Bond Forming Reactions Involving Isocyanides at Diiron Complexes

Total Page:16

File Type:pdf, Size:1020Kb

Bond Forming Reactions Involving Isocyanides at Diiron Complexes inorganics Review Bond Forming Reactions Involving Isocyanides at Diiron Complexes Rita Mazzoni 1 , Fabio Marchetti 2,*, Andrea Cingolani 1 and Valerio Zanotti 1,* 1 Dipartimento di Chimica Industriale “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy; [email protected] (R.M.); [email protected] (A.C.) 2 Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy * Correspondence: [email protected] (F.M.); [email protected] (V.Z.); Tel.: +39-051-209-3694 (V.Z.) Received: 28 January 2019; Accepted: 14 February 2019; Published: 26 February 2019 Abstract: The versatility of isocyanides (CNR) in organic chemistry has been tremendously enhanced by continuous advancement in transition metal catalysis. On the other hand, the urgent need for new and more sustainable synthetic strategies based on abundant and environmental-friendly metals are shifting the focus towards iron-assisted or iron-catalyzed reactions. Diiron complexes, taking advantage of peculiar activation modes and reaction profiles associated with multisite coordination, have the potential to compensate the lower activity of Fe compared to other transition metals, in order to activate CNR ligands. A number of reactions reported in the literature shows that diiron organometallic complexes can effectively assist and promote most of the “classic” isocyanide transformations, including CNR conversion into carbyne and carbene ligands, CNR insertion, and coupling reactions with other active molecular fragments in a cascade sequence. The aim is to evidence the potential offered by diiron coordination of isocyanides for the development of new and more sustainable synthetic strategies for the construction of complex molecular architectures. Keywords: isocyanide; diiron complexes; aminocarbyne; aminocarbene; imidoyl; multicomponent reactions 1. Introduction Since the discovery of isocyanide-based multicomponent reactions (MCRs) (e.g., the Passerini and Ugi reactions), isocyanides (CNR) have been recognized as extremely valuable synthetic tools for the construction of complex molecules, particularly heterocycles [1–4]. Development of MCRs takes advantage of the complex nature of isocyanides, which can act both as nucleophiles and electrophiles. On the other hand, isocyanides are long-known ligands, and their reactivity can be considerably modified upon transition-metal coordination [5–7]. Indeed, both the nucleophilicity and the electrophilicity of isocyanides can be controlled and enhanced upon metal coordination. As an example, isocyanide ligands have been successfully used for obtaining both carbene [8,9] and carbyne complexes [10]. In general, interest in isocyanide chemistry involving metal species is still growing [11,12]. One reason for this is a resurgent interest in isocyanides as C1 synthons driven by the development of transition-metal-catalyzed isocyanide insertion reactions [13–16]. Similarly to CO, isocyanides can be incorporated into catalytic mechanisms based on oxidative addition, isocyanide insertion, and reductive elimination. This emerging strategy, based on CNR insertion into M-element bonds, offers tremendous opportunities for the synthesis of fine chemicals containing a nitrogen functionality, and is largely dominated by Pd-catalyzed or Pd-promoted reactions [17–22]. Considerable efforts have been made in order to expand the research field to other transition- metals, given the strong interest in replacing noble and rare metals with more abundant and sustainable Inorganics 2019, 7, 25; doi:10.3390/inorganics7030025 www.mdpi.com/journal/inorganics Inorganics 2018, 6, x FOR PEER REVIEW 2 of 18 Inorganics 7 given the2019 strong, , 25 interest in replacing noble and rare metals with more abundant and sustainable2 of 17 transition metals, such as iron. Indeed, the number of Fe-catalyzed reactions is rapidly expanding, buttransition those involving metals, such isocyanides as iron. Indeed, are still the limited number [23–25]. of Fe-catalyzed reactions is rapidly expanding, but thoseThis involving mini-review isocyanides focuses are on still reactions limited involving [23–25]. isocyanides and diiron complexes, aimed at the