Advancements in Isocyanide Based Multicomponent Reactions

Total Page:16

File Type:pdf, Size:1020Kb

Advancements in Isocyanide Based Multicomponent Reactions UC San Diego UC San Diego Electronic Theses and Dissertations Title Advancements in isocyanide based multicomponent reactions Permalink https://escholarship.org/uc/item/6mn0r6n2 Author Isaacson, Jerry Calhoun Publication Date 2009 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Advancements in Isocyanide Based Multicomponent Reactions A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry by Jerry Calhoun Isaacson Committee in charge: Professor Yoshihisa Kobayashi, Chair Professor William Gerwick Professor Judy Kim Professor Ted Molinski Professor James Whitesell 2009 Copyright Jerry Calhoun Isaacson, 2009 All rights reserved. The Dissertation of Jerry Calhoun Isaacson is approved, and it is acceptable in quality and form for publication on microfilm and electronically: _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Chair University of California, San Diego 2009 iii Dedicated to my loving, beautiful wife, Deborah. I also wish to acknowledge Mrs. Shutey, Mr. McElroy, Professor Eric Jacobsen, Professor Gary Procter, Professor Jim Davis, Professor Yoshi Kobayashi, and my Mom and Dad, all of whom inspired and encouraged me to be a scientist. iv Almost all commercially available isocyanides are volatile and carry this repulsive odor… The more long-term inhalation of isocyanides is also said to increase the intensity of dreams at night. Alexander Dömling and Ivar Ugi v Table of Contents Signature Page....................................................................................................................iii Dedication...........................................................................................................................iv Epigraph...............................................................................................................................v Table of Contents................................................................................................................vi List of Abbreviations..........................................................................................................xi List of Figures...................................................................................................................xiv List of Schemes................................................................................................................xxv List of Tables.................................................................................................................xxxii Acknowledgements......................................................................................................xxxiii Vita.................................................................................................................................xxxv Abstract of the Dissertation..........................................................................................xxxvi Chapter One Expeditious Access to Various Pyroglutamic Acid Analogues…..................1 A. Introduction.........................................................................................................1 B. Convertible Isocyanides and the Ugi 4-Center 3-Component Reaction...................................................................................................................5 1. Known Convertible Isocyanides for the Ugi Reaction............................5 2. The Ugi 4-Center 3-Component Cyclization Reaction............................8 3. Introduction of Indole Isocyanide............................................................9 C. Synthesis of a Series of Pyroglutamic Acids....................................................11 1. Searching for an Ammonia Equivalent for the Ugi Reaction................12 2. Synthesis of Linear Starting Materials...................................................15 vi 3. Elaboration of the Ugi Products to Pyroglutamic Acids........................16 D. Study of Diastereoselectivity in the U4C-3CR.................................................20 1. Synthesis of Linear Starting Materials – Chiral γ-Ketoacid..................21 2. Substrate-Controlled Diastereoselectivity in the U4C-3CR..................22 E. Conclusions.......................................................................................................24 G. Acknowledgements...........................................................................................25 F. Experimental Section.........................................................................................26 1. Materials and Methods...........................................................................26 2. Procedures and Spectral Data................................................................27 H. References and Notes........................................................................................44 Chapter Two Racemic Total Synthesis of Dysibetaine featuring Ugi 4-Center 3- Component Condensation Reaction...................................................................................47 A. Introduction.......................................................................................................47 B. History of Dysibetaine......................................................................................48 C. Retrosynthetic Plan...........................................................................................51 D. Synthesis of Linear Ugi Precursors and Study of Diastereoselectivity............53 1. Synthesis of Linear Precursors for the Ugi Reaction.............................53 2. Testing the U4C-3CR of γ-Ketoacid and Studies of Diastereoselectivity....................................................................................54 3. Good Diastereoselectivity in the Passerini Reaction of γ-Ketoacid..................................................................................................57 E. Completion of the Racemic Total Synthesis of Dysibetaine.............................58 1. Separation and Determination of Diastereomers...................................58 2. Completion of the Total Synthesis of (±)-Dysibetaine .........................60 vii F. Conclusion.........................................................................................................63 