Nickel-Catalyzed Deaminative Sonogashira Coupling Of

Total Page:16

File Type:pdf, Size:1020Kb

Nickel-Catalyzed Deaminative Sonogashira Coupling Of ARTICLE https://doi.org/10.1038/s41467-021-25222-1 OPEN Nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts enabled by NN2 pincer ligand ✉ ✉ Xingjie Zhang 1 ,DiQi1,2, Chenchen Jiao1,2, Xiaopan Liu1 & Guisheng Zhang 1 Alkynes are amongst the most valuable functional groups in organic chemistry and widely used in chemical biology, pharmacy, and materials science. However, the preparation of alkyl- 1234567890():,; substituted alkynes still remains elusive. Here, we show a nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts. Key to the success of this coupling is the development of an easily accessible and bench-stable amide-type pincer ligand. This ligand allows naturally abundant alkyl amines as alkylating agents in Sonogashira reactions, and produces diverse alkynes in excellent yields under mild conditions. Salient merits of this chemistry include broad substrate scope and functional group tolerance, gram-scale synth- esis, one-pot transformation, versatile late-stage derivatizations as well as the use of inex- pensive pre-catalyst and readily available substrates. The high efficiency and strong practicability bode well for the widespread applications of this strategy in constructing functional molecules, materials, and fine chemicals. 1 Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan ✉ Normal University, Xinxiang, Henan, China. 2These authors contributed equally: Di Qi, Chenchen Jiao. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:4904 | https://doi.org/10.1038/s41467-021-25222-1 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25222-1 lkynes are one of the most valuable functional groups in β-hydride elimination, (3) the poor nucleophilicity of the sp- organic chemistry because they are not only served as hybridized carbon in alkynes, and (4) the low concentration of A fi versatile synthetic building blocks for diversi ed chemical the transmetalating species generated in situ in the reaction transformations, but also common structural motifs in a wide medium. Moreover, the facile cyclotrimerization and/or oligo- range of natural products, bioactive molecules and organic merization of terminal alkynes under the catalysis of low-valent materials1–3. For example, the introduction of an alkyne into a metal is another obstacle that renders such coupling a more drug molecule could provide remarkable benefits in its biological intractable objective12,13. In a pioneering study, Fu and co- activity, such as enhanced lipophilicity, bioavailability, and workers realized Pd/Cu-cocatalyzed Sonogashira coupling of metabolic stability (Fig. 1a). In addition to the widely used as nonactivated primary alkyl iodides and bromides by the use of an functional tags in biochemistry for bioconjugation based on N-heterocyclic carbene (NHC) ligand14. Later on, a few elegant “alkyne-azide click chemistry”4, recent researches also indicated strategies for this transformation were developed based on the that alkynes have a privileged application in Raman imaging due discovery of different catalytic systems including Pd/bisoxazoline- 15 16,17 to their unique and strong Raman scattering peaks in a cellular derived NHC ligand , Ni/NN2 pincer ligand , Ni/pyridine silent region that is free of interference from most endogenous bisoxazoline (pybox) system18, and NHC pincer nickel(II) molecules (Fig. 1b)5–9. Therefore, lots of efforts have been made complex19 (Fig. 1d). Furthermore, Lalic et al. discovered an to develop efficient methods for the construction of alkynes. excellent protocol of photoinduced copper-catalyzed alkylation of Among these available transformations, the transition-metal- terminal alkyne with alkyl iodides as the alkyl source20. More catalyzed Sonogashira coupling of aryl/vinyl electrophiles with recently, Wang and co-workers further expanded the scope of terminal alkynes has proven to be one of the most powerful alkyl to the cheap and easily accessible carboxylic acid derivatives approaches for C(sp2)–C(sp) bond formation10,11. However, the by the utilization of redox-active esters21. Despite these significant incorporation of nonactivated, β-H-containing alkyl electrophiles advances, the scope for alkyl-Sonogashira-type reactions is still in Sonogashira reaction to construct C(sp3)–C(sp) bond still relatively limited. Particularly, the electrophilic partners in such remains a formidable challenge, presumably due to the following reactions are largely limited to alkyl halides22, and the need of issues (Fig. 1c): (1) the reluctance of alkyl electrophiles to undergo copper(I) salt as cocatalyst might also cause some detrimental oxidative addition with a metal catalyst, (2) the propensity of the effects to the reaction, such as the