formationThismini-review of C–C or focuses C–heteroatom on reactions bonds involving for the isocyanides construction and diironof more complexes, complex aimed molecular at the architectures.formation of C–C The orinterest C–heteroatom in diiron bonds complexes for the (ins constructiontead of complexes of more containing complex molecular one Fe atom) architectures. is based onThe two interest major in features: diiron complexes First, two (instead adjacent of Fe complexes atoms might containing provide one cooperative Fe atom) is effects, based on particularly two major effectivefeatures: in First, redox two reactions adjacent that Fe involv atomse mightcoordinated provide ligands. cooperative As an example, effects, particularly μ-dithiolate effective diiron has in beenredox very reactions actively that investigated involve coordinated as mimics ligands. of [FeFe]-H As an2ases example, active siteµ-dithiolate and as potential diiron has catalysts been very for hydrogen evolution [26–29]. The second peculiar feature of diiron complexes is the possibility of actively investigated as mimics of [FeFe]-H2ases active site and as potential catalysts for hydrogen observingevolution [bridging26–29]. Thecoordination second peculiar of a variety feature of of carbon-based diiron complexes ligands is the(including possibility isocyanides of observing and hydrocarbylbridging coordination ligands derived of a variety from of CNR carbon-based ligands), ligandswhich potentially (including isocyanidesprovide access and to hydrocarbyl activation modesligands and derived reaction from profiles CNR ligands), not observed which potentiallywhen the same provide ligands access are to bound activation to a modes single andmetal reaction atom [30–32].profiles not observed when the same ligands are bound to a single metal atom [30–32]. The review review covers covers most most of of the the research research work work done done by bysome some of us of in us this in thisfield, field, in the in last the two last decades.two decades. 2. Diiron Complexes with Isocyanide Ligands Diiron complexescomplexes containing containing isocyanide isocyanide ligands ligands have have been wellbeen known well known since the since 1970s. the Examples 1970s. Examplesinclude the include complexes the complexes [Fe2(CNEt) 9[Fe][332(CNEt),34] and9] [33,34] [Fe2(CNPh) and [Fe9][235(CNPh)], formally9] [35], derived formally and derived structurally and structurallysimilar to [Fe similar2(CO) 9to]. [Fe Beside2(CO) the9]. Beside homoleptic the homoleptic complexes complexes mentioned mentioned above, a above, prominent a prominent role has rolebeen has assumed been assumed by isocyanide by isocyanide complexes complexes derived derived from the from [Fe 2the(Cp) [Fe2(CO)2(Cp)4]2(CO) frame4] frame (Cp = (Cpη-C 5=H η5).- CDirect5H5). Direct replacement replacement of CO ofwith CO with CNR CNR in [Fe in 2[Fe(Cp)2(Cp)2(CO)2(CO)4] generally4] generally results results in in the the formationformation of mixtures of isocyanide complexes complexes [Fe [Fe22(Cp)(Cp)2(CO)2(CO)4−4n−(CNR)n(CNR)n] (nn]( =n 1–3),= 1–3), with with mono-isocyanide mono-isocyanide and and di- isocyanidedi-isocyanide complexes complexes being being prevalent prevalent (Scheme (Scheme 1,1 ,compounds compounds 1 1[36–38][36–38 ]and and 22 [39,40],[39,40], respectively). respectively). Diiron complexes of the typetype [Fe[Fe22(Cp)2(CNR)(CNR)44],], containing containing up up to to four four is isocyanideocyanide ligands, are also known [41]. [41]. Scheme 1. SelectedSelected examples of diiron complexes with isocyanide ligands. Alternative synthetic routes routes have have been been design designeded in in order order to to improve improve the the selectivity selectivity [42]; [42]; nevertheless, the the preparation preparation remains remains difficult, difficult, and and separation separation steps steps are generally are generally required. required. The situationThe situation is made is made more morecomplicated complicated by the by presence the presence of isomers, of isomers, in that inisocyanides that isocyanides can act both can actas terminalboth as terminaland bridging and bridgingligands. Indeed, ligands. CNR Indeed, shows CNR a higher shows tendency a higher toward tendency bridging toward coordination bridging t comparedcoordination