G. Acknowledgements...........................................................................................66 H. Experimental Section........................................................................................66 1. Materials and Methods...........................................................................66 2. Procedures and Spectral Data................................................................67 I. References and Notes.........................................................................................85 Chapter Three Enantioselective Total Synthesis of (–)-Dysibetaine.................................87 A. Introduction and Retrosynthesis........................................................................87 B. Initial Studies into Chiral γ-Ketoacid Synthesis..............................................89 1. Attempts Towards Chiral γ-Ketoacid via Carbon-Carbon Bond Forming Reaction.............................................................................89 2. Initial Attempts Towards Chiral γ-Ketoacid from L-Malic Acid..........92 3. Testing Chiral γ-Ketoacids Derived from L-Malic Acid in the U4C-3CR.........................................................................................95 C. Unique Ugi Reaction of an Activated Ester.....................................................98 1. Initial Discovery.....................................................................................98 2. Optimization of Reaction Conditions..................................................101 3. Mechanistic Hypothesis.......................................................................105 D. Completion of the Total Synthesis of (–)-Dysibetaine..................................108 E. Summary..........................................................................................................111 F. Conclusion.......................................................................................................113 G. Acknowledgements.........................................................................................116 H. Experimental Section......................................................................................116 1. Materials and Methods.........................................................................116 viii 2. Procedures and Spectral Data..............................................................117 H. References and Notes......................................................................................129 Chapter Four Extended Use of Indole Isocyanide in Multicomponent Reactions...........132 A. Introduction.....................................................................................................132 B. Scope and Mechanism of Indole Isocyanide in Isocyanide Based MCRs........................................................................................................133
Recommended publications
  • Title Several Reactions of Isocyanide and Related Compounds( Dissertation 全文 ) Author(S) Kobayashi, Shiro Citation
    Several Reactions of Isocyanide and Related Compounds( Title Dissertation_全文 ) Author(s) Kobayashi, Shiro Citation 京都大学 Issue Date 1969-07-23 URL https://doi.org/10.14989/doctor.k916 Right Type Thesis or Dissertation Textversion author Kyoto University IN ISOCYANIDE AND COMPOUNDS 6 IR B s SEVERAL REACTIONS OF ISOCYANIDE AND RELATED COMPOUNDS 1 9 6 9 SHIRO KOBA Y ASHI PREFACE In the present thesis are collected the author's studies which have been carried out under the direction of Profossor Takeo Saegusa at Kyoto University during 1966 -- 1969. The studies include new organic reactions of isocyanide, carbon monoxide and carbene, which are characterized by a carbon atom carry­ ing lone-pair electrons. Reactions catalyzed by copper compounds as well as other Groups IB and IIB metal compounds constitute the central featl1re of tIl':' present studies. New organic reactions of isocyanidE' without catalysts are also presented. The author expresses his deep gratitude to Professor Takeo Saes'Usa for his constant guidance and encouragement throughout the work. Grateful acknowledgement is also made to Dr. Yoshihiko Ito for his valuable advice an? dis cussions during the course of studies. The author wishes to express his deep appreciation to Messrs. Kiwami Hirota, Nobuyuki Takeda, Toyoji Shimizu, Hiroshi Yoshioka, Yoshiharu Okumura. and Ikuo Morino for their active collaborations in carrying out the experiments. Shiro Kobayashi Department of Synthetic Chemistry Kyoto University March, 1969. (i) CON TEN TS Page INTRODUCTION ............................ .. 1 SYNOPSES .............................. .. 7 PART I. INSERTION REACTIONS OF ISOCYNJIDE CATALYZED BY COPPER COMPOUNDS 15 Chapter 1. Reaction of Isocyanide with Amine Catalyzed by Groups IB and IIB Metal Compounds, main ly by Copper Compounds.
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Isolation of Four-Coordinate Iridium(I) Monohydrides and the X-ray Crystal Structure of a Cobalt Tris-Isocyanide Alkane sigma-Complex / Permalink https://escholarship.org/uc/item/1b20p9sg Author Millard, Matthew David Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Isolation of Four-Coordinate Iridium(I) Monohydrides and the X-ray Crystal Structure of a Cobalt Tris-Isocyanide Alkane sigma-Complex A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry by Matthew David Millard Committee in charge: Professor Joshua S. Figueroa, Chair Professor Joseph M. O‘Connor Professor Nicholas C. Spitzer Professor F. Akif Tezcan Professor William C. Trogler 2013 Copyright Matthew David Millard, 2013 All rights reserved Ignature Page The dissertation of Matthew David Millard is approved, and it is acceptable in quality and form for publication on microfilm and electronically. Chair University of California, San Diego 2013 iii DEDICATION To my mother: for marrying the guy being chased by the cops while doing a wheelie on an orange motorbike up the street. iv EPIGRAPH Epig NEVER SAY NO TO A CHALLENGE Professor Karl O. Christe v TABLE OF CONTENTS Signature Page ......................................................................................................................... iii Dedication ...............................................................................................................................
