sornay, S. Hessmann, S. Erb, I. Dovgan, A. Ehkirch, T. Botzanowski, S. Cianferani, A. Wagner, G. Chaubet To cite this version: C. Sornay, S. Hessmann, S. Erb, I. Dovgan, A. Ehkirch, et al.. Investigating Ugi/Passerini Mul- ticomponent Reactions for the Site-Selective Conjugation of Native Trastuzumab. Chemistry - A European Journal, Wiley-VCH Verlag, 2020, 26 (61), pp.13797-13805. 10.1002/chem.202002432. hal-02966878 HAL Id: hal-02966878 https://hal.archives-ouvertes.fr/hal-02966878 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Investigating Ugi / Passerini multicomponent reactions for the Site-Selective Conjugation of Native Trastuzumab Charlotte Sornay1, Steve Hessmann2, Stéphane Erb2, Igor Dovgan1, Anthony Ehkirch2, Thomas Botzanowski2, Sarah Cianférani2, Alain Wagner1, Guilhem Chaubet1* AUTHOR ADDRESS 1Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France 2Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), LabEx Medalis, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France KEYWORDS Bioconjugation; multicomponent reaction; antibodies; antibody-drug conjugates ABSTRACT: Site-selective modification of proteins has been the object of intense studies over the past decades, especially in the therapeutic field.
    [Show full text]
  • Organocatalyzed Three-Component Ugi and Passerini Reactions of 4-Oxoazetidine-2
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digital.CSIC Organocatalyzed Three-Component Ugi and Passerini Reactions of 4-Oxoazetidine-2- carbaldehydes and Azetidine-2,3-diones. Application to the Synthesis of -Lactams and -Lactones Benito Alcaide,*, † Pedro Almendros,‡ Cristina Aragoncillo,† Ricardo Callejo,† and M. Pilar Ruiz† †Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040-Madrid, Spain, ‡Instituto de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006-Madrid, Spain, and [email protected] ABSTRACT X 2 1 H H 2 H H "ring-opening" R NHR R2 CHO "U-3CR" R NHR 3 "P-3CR" "cyclization" NHR 3 N O O N PhP(OH)2 (cat.) 1 X O R1 O R O 1 4 4 4 2 for: R NH2, X = NHR 6 X = NR 3 for: H2O, X = OH 7 X = O O O O O O H O HO H "P-3CR" 2 N PhP(OH) (cat.) R HN 1 2 N O R O R1 4 syn-5 Organocatalyzed U-3CR of 4-oxoazetidine-2-carbaldehydes has been studied. Besides, it the organocatalyzed P-3CR of 4-oxoazetidine-2-carbaldehydes and azetidine-2,3-diones has been described for the first time. U-3CR and P-3CR adducts have been obtained in good yields and reasonable diastereoselectivities. Phenyl phosphinic acid has been the catalyst of choice to study the scope of both organocatalyzed multicomponent reactions using a variety of -lactams, isocyanides and amines.
    [Show full text]
  • Methyl Isocyanide Isomerization Kinetics: Determination of Collisional Deactivation Parameters Fulfowhg C-H Overtone Excitation
    3544 J. Phys. Chem. 1986, 90, 3544-3549 SnI5 surfaces, as well as on silica surface: wherein the experi- relative to studies in other laboratories7 may be explained by the mental curves did follow the strong collider curve at the same lower high temperature seasoning of the surface that occurs in our work. temperatures, indicates otherwise. The predicted magnitude of fractional surface coverage 6 in such case would be only 6 - 1Om5 Acknowledgment. This work was supported by the National and virtually independent of temperature. Science Foundation and by the Office of Naval Research. Finally the higher a,,values found in this work on metal surfaces Registry No. Cyclobutene, 822-35-5; gallium, 7440-55-3. Methyl Isocyanide Isomerization Kinetics: Determination of Collisional Deactivation Parameters fulfowhg C-H Overtone Excitation Deanne L. SnaveIy,+ Richard N. Zare,* Department of Chemistry, Stanford University, Stanford, California 94305 James A. Miller, and David W. Chandler Combustion Research Facility, Sandia National Laboratories. Livermore, California 94550 (Received: January 15, 1986; In Final Form: April 8, 1986) The isomerization of methyl isocyanide (CH3NC) to acetonitrile (CH3CN) was studied by excitation of the 5uC-” (726.6 nm) and 6vC-H (621.4 nm) overtone states, which lie about 1 and 8 kcal/mol, respectively, above the isomerization barrier. Product yields were measured as a function of pressure and collision partner. A Stern-Volmer plot (yield-’ vs. pressure) shows that (1) deactivation by collision with pure CH3NCis more rapid than with C3H6,sF6, or Ar, (2) the collisional deactivation efficiencies decrease in going from C3H6to SF6 to Ar, and (3) the single-collisiondeactivation approximation (strong collider approximation) fails for both the 6vC+, and 5vCmHdata.
    [Show full text]
  • An Artificial Intelligence That Discovers Unpredictable Chemical Reactions Dario Caramelli, Jarosław M
    An Artificial Intelligence that Discovers Unpredictable Chemical Reactions Dario Caramelli, Jarosław M. Granda, Dario Cambié, S. Hessam M. Mehr, Alon Henson and Leroy Cronin* School of Chemistry, the University of Glasgow, University Avenue, Glasgow G12 8QQ, UK. *Correspondence to: [email protected]. The robot-driven detection of novel organic chemical reactions1-2 is difficult as there is no approach that guarantees discovery on demand3. Traditional approaches to find new chemical reactions often rely on human error, whilst theoretical4,5 and artificial intelligence6-8 approaches promise new targets, but these must be identified computationally9,10. However, it is very hard to turn these ideas into reality in a chemistry laboratory, and the targets are not often novel. Herein, we present an artificial intelligence, built to autonomously explore chemical reactions in the laboratory using deep learning11. The reactions are performed automatically, analysed online, and the data is processed using a convolutional neural network (CNN) trained on a small reaction dataset to assess the reactivity of reaction mixtures12. The network can be used to predict the reactivity of an unknown dataset, meaning that the system is able to abstract the reactivity assignment regardless the identity of the starting materials. The system was set up with 15 inputs that were combined in 1018 reactions, the analysis of which lead to the discovery of a ‘multi-step, single-substrate’ cascade reaction and a new mode of reactivity for methylene isocyanides. p-Toluenesulfonylmethyl isocyanide (TosMIC) in presence of an activator reacts consuming six equivalents of itself to yield a trimeric product in high (unoptimized) yield (47%) with formation of five new C-C bonds involving sp-sp2 and sp- sp3 carbon centres.
    [Show full text]