to CO, compared and only to CO, with and the only bulky with CNBu thet bulkyligand CNBu does theligand terminal does coordination the terminal coordinationprevail [43]. prevailIsocyanide [43]. ligands, in diiron complexes, might also result from the transformation of other Isocyanide ligands, in diiron complexes, might also result from the transformation of other ligands. ligands. For example, alkylation (with MeSO3CF3) of the cyanide in the complex For example, alkylation (with MeSO CF ) of the cyanide in the complex [Fe (Cp) (CN)(CNMe )(CO) ] [Fe2(Cp)2(CN)(CNMe2)(CO)3] leads3 3 to the formation of the2 isocyanide2 complex2 3 leads to the formation of the isocyanide complex [Fe (Cp) (CNMe )(CO) (CNMe)]SO CF [44]. [Fe2(Cp)2(CNMe2)(CO)3(CNMe)]SO3CF3 [44]. A less predictable2 2 route2 to isocyanide3 complexes3 3 is Aprovided less predictable by the peculiar route to reaction isocyanide of complexesthe cyanate is (NCO provided−) with by the peculiarbridging reaction thiocarbyne
Recommended publications
  • Title Several Reactions of Isocyanide and Related Compounds( Dissertation 全文 ) Author(S) Kobayashi, Shiro Citation
    Several Reactions of Isocyanide and Related Compounds( Title Dissertation_全文 ) Author(s) Kobayashi, Shiro Citation 京都大学 Issue Date 1969-07-23 URL https://doi.org/10.14989/doctor.k916 Right Type Thesis or Dissertation Textversion author Kyoto University IN ISOCYANIDE AND COMPOUNDS 6 IR B s SEVERAL REACTIONS OF ISOCYANIDE AND RELATED COMPOUNDS 1 9 6 9 SHIRO KOBA Y ASHI PREFACE In the present thesis are collected the author's studies which have been carried out under the direction of Profossor Takeo Saegusa at Kyoto University during 1966 -- 1969. The studies include new organic reactions of isocyanide, carbon monoxide and carbene, which are characterized by a carbon atom carry­ ing lone-pair electrons. Reactions catalyzed by copper compounds as well as other Groups IB and IIB metal compounds constitute the central featl1re of tIl':' present studies. New organic reactions of isocyanidE' without catalysts are also presented. The author expresses his deep gratitude to Professor Takeo Saes'Usa for his constant guidance and encouragement throughout the work. Grateful acknowledgement is also made to Dr. Yoshihiko Ito for his valuable advice an? dis cussions during the course of studies. The author wishes to express his deep appreciation to Messrs. Kiwami Hirota, Nobuyuki Takeda, Toyoji Shimizu, Hiroshi Yoshioka, Yoshiharu Okumura. and Ikuo Morino for their active collaborations in carrying out the experiments. Shiro Kobayashi Department of Synthetic Chemistry Kyoto University March, 1969. (i) CON TEN TS Page INTRODUCTION ............................ .. 1 SYNOPSES .............................. .. 7 PART I. INSERTION REACTIONS OF ISOCYNJIDE CATALYZED BY COPPER COMPOUNDS 15 Chapter 1. Reaction of Isocyanide with Amine Catalyzed by Groups IB and IIB Metal Compounds, main ly by Copper Compounds.
    [Show full text]
  • Carbene and Nitrene Transfer Reactions Joseph B
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 11-19-2014 Co(II) Based Metalloradical Catalysis: Carbene and Nitrene Transfer Reactions Joseph B. Gill University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Organic Chemistry Commons Scholar Commons Citation Gill, Joseph B., "Co(II) Based Metalloradical Catalysis: Carbene and Nitrene Transfer Reactions" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5484 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Co(II) Based Metalloradical Catalysis: Carbene and Nitrene Transfer Reactions by Joseph B. Gill A dissertation in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry College of Arts and Sciences University of South Florida Major Professor: X. Peter Zhang, Ph.D. Jon Antilla, Ph.D Jianfeng Cai, Ph.D. Edward Turos, Ph.D. Date of Approval: November 19, 2014 Keywords: cyclopropanation, diazoacetate, azide, porphyrin, cobalt. Copyright © 2014, Joseph B. Gill Dedication I dedicate this work to my parents: Larry and Karen, siblings: Jason and Jessica, and my partner: Darnell, for their constant support. Without all of you I would never have made it through this journey. Thank you. Acknowledgments I would like to thank my advisor, Professor X. Peter Zhang, for his support and guidance throughout my time working with him.