    [Show full text]
  • (Mcrs) of the Last Decade
    Molecules 2012, 17, 1074-1102; doi:10.3390/molecules17011074 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Diversity Oriented Syntheses of Conventional Heterocycles by Smart Multi Component Reactions (MCRs) of the Last Decade Heiner Eckert Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany; E-Mail: [email protected]; Tel.: +49-89-354-5532; Fax: +49-89-289-13329 Received: 9 December 2011; in revised form: 11 January 2012 / Accepted: 12 January 2012 / Published: 20 January 2012 Abstract: A collection of smart multicomponent reactions (MCRs) with continuative post condensation cyclizations (PCCs) is presented to construct conventional three- to seven- membered heterocyclic compounds in diversity oriented syntheses (DOS). These will provide a high degree of applying economical and ecological advantages as well as of practicability. Water, ionic liquids, and solvent-less syntheses as well as use of various forms of energy as microwave and ultrasonic irradiation are examined and discussed. Keywords: multicomponent reaction; MCR; MFCR; I-MCR; isocyanide; heterocycle; diversity oriented synthesis; solvent-less synthesis; alternative energy; microwave 1. Introduction Multi Component Reaction (MCR) chemistry [1,2] applied to the synthesis of heterocycles [3–5] with all its variations and extensions has undergone an enormous and meaningful upturn. Seeds sown in the last century, particularly appreciated by Ugi [6], have grown enormously and provided a plurality of novel reactions, new smart strategies as well as forward-looking methods, and high product diversity [7,8]. In this paper syntheses of conventional three to seven-membered heterocyclic structures (aziridine, azetidine, pyrrole, pyrrolidine, furan, indole, isoindoline, pyrazole, pyrazoline, imidazole, oxazolidine, thiazole, triazole, triazolidine, tetrazole, pyridine, pyrane, isoquinoline, pyrimidine, piperazine, oxazine, tetrazine, and oxadiazepine) are presented.
    [Show full text]
  • Application of Multicomponent Reactions in the Total Synthesis of Natural Peptides
    The Free Internet Journal Review for Organic Chemistry Archive for Arkivoc 2019, part i, 0-0 Organic Chemistry to be inserted by editorial office Application of multicomponent reactions in the total synthesis of natural peptides Ghodsi Mohammadi Ziarani,* Razieh Moradi, and Leyla Mahammadkhani Department of Chemistry, Alzahra University, Vanak Square, P.O. Box 1993893973, Tehran, Iran E-mail address: [email protected], [email protected] Received 10-10-2018 Accepted 03-01-2019 Published on line 04-28-2019 Dates to be inserted by editorial office Abstract Multicomponent reactions (MCRs) have been widely applied for the synthesis of biologically active molecules with high complexity and diversity. Nowadays, total synthesis of natural peptides, due to their multifarious application areas, has attracted much attention of organic chemists. MCRs are a powerful and efficient method for the production of natural peptides in a limited number of steps. This review presents an overview on application of multicomponent reactions as a key step in the synthesis of natural peptides. Keywords: Natural peptides, natural products, multicomponent reactions, biological activity DOI: https://doi.org/10.24820/ark.5550190.p010.779 Page 1 ©ARKAT USA, Inc Arkivoc 2019, i, 0-0 Mohammadi-Ziarani, G. et al. Table of Contents 1. Introduction 2. Application of Multicomponent Reactions in the Total Synthesis of Natural Peptides 2.1. Syntheses based on the Ugi reaction 2.2. Syntheses based on the Passerini reaction 2.3. Miscellaneous reactions 3. Conclusions
    [Show full text]
  • Section I Haloakanes
    SECTION I HALOAKANES Compounds derived from alkanes by the replacement of one or more Hydrogen atoms by corresponding number of halogen atoms ( fluorine, chlorine, bromine or iodine) are termed as haloalkanes. Alkyl halides are represented by general formula CnH2n+1X, here X is halogen atom ORBITAL STRUCTURE In alkyl halides, carbon-halogen σ bond is formed by overlap of sp3 hybrid orbital of carbon and half filled valence p-orbital of halogen atom: Haloalkanes may be classified on the basis of number of halogen atoms (1) Monohalogen derivatives One halogen atom is attached to carbon atom. Its general formula is CnH2n+1X Example CH3Cl ( methyl chloride). (2) Dihalogen derivatives These are derived by replacement of two hydrogen atoms by two halogen atoms Dihalides derivatives are of three types (a) Gem-dihalides Halogen atoms are attached to same carbon atom. These are called alkylidene halides. 