undesired Glaser coupling of resulting alkylmetal intermediates to undergo intramolecular terminal alkynes and the complicated procedure in workup23. a Representative alkynyl-containing drugs O d State-of-the-art catalytic systems for Sonogashira coupling of nonactivated alkyl electrophiles Limited to alkyl halides Me Pd or Ni catalyst O 3 O Alkyl X + R Alkyl R Required Cu co-catalyst OH Me HO Cu co-catalyst Me o o Alkyl = 1 , 2 , X = I, Br, Cl Moderate to good yields OH O HN OH F3C O H Cl [( -allyl)PdCl]2 O Ni(cod)2 O + NMe2 H H Me HO + 2 adamantyl HO N O H N Ni Cl OH O OH HO N Cl O O ethynylestradiol efavirenz dynemicin A alfaprostol N N NMe2 N N b Important applications of alkynes in bioconjugation and molecular imaging O adamantyl Hu (2009) Liu (2013) Fu (2003) Biomolecules HN N Click N HO O N + Biomolecules O bioconjugation N N3 alkyne-tag Raman imaging OH O O NMe2 NMe c Challenges in Sonogashira coupling of nonactivated alkyl electrophiles N Cl 2 -H elimination olefins Pd Cl N facile N Ni Cl N Ni Cl N Cl Pd transition-metal [M] undesired Alkyl X N N iPr Alkyl [M] X O Cl NMe oxidative addition transmetalation 2 N difficult unfavourable O Hu (2015) Li (2018) R Alkyl R Glorius (2006) weak nucleophile targeted e This work: deaminative Sonogashira coupling of alkyl amines catalyzed by nickel and amide-type pincer ligand (L4) New ligand Air-stable and inexpensive Ni(II) precatalyst Ph O Excellent yields and mild reaction conditions activation Ni/L4 Alkyl NH Alkyl N Ph + R Alkyl R 2 catalysis N Broad substrate scope and functional group tolerance H o o o BF >60 examples N N Alkyl = 1 , 2 , 3 , benzyl Ph 4 Scalable and one-pot transformation Sonogashira coupling up to 98% isolated yield Katritzky salts Cu-free Me L4 Easily accessible and bench-stable amide-type NN2 pincer ligand Readily available feedstocks High value-add chemicals Widespread application for late-stage functionalization, bioconjugation and molecular imaging e.g. CH3 R O N O Me N N Biomolecules N Me N Biomolecules NH2 N CN RO N CN N Me N O + Biomolecules Biomolecules N Me O N O Biomolecules H2N O OR OR Biomolecules Me Me CH3 Me O Tags for Raman imaging, fluorescence Me R = H, 51%, d.r. > 95:5 ; imaging or bioconjugation 90%, d.r. > 95:5 R = Ac, 88%, d.r. 10:1 from Alogliptin and Vitamin E from Alogliptin and Adenosine Fig. 1 Significances and strategies for Sonogashira coupling of nonactivated alkyl electrophiles. a Representative alkynyl-containing drugs (ethynylestradiol, hormone drug for estrogen medication; efavirenz, an antiretroviral drug for HIV/AIDS; dynemicin A, an antitumor drug for cancer treatments; alfaprostol, a veterinary drug for breeding control). b Important applications of alkynes in bioconjugation and molecular imaging. c Challenges in Sonogashira coupling of nonactivated alkyl electrophiles. d State-of-the-art catalytic systems for Sonogashira coupling of nonactivated alkyl electrophiles. e This work: deaminative Sonogashira coupling of alkyl amines catalyzed by nickel and amide-type pincer ligand (L4). 2 NATURE COMMUNICATIONS | (2021) 12:4904 | https://doi.org/10.1038/s41467-021-25222-1 | www.nature.com/naturecommunications NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25222-1 ARTICLE Thus, developing simple approaches to access such coupling with with triisopropylsilyl (TIPS)-substituted bromoethyne to achieve more alternatives especially in copper-free conditions is highly the challenging C(sp3)–C(sp) bond64. Nevertheless, these methods important and appealing. rely mainly upon the use of preformed and activated alkynyl Alkyl amines are naturally abundant and readily available sulfones or bromides as alkynylating reagents. In addition, the feedstock chemicals, and the prevalence of amino groups in limited substrate scope and the utilization of largely excess numerous bioactive molecules, pharmaceuticals, and natural reductants (e.g. zinc flake) further disfavored their wide appli- products provide expedient opportunities for late-stage functio- cations in organic synthesis. Therefore, the direct coupling of nalization and bioconjugation24,25. In this context, using alkyl terminal alkynes with alkylpyridinium salts in a redox-neutral amines as alkylating agents in organic synthesis would have many fashion for the synthesis of important alkynes would be highly privileged advantages when compared to the traditional platforms desirable in terms of both atom-economy and practical applica- using alkyl halides. However, such a promising transformation
Recommended publications
  • Synthesis and Characterization of Oligothiophene - Based Fully Π-Conjugated Macrocycles