    [Show full text]
  • Organic Synthesis: New Vistas in the Brazilian Landscape
    Anais da Academia Brasileira de Ciências (2018) 90(1 Suppl. 1): 895-941 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201820170564 www.scielo.br/aabc | www.fb.com/aabcjournal Organic Synthesis: New Vistas in the Brazilian Landscape RONALDO A. PILLI and FRANCISCO F. DE ASSIS Instituto de Química, UNICAMP, Rua José de Castro, s/n, 13083-970 Campinas, SP, Brazil Manuscript received on September 11, 2017; accepted for publication on December 29, 2017 ABSTRACT In this overview, we present our analysis of the future of organic synthesis in Brazil, a highly innovative and strategic area of research which underpins our social and economical progress. Several different topics (automation, catalysis, green chemistry, scalability, methodological studies and total syntheses) were considered to hold promise for the future advance of chemical sciences in Brazil. In order to put it in perspective, contributions from Brazilian laboratories were selected by the citations received and importance for the field and were benchmarked against some of the most important results disclosed by authors worldwide. The picture that emerged reveals a thriving area of research, with new generations of well-trained and productive chemists engaged particularly in the areas of green chemistry and catalysis. In order to fulfill the promise of delivering more efficient and sustainable processes, an integration of the academic and industrial research agendas is to be expected. On the other hand, academic research in automation of chemical processes, a well established topic of investigation in industrial settings, has just recently began in Brazil and more academic laboratories are lining up to contribute.
    [Show full text]
  • And Intermolecular Cyclopropanation by Co(II)- Based Metalloradical Catalysis Xue Xu University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Asymmetric Intra- and Intermolecular Cyclopropanation by Co(II)- Based Metalloradical Catalysis Xue Xu University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, and the Organic Chemistry Commons Scholar Commons Citation Xu, Xue, "Asymmetric Intra- and Intermolecular Cyclopropanation by Co(II)- Based Metalloradical Catalysis" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4262 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Asymmetric Intra- and Intermolecular Cyclopropanation by Co(II)- Based Metalloradical Catalysis by Xue(Snow) Xu A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry College of Arts and Sciences University of South Florida Major Professor: X. Peter Zhang, Ph.D. Jon Antilla, Ph.D. Mark L. McLaughlin, Ph.D. Wayne Guida, Ph.D. Date of Defense: June 20th, 2012 Keywords: cobalt, porphyrin, catalysis, cyclopropanation, carbene, diazo Copyright © 2012, Xue Xu DEDICATION I dedicate this dissertation to my parents and my husband, without their caring support, it would not have been possible. ACKNOWLEGEMENTS I need to begin with thanking Dr. Peter Zhang for his continuous guidance and support over the last 5 and half years. Especially for encouraging me to achieving my potential as a researcher and setting an example of dedication to science that is admirable.
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Isolation of Four-Coordinate Iridium(I) Monohydrides and the X-ray Crystal Structure of a Cobalt Tris-Isocyanide Alkane sigma-Complex / Permalink https://escholarship.org/uc/item/1b20p9sg Author Millard, Matthew David Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Isolation of Four-Coordinate Iridium(I) Monohydrides and the X-ray Crystal Structure of a Cobalt Tris-Isocyanide Alkane sigma-Complex A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry by Matthew David Millard Committee in charge: Professor Joshua S. Figueroa, Chair Professor Joseph M. O‘Connor Professor Nicholas C. Spitzer Professor F. Akif Tezcan Professor William C. Trogler 2013 Copyright Matthew David Millard, 2013 All rights reserved Ignature Page The dissertation of Matthew David Millard is approved, and it is acceptable in quality and form for publication on microfilm and electronically. Chair University of California, San Diego 2013 iii DEDICATION To my mother: for marrying the guy being chased by the cops while doing a wheelie on an orange motorbike up the street. iv EPIGRAPH Epig NEVER SAY NO TO A CHALLENGE Professor Karl O. Christe v TABLE OF CONTENTS Signature Page ......................................................................................................................... iii Dedication ...............................................................................................................................