1 of 23 pages www.spiroacademy.com HALOALKANES AND HALOARENES www.spiroacademy.com (b) Vic-dihalides Halogen atoms are attached to adjacent (vicinal) carbon atoms. These are termed as alkylene halides. (c) α – ω halides ( terminal halides) Halogen atoms are attached to terminal carbon atoms. These are also called polymethyl halides Br – CH2 – CH2 – CH2 - Br Trimethyl di bromide ( 1,3 – dibromopropane) (3) Trihalogen derivatives Trihalogen derivatives are derived by replacing three hydrogen atoms by three halogen atoms. General formula is CnH2n-1X 2 of 23 pages www.spiroacademy.com HALOALKANES AND HALOARENES www.spiroacademy.com CLASSIFICATION OF MONOHALOGEN COMPOUND (1) Alkyl halides are classified as primary 1O, secondary 2O, tertiary 3O depending upon nature of carbon to which halogen is attached (2) Compounds containing sp3 , C – X bond (a) Alkyl halides CH3 – CH2 – CH2 – Cl ( 1- chloropropane) (b) Allylic carbon Halogen atom attached to allylic carbon.
    [Show full text]
  • Ugi Four-Component Reaction (U-4CR) Under Green Conditions Designed for Undergraduate Organic Chemistry Laboratories
    World Journal of Chemical Education, 2017, Vol. 5, No. 5, 153-157 Available online at http://pubs.sciepub.com/wjce/5/5/2 ©Science and Education Publishing DOI:10.12691/wjce-5-5-2 Ugi Four-component Reaction (U-4CR) Under Green Conditions Designed for Undergraduate Organic Chemistry Laboratories Mariana Ingold, Lucia Colella, Rosina Dapueto, Gloria. V. López*, Williams Porcal* Department of Organic Chemistry, Faculty of Chemistry, University of the Republic, Montevideo, Uruguay *Corresponding author Abstract Multicomponent reactions (MCRs) are a green strategy in which a collection of molecules with a great diversity are generated with a minimum of synthetic effort, time and by-products formation. The Ugi Multi-component reaction is a chemical reaction in which an aldehyde, an amine, a carboxylic acid and an isocyanide react to form a α-bisamide. In this work, we use the Ugi reaction, as an example of MCRs, to approach organic chemistry undergraduate students to sustainable reactions. This reaction can be carried out under on-water or solvent-free conditions, both at room temperature as in combination with microwave irradiation or ultrasound. The advantages and limitations of the usage of Ugi reaction, under these conditions, in an organic chemistry laboratory course are discussed. In this context, we used different parameters to calculate how environmentally friendly the assayed conditions are. The Chemical Manufacturing Methods for the 21st Century Pharmaceutical Industries (CHEM21 project) were used with this objective. The present work could contribute to the teaching of ecofriendly synthetic strategies, demonstrating the scientific and academic benefits of green chemistry. Keywords: green chemistry, solvent-free, on-water, microwave, Multicomponent Reaction, Ugi, Metrics Toolkit Cite This Article: Mariana Ingold, Lucia Colella, Rosina Dapueto, Gloria.
    [Show full text]
  • Synthesis and Biological Importance of Amide Analogues
    REVIEW ARTICLE Synthesis and biological importance of amide analogues Preeti Rajput, Abhilekha Sharma* Rajput P, Sharma A. Synthesis and biological importance of amide amide linage containing compounds. The main purpose of article is to analogues. J Pharmacol Med Chem 2018;2(1):22-31. provide information on the development of novel amide derivatives to the scientific community. Doing so, it focuses on mechanisms of action and ABSTRACT adverse events, and suggests measures to be implemented in the clinical The present research article deals with the amide analogues prepared by practice according to bioethical principles. available very well-known name reactions. The author have studied the name reactions like Beckmann rearrangement, Schmidt reaction, Passerine reaction, Key Words: Novel amide derivatives; Amide analogues; Amide formation Willgerodt–Kindler reaction and UGI reaction, which involves preparation of routes starting from substrates other than carboxylic acids and their T he Amide bond formation reactions are among the most important derivatives (5). Thus, with the help of transition metals, a plethora of transformations in organic chemistry and biochemistry because of the functional groups, such as nitriles, aldehydes, ketones, oximes, primary widespread occurrence of amides in pharmaceuticals, natural products alcohols or amines, can be now conveniently employed as starting and biologically active compounds. The amide group is widely present in materials for the construction of the amide bond. There are three types of the drugs, intermediates, pharmaceuticals, and natural products. It is also amides available in Chemistry: (i) an organic amide which is also referred available in large number of industrial materials including polymers, as carboxamide, (ii) a sulfonamide, and (iii) a phosphoramide.