    Synthesis and Characterization of Oligothiophene - based Fully π-Conjugated Macrocycles Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät der Naturwissenschaften der Universität Ulm vorgelegt von Gerda Laura Fuhrmann aus Neustadt (Baia Mare) Rumänien Ulm, 2006 Amtierender Dekan: Prof. Dr. Klaus-Dieter Spindler 1. Gutachter: Prof. Dr. Peter Bäuerle 2. Gutachter: Prof. Dr. Volkhard Austel Tag der Promotionsprüfung: 15.03.2006 This thesis was elaborated and written between November 1999 and February 2006 at the department of Organic Chemistry II, University of Ulm, Germany. für meine Eltern “The chemist does a mysterious thing when he wants to make a molecule. He sees that it has got a ring, so he mixes this and that, and he takes it, and he fiddles around. And at the end of a difficult process, he usually does succeed in synthesizing what he wants.” There’s a Plenty of Room at the Bottom - R. Feynman Ich möchte mich an dieser Stelle bei all denjenigen bedanken, die mich in den zurückliegenden Jahren begleitet und unterstützt haben und damit zum Gelingen dieser Arbeit beigetragen haben. Mein besonderer Dank gilt: - Herrn Prof. Dr. Peter Bäuerle für die stete Unterstützung und Förderung bei der wissenschaftlichen Gestaltung dieser Arbeit, für sein Interesse und persönliches Engagement, sowie für die mir gewähren Freiräume bei der Bearbeitung des Themas - Frau Dr. Pinar Kilickiran für ihre moralische und inspirative Unterstützung, für ihre unermüdliche Hilfe, für die Durchsicht und sprachliche Überarbeitung des Manuskripts und für vieles mehr - Herrn Prof. Dr. V. Austel für die stets anregende wissenschaftliche Diskussionen und seine Bereitschaft diese Arbeit zu begutachten - Herrn Dr.
    [Show full text]
  • Electrophilic Alkynylation of Ketones Using Hypervalent Iodine
    ChemComm Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/chemcomm Page 1 of 4 Chemical Communications ChemComm Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE Electrophilic Alkynylation of Ketones Using Hypervalent Iodine Aline Utaka a, Livia N. Cavalcanti a, and Luiz F. Silva Jr. a* Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x 5 A new method for the electrophilic α-alkynylation of ketones in the presence of gold and an amine. The alkynation product was was developed using hypervalent iodine under mild and a minor component. 55 Herein, we report a practical, metal-free and efficient metal-free conditions.
    [Show full text]
  • Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2015 Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids Jessica S. Lampkowski College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Organic Chemistry Commons Recommended Citation Lampkowski, Jessica S., "Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids" (2015). Dissertations, Theses, and Masters Projects. Paper 1539626985. https://dx.doi.org/doi:10.21220/s2-r9jh-9635 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids Jessica Susan Lampkowski Ida, Michigan B.S. Chemistry, Siena Heights University, 2013 A Thesis presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Master of Science Chemistry Department The College of William and Mary May, 2015 COMPLIANCE PAGE Research approved by Institutional Biosafety Committee Protocol number: BC-2012-09-13-8113-dyoung01 Date(s) of approval: This protocol will expire on 2015-11-02 APPROVAL PAGE This
    [Show full text]
  • Design, Synthesis and in Vitro Investigations of Novel Fluorescently Labeled Steroids
    Design, Synthesis and in vitro investigations of Novel Fluorescently Labeled Steroids by Nisal U. Gajadeera B.S. in Chemistry, Northeastern University A thesis submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Master of Science December 2018 Thesis directed by Robert Hanson Matthews Distinguished University Professor of Chemistry and Chemical Biology 1 Acknowledgements Firstly, I would like to thank my advisor, Dr Robert Hanson for providing me the opportunity to work in his lab. His guidance and support has been incredible for me throughout my time at Northeastern. I would also like to take this opportunity to thank all the past Hanson lab members, Dr Emily Corcoran, Dr James Teh and Kelton Barnsely. I would also like to thank Dr Vladimir Torchilin and Dr Tatiana Levchenko for the opportunity to conduct cell studies in their lab. My heartfelt gratitude goes to Dr Livia Mendez for conducting all the incubation studies and competitive binding studies. It was under her guidance that I learned the techniques such as passaging cells, FACS and fluorescence microscopy. She played a huge role the in vivo data gathering for my compounds. I would also like to take this opportunity to thank Dr Michael Pollastri and the members of his group, especially Dr Dana Klug, Dr Lori Ferrins and Dr Baljinder Singh for the support they’ve shown in my research by allowing me to use their analytical instruments ( LC-MS). Without their support, my research would not have been possible. A special thanks goes to - John Bottomy and Brian D’Amico for the tremendous support they’ve given in helping me with my TA duties.