    [Show full text]
  • (Mcrs) of the Last Decade
    Molecules 2012, 17, 1074-1102; doi:10.3390/molecules17011074 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Diversity Oriented Syntheses of Conventional Heterocycles by Smart Multi Component Reactions (MCRs) of the Last Decade Heiner Eckert Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany; E-Mail: [email protected]; Tel.: +49-89-354-5532; Fax: +49-89-289-13329 Received: 9 December 2011; in revised form: 11 January 2012 / Accepted: 12 January 2012 / Published: 20 January 2012 Abstract: A collection of smart multicomponent reactions (MCRs) with continuative post condensation cyclizations (PCCs) is presented to construct conventional three- to seven- membered heterocyclic compounds in diversity oriented syntheses (DOS). These will provide a high degree of applying economical and ecological advantages as well as of practicability. Water, ionic liquids, and solvent-less syntheses as well as use of various forms of energy as microwave and ultrasonic irradiation are examined and discussed. Keywords: multicomponent reaction; MCR; MFCR; I-MCR; isocyanide; heterocycle; diversity oriented synthesis; solvent-less synthesis; alternative energy; microwave 1. Introduction Multi Component Reaction (MCR) chemistry [1,2] applied to the synthesis of heterocycles [3–5] with all its variations and extensions has undergone an enormous and meaningful upturn. Seeds sown in the last century, particularly appreciated by Ugi [6], have grown enormously and provided a plurality of novel reactions, new smart strategies as well as forward-looking methods, and high product diversity [7,8]. In this paper syntheses of conventional three to seven-membered heterocyclic structures (aziridine, azetidine, pyrrole, pyrrolidine, furan, indole, isoindoline, pyrazole, pyrazoline, imidazole, oxazolidine, thiazole, triazole, triazolidine, tetrazole, pyridine, pyrane, isoquinoline, pyrimidine, piperazine, oxazine, tetrazine, and oxadiazepine) are presented.
    [Show full text]
  • Recent Advances on Mechanistic Studies on C–H Activation
    Open Chem., 2018; 16: 1001–1058 Review Article Open Access Daniel Gallego*, Edwin A. Baquero Recent Advances on Mechanistic Studies on C–H Activation Catalyzed by Base Metals https:// doi.org/10.1515/chem-2018-0102 received March 26, 2018; accepted June 3, 2018. 1Introduction Abstract: During the last ten years, base metals have Application in organic synthesis of transition metal- become very attractive to the organometallic and catalytic catalyzed cross coupling reactions has been positioned community on activation of C-H bonds for their catalytic as one of the most important breakthroughs during the functionalization. In contrast to the statement that new millennia. The seminal works based on Pd–catalysts base metals differ on their mode of action most of the in the 70’s by Heck, Noyori and Suzuki set a new frontier manuscripts mistakenly rely on well-studied mechanisms between homogeneous catalysis and synthetic organic for precious metals while proposing plausible chemistry [1-5]. Late transition metals, mostly the precious mechanisms. Consequently, few literature examples metals, stand as the most versatile catalytic systems for a are found where a thorough mechanistic investigation variety of functionalization reactions demonstrating their have been conducted with strong support either by robustness in several applications in organic synthesis [6- theoretical calculations or experimentation. Therefore, 12]. Owing to the common interest in the catalysts mode we consider of highly scientific interest reviewing the of action by many research groups, nowadays we have a last advances on mechanistic studies on Fe, Co and Mn wide understanding of the mechanistic aspects of precious on C-H functionalization in order to get a deep insight on metal-catalyzed reactions.
    [Show full text]
  • Section I Haloakanes
    SECTION I HALOAKANES Compounds derived from alkanes by the replacement of one or more Hydrogen atoms by corresponding number of halogen atoms ( fluorine, chlorine, bromine or iodine) are termed as haloalkanes. Alkyl halides are represented by general formula CnH2n+1X, here X is halogen atom ORBITAL STRUCTURE In alkyl halides, carbon-halogen σ bond is formed by overlap of sp3 hybrid orbital of carbon and half filled valence p-orbital of halogen atom: Haloalkanes may be classified on the basis of number of halogen atoms (1) Monohalogen derivatives One halogen atom is attached to carbon atom. Its general formula is CnH2n+1X Example CH3Cl ( methyl chloride). (2) Dihalogen derivatives These are derived by replacement of two hydrogen atoms by two halogen atoms Dihalides derivatives are of three types (a) Gem-dihalides Halogen atoms are attached to same carbon atom. These are called alkylidene halides. 1 of 23 pages www.spiroacademy.com HALOALKANES AND HALOARENES www.spiroacademy.com (b) Vic-dihalides Halogen atoms are attached to adjacent (vicinal) carbon atoms. These are termed as alkylene halides. (c) α – ω halides ( terminal halides) Halogen atoms are attached to terminal carbon atoms. These are also called polymethyl halides Br – CH2 – CH2 – CH2 - Br Trimethyl di bromide ( 1,3 – dibromopropane) (3) Trihalogen derivatives Trihalogen derivatives are derived by replacing three hydrogen atoms by three halogen atoms. General formula is CnH2n-1X 2 of 23 pages www.spiroacademy.com HALOALKANES AND HALOARENES www.spiroacademy.com CLASSIFICATION OF MONOHALOGEN COMPOUND (1) Alkyl halides are classified as primary 1O, secondary 2O, tertiary 3O depending upon nature of carbon to which halogen is attached (2) Compounds containing sp3 , C – X bond (a) Alkyl halides CH3 – CH2 – CH2 – Cl ( 1- chloropropane) (b) Allylic carbon Halogen atom attached to allylic carbon.