    [Show full text]
  • Investigating Ugi/Passerini Multicomponent Reactions for the Site-Selective Conjugation of Native Trastuzumab C
    Investigating Ugi/Passerini Multicomponent Reactions for the Site-Selective Conjugation of Native Trastuzumab C. Sornay, S. Hessmann, S. Erb, I. Dovgan, A. Ehkirch, T. Botzanowski, S. Cianferani, A. Wagner, G. Chaubet To cite this version: C. Sornay, S. Hessmann, S. Erb, I. Dovgan, A. Ehkirch, et al.. Investigating Ugi/Passerini Mul- ticomponent Reactions for the Site-Selective Conjugation of Native Trastuzumab. Chemistry - A European Journal, Wiley-VCH Verlag, 2020, 26 (61), pp.13797-13805. 10.1002/chem.202002432. hal-02966878 HAL Id: hal-02966878 https://hal.archives-ouvertes.fr/hal-02966878 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Investigating Ugi / Passerini multicomponent reactions for the Site-Selective Conjugation of Native Trastuzumab Charlotte Sornay1, Steve Hessmann2, Stéphane Erb2, Igor Dovgan1, Anthony Ehkirch2, Thomas Botzanowski2, Sarah Cianférani2, Alain Wagner1, Guilhem Chaubet1* AUTHOR ADDRESS 1Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France 2Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), LabEx Medalis, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France KEYWORDS Bioconjugation; multicomponent reaction; antibodies; antibody-drug conjugates ABSTRACT: Site-selective modification of proteins has been the object of intense studies over the past decades, especially in the therapeutic field.
    [Show full text]
  • Ugi-Type Reactions with 2-Aminopyridine and Siloxycyclopropanes – Syntheses of Masked Δ-Amino Acids
    46 Ugi-type reactions with 2-aminopyridine and siloxycyclopropanes – syntheses of masked δ-amino acids 5 Ugi-type reactions with 2-aminopyridine and siloxycyclopropanes – syntheses of masked δ-amino acids This three component condensation (3CC) may be regarded as a special type of the Ugi-four component reaction.[90] Combination of carbonyl compound 11, isocyanide 91 and 2- aminopyridine (90) afforded 3-aminoimidazo[1,2-a]pyridines 95. The imidazo[1,2-a]pyridine structural moiety can be found in pharmacologically active compounds such as benzodiazepine receptor agonists,[91-93] anti-inflammatory agents,[94] inhibitors of gastric acid secretion,[95] calcium channel blockers[96] and antibacterials.[97] A likely mechanism proceeds via an iminium species 92 which is attacked by the isocyanide to give nitrilium ion 93. The pyridine nitrogen of 93 is in a favourable position for a 5-exo-dig cyclization giving the assumed intermediate 94. Rearomatization of 94 via deprotonation and 1,3-H shift results in the formation of bicyclic product 95. The reaction can be regarded as a [1+4] cyclization or insertion reaction of an isocyanide with a C=N-C=N bond system (Scheme 44).[90] R1 H 2 NH2 R -NC N O 91 H+ + N N R1 H 11 90 92 1 1 1 R R R H H N N R2 + R2 N -H N N N 2 N N R H N 95 94 93 Scheme 44. Possible mechanism of Ugi-type reaction with 2-aminopyridine (90) Ugi-type reaction with 2-aminopyridine employing siloxycyclopropanes 47 5.1 Ugi-type reaction with 2-aminopyridine employing siloxycyclopropanes In previous work of Zimmer et al.[98] it was found that methyl 2- siloxycyclopropanecarboxylates can be directly introduced as precursor compounds under the protic conditions employed for this reaction.