    [Show full text]
  • Enantioselective Alkynylation of Trifluoromethyl Ketones Catalyzed by Cation-Binding Salen Nickel Complexes
    AngewandteA Journal of the Gesellschaft Deutscher Chemiker International Edition Chemie www.angewandte.org Accepted Article Title: Enantioselective Alkynylation of Trifluoromethyl Ketones Catalyzed by Cation-Binding Salen Nickel Complexes. Authors: Dongseong Park, Carina I. Jette, Jiyun Kim, Woo-ok Jung, Yongmin Lee, Jongwoo Park, Seungyoon Kang, Min Su Han, Brian Stoltz, and Sukwon Hong This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article. To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201913057 Angew. Chem. 10.1002/ange.201913057 Link to VoR: http://dx.doi.org/10.1002/anie.201913057 http://dx.doi.org/10.1002/ange.201913057 Angewandte Chemie International Edition 10.1002/anie.201913057 COMMUNICATION Enantioselective Alkynylation of Trifluoromethyl Ketones Catalyzed by Cation-Binding Salen Nickel Complexes. Dongseong Park, 1,# Carina I. Jette, 2,# Jiyun Kim, 1,# Woo-Ok Jung, 1 Yongmin Lee, 3 Jongwoo Park, 4 Seungyoon Kang, 1 Min Su Han, 1 Brian M. Stoltz, 2,* and Sukwon Hong1,3,* Abstract: Cation-binding salen nickel catalysts were developed for A. Examples of bioactive compounds containing a chiral trifluorocarbinol the enantioselective alkynylation of trifluoromethyl ketones in high MeO HO CF H 3 F C N O yield (up to 99%) and high enantioselectivity (up to 97% ee).
    [Show full text]
  • Nickel-Catalysed Migratory Hydroalkynylation And
    ARTICLE https://doi.org/10.1038/s41467-021-24094-9 OPEN Nickel-catalysed migratory hydroalkynylation and enantioselective hydroalkynylation of olefins with bromoalkynes ✉ ✉ Xiaoli Jiang1, Bo Han1, Yuhang Xue1, Mei Duan1, Zhuofan Gui1, You Wang 1 & Shaolin Zhu 1 α-Chiral alkyne is a key structural element of many bioactive compounds, chemical probes, and functional materials, and is a valuable synthon in organic synthesis. Here we report a 1234567890():,; NiH-catalysed reductive migratory hydroalkynylation of olefins with bromoalkynes that delivers the corresponding benzylic alkynylation products in high yields with excellent regioselectivities. Catalytic enantioselective hydroalkynylation of styrenes has also been realized using a simple chiral PyrOx ligand. The obtained enantioenriched benzylic alkynes are versatile synthetic intermediates and can be readily transformed into synthetically useful chiral synthons. 1 State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center ✉ (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:3792 | https://doi.org/10.1038/s41467-021-24094-9 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24094-9 s a key structural element, chiral alkynes motifs bearing sp3-hybridized carbons could undergo versatile transformations an α stereocentre are often
    [Show full text]
  • Uranyl-Catalyzed C-H Alkynylation and Ole Nation
    Uranyl-catalyzed C-H Alkynylation and Olenation Yu Mao Nanjing University Yeqing Liu Nanjing University Lei Yu Nanjing University Shengyang Ni Nanjing University Yi Wang ( [email protected] ) Nanjing University https://orcid.org/0000-0002-8700-7621 Yi Pan Nanjing University Article Keywords: uranium, uranyl cation, crystallographic analysis Posted Date: March 10th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-296153/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/17 Abstract 2+ Uranyl cation (UO2 ) has been identied as highly oxidizing agent to abstract hydrogen atoms from C-H bonds for the formation of carbon-centered radicals. This work described a photocatalytic strategy to utilize uranyl peroxo complexes for direct alkynylation and olenation of C(sp3) aliphatics. Crystallographic analysis revealed that the in situ generated uranyl peroxide accelerated the reaction. Introduction Uranium is a substantial unexploited resource with crustal abundance of 2.3×10− 4 %1. After separation of its ssile isotope 235U for power generation and nuclear weaponry, 99.3% of non-ssile isotope 238U was wasted in magnitude of two million tons globally2. As the dominant form of uranium in the environment3, VI 2+ 4–6 the [U O2] cation has been noticed for its unique photon properties . Under the irradiation of blue light (450–495 nm), the uranyl cation possesses a highly oxidizing excited state via the ligand-to-metal charge transfer (LMCT)7. The single electron shifts from O to U in the O = U = O group forms a UV center and an oxygen radical.
    [Show full text]
  • Mediated Azide-Alkyne Cycloaddition Reactions Using Chelating Azides Wendy S
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2012 Development of Copper(II)-Mediated Azide-