    [Show full text]
  • Experimental and Ab Initio Studies of Formation, Thermolysis, and Molecular and Electronic Structures of 3,6-Diphenyl-1-Propanesulfenimido-1,2,4,5-Tetrazine
    J. Am. Chem. Soc. 2000, 122, 2087-2095 2087 Nucleophile-Induced Intramolecular Dipole 1,5-Transfer and 1,6-Cyclization: Experimental and ab Initio Studies of Formation, Thermolysis, and Molecular and Electronic Structures of 3,6-Diphenyl-1-propanesulfenimido-1,2,4,5-tetrazine Piotr Kaszynski*,† and Victor G. Young, Jr.‡ Contribution from the Organic Materials Research Group, Department of Chemistry, Vanderbilt UniVersity, NashVille, Tennessee 37235, and X-ray Crystallographic Laboratory, Department of Chemistry, UniVersity of Minnesota, Twin Cities, Minnesota 55455 ReceiVed NoVember 1, 1999 Abstract: Reaction of dichlorobenzaldazine (2) with sodium azide followed by 1-propanethiol/Et3N furnished tetrazine ylide 1 as the main product. The structure of this unprecedented ylide was confirmed with single- crystal X-ray analysis [C17H17N5S, monoclinic P21/na) 6.8294(4) Å, b ) 13.6781(9) Å, c ) 17.5898(12) Å, â ) 90.666(1)°, Z ) 4] and favorably compared with the results of ab initio calculations. The mechanisms of formation of the ylide and its thermal decomposition to 2,5-diphenyltetrazine (5) were investigated using ab initio methods and correlated with the experimental observations. The results suggest that formation of 1 involves intramolecular cyclization of a nitrile imine and thermolysis of 1 might generate a sulfenylnitrene. The formation of 1 is considered to be the first example of a potentially more general reaction. Introduction Results and Discussion Intramolecular reactions of 1,3-dipoles provide one of the Synthesis of 1. 3,6-Diphenyl-1-propanesulfenimido-1,2,4,5- most versatile ways to construct heterocyclic rings.1 Among tetrazine (1) was obtained in a one-pot reaction.
    [Show full text]
  • Therapeutic Review Exploring Antimicrobial Potential of Hydrazones As Promising Lead
    Available online a t www.derpharmachemica.com Scholars Research Library Der Pharma Chemica, 2011, 3(1):250-268 (http://derpharmachemica.com/archive.html) ISSN 0975-413X CODEN (USA): PCHHAX Therapeutic Review Exploring Antimicrobial Potential of Hydrazones as Promising Lead Goldie Uppal, Suman Bala*, Sunil Kamboj and Minaxi Saini M.M. College of Pharmacy, Maharishi Markandeshwar University, Ambala, Haryana, India ______________________________________________________________________________ ABSTRACT This review includes detailed study of structures of various hydrazones synthesized and evaluated for their antimicrobial activity. Hydrazone is a class of organic compounds with structure R 1R2C=NNH 2. Hydrazones containing an azomethine -NHN=CH- proton which leads to an important class of compounds for new drug development. Hydrazones are present in many of the bioactive heterocyclic compounds that are of very important use because of their various biological and clinical applications. Therefore, many researchers have synthesized these compounds as target structures and evaluated their antimicrobial activities. These observations have been guiding for the development of new hydrazones that possess varied biological activities. Key Words: Hydrazones, Hydrazide, Antifungal Activity, Antimicrobial Activity. ______________________________________________________________________________ INTRODUCTION The need to design new compounds to deal with the resistant strains has become one of the most important areas of research today. Hydrazone is a versatile moiety that exhibits a wide variety of biological activities. A hydrazone is a class of organic compounds with the structure R1R2C=NNH 2. Hydrazones are basically related to ketones and aldehydes. Hydrazones are formed by the replacement of the oxygen of carbonyl compounds with the -NNH 2 functional group. Hydrazones act as reactants in many important reactions e.g.