    [Show full text]
  • Organocatalyzed Three-Component Ugi and Passerini Reactions of 4-Oxoazetidine-2
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digital.CSIC Organocatalyzed Three-Component Ugi and Passerini Reactions of 4-Oxoazetidine-2- carbaldehydes and Azetidine-2,3-diones. Application to the Synthesis of -Lactams and -Lactones Benito Alcaide,*, † Pedro Almendros,‡ Cristina Aragoncillo,† Ricardo Callejo,† and M. Pilar Ruiz† †Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040-Madrid, Spain, ‡Instituto de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006-Madrid, Spain, and [email protected] ABSTRACT X 2 1 H H 2 H H "ring-opening" R NHR R2 CHO "U-3CR" R NHR 3 "P-3CR" "cyclization" NHR 3 N O O N PhP(OH)2 (cat.) 1 X O R1 O R O 1 4 4 4 2 for: R NH2, X = NHR 6 X = NR 3 for: H2O, X = OH 7 X = O O O O O O H O HO H "P-3CR" 2 N PhP(OH) (cat.) R HN 1 2 N O R O R1 4 syn-5 Organocatalyzed U-3CR of 4-oxoazetidine-2-carbaldehydes has been studied. Besides, it the organocatalyzed P-3CR of 4-oxoazetidine-2-carbaldehydes and azetidine-2,3-diones has been described for the first time. U-3CR and P-3CR adducts have been obtained in good yields and reasonable diastereoselectivities. Phenyl phosphinic acid has been the catalyst of choice to study the scope of both organocatalyzed multicomponent reactions using a variety of -lactams, isocyanides and amines.
    [Show full text]
  • Bond Forming Reactions Involving Isocyanides at Diiron Complexes
    inorganics Review Bond Forming Reactions Involving Isocyanides at Diiron Complexes Rita Mazzoni 1 , Fabio Marchetti 2,*, Andrea Cingolani 1 and Valerio Zanotti 1,* 1 Dipartimento di Chimica Industriale “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy; [email protected] (R.M.); [email protected] (A.C.) 2 Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy * Correspondence: [email protected] (F.M.); [email protected] (V.Z.); Tel.: +39-051-209-3694 (V.Z.) Received: 28 January 2019; Accepted: 14 February 2019; Published: 26 February 2019 Abstract: The versatility of isocyanides (CNR) in organic chemistry has been tremendously enhanced by continuous advancement in transition metal catalysis. On the other hand, the urgent need for new and more sustainable synthetic strategies based on abundant and environmental-friendly metals are shifting the focus towards iron-assisted or iron-catalyzed reactions. Diiron complexes, taking advantage of peculiar activation modes and reaction profiles associated with multisite coordination, have the potential to compensate the lower activity of Fe compared to other transition metals, in order to activate CNR ligands. A number of reactions reported in the literature shows that diiron organometallic complexes can effectively assist and promote most of the “classic” isocyanide transformations, including CNR conversion into carbyne and carbene ligands, CNR insertion, and coupling reactions with other active molecular fragments in a cascade sequence. The aim is to evidence the potential offered by diiron coordination of isocyanides for the development of new and more sustainable synthetic strategies for the construction of complex molecular architectures.
    [Show full text]
  • Haloalkanes and Haloarenes
    1010Unit Objectives HaloalkanesHaloalkanes andand After studying this Unit, you will be able to HaloarHaloarHaloarHaloarenesenesenesenesenesenes • name haloalkanes and haloarenes according to the IUPAC system of nomenclature from their given structures; Halogenated compounds persist in the environment due to their • describe the reactions involved in resistance to breakdown by soil bacteria. the preparation of haloalkanes and haloarenes and understand various reactions that they The replacement of hydrogen atom(s) in an aliphatic undergo; or aromatic hydrocarbon by halogen atom(s) results • correlate the structures of in the formation of alkyl halide (haloalkane) and aryl haloalkanes and haloarenes with halide (haloarene), respectively. Haloalkanes contain various types of reactions; halogen atom(s) attached to the sp3 hybridised carbon • use stereochemistry as a tool for atom of an alkyl group whereas haloarenes contain understanding the reaction halogen atom(s) attached to sp2 hybridised carbon mechanism; atom(s) of an aryl group. Many halogen containing • appreciate the applications of organic compounds occur in nature and some of organo-metallic compounds; these are clinically useful. These classes of compounds • highlight the environmental effects of polyhalogen compounds. find wide applications in industry as well as in day- to-day life. They are used as solvents for relatively non-polar compounds and as starting materials for the synthesis of wide range of organic compounds. Chlorine containing antibiotic, chloramphenicol, produced by microorganisms is very effective for the treatment of typhoid fever. Our body produces iodine containing hormone, thyroxine, the deficiency of which causes a disease called goiter. Synthetic halogen compounds, viz. chloroquine is used for the treatment of malaria; halothane is used as an anaesthetic during surgery.
    [Show full text]