    [Show full text]
  • Diazo Chemistry Baran Group Meeting Kevin Rodriguez 6/8/19
    Diazo Chemistry Baran Group Meeting Kevin Rodriguez 6/8/19 1. History and Introduction Silberrad and Roy discover First reported Ronald Diegle, scientist Both Fe and Ru Hans Von Pechmann Cu dust decomposes death from CH N at Sepracor Canda dies began widespread adoption Theodore Curtius discovers CH N 2 2 O discovers diazoacetic acid 2 2 ethyldiazoacetate exposure from TMSCHN2 exposure O2N N2 N 1858 NO2 1892 1898 1943 1973 2009 2011 2 1883 1894 1906 1949 2008 2010 Peter Griess William Will and German Hans Von Pechmann Gilman and Jones Rhodium carboxylates were Iridium-Salen complexes Gold rush begins discovers scientists begin investigating serendipitously discovers report deca-gram found to catalyze the also found to enable DDNP DDNP as explosive polyethylene synthesis of CF3CHN2 cyclopropanation of olefins with cyclopropanations from CH2N2 ethyldiazoacetate Definition: Group Meeting includes: N N - Introduction to different classes of diazo compounds A diazo compound is an organic compound bearing two nitrogen N N - Preparation and synthesis of diazoalkanes and stabilized derivatives atoms and neutrally charged. - Non-metal-mediated reactions R R R R - Transition metal-mediated reactions The term "diazo" is loosely used throughout the literature. For example, diazonium salts and azo - Common trends in C-H activation should be not be used when describing a diazo motif. Only the ylide form (vide supra) bears the - Towards heterocyclic chemistry proper IUPAC name. - Naturally occuring natural products Stability: Group Meeting does not include: In general, due to the tendency of these to liberate N2, care should be taken when preparing and - Extensive focus on any topic handling most diazo compounds.
    [Show full text]
  • Chemical Redox Agents for Organometallic Chemistry
    Chem. Rev. 1996, 96, 877−910 877 Chemical Redox Agents for Organometallic Chemistry Neil G. Connelly*,† and William E. Geiger*,‡ School of Chemistry, University of Bristol, U.K., and Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125 Received October 3, 1995 (Revised Manuscript Received January 9, 1996) Contents I. Introduction 877 A. Scope of the Review 877 B. Benefits of Redox Agents: Comparison with 878 Electrochemical Methods 1. Advantages of Chemical Redox Agents 878 2. Disadvantages of Chemical Redox Agents 879 C. Potentials in Nonaqueous Solvents 879 D. Reversible vs Irreversible ET Reagents 879 E. Categorization of Reagent Strength 881 II. Oxidants 881 A. Inorganic 881 1. Metal and Metal Complex Oxidants 881 2. Main Group Oxidants 887 B. Organic 891 The authors (Bill Geiger, left; Neil Connelly, right) have been at the forefront of organometallic electrochemistry for more than 20 years and have had 1. Radical Cations 891 a long-standing and fruitful collaboration. 2. Carbocations 893 3. Cyanocarbons and Related Electron-Rich 894 Neil Connelly took his B.Sc. (1966) and Ph.D. (1969, under the direction Compounds of Jon McCleverty) degrees at the University of Sheffield, U.K. Post- 4. Quinones 895 doctoral work at the Universities of Wisconsin (with Lawrence F. Dahl) 5. Other Organic Oxidants 896 and Cambridge (with Brian Johnson and Jack Lewis) was followed by an appointment at the University of Bristol (Lectureship, 1971; D.Sc. degree, III. Reductants 896 1973; Readership 1975). His research interests are centered on synthetic A. Inorganic 896 and structural studies of redox-active organometallic and coordination 1.
    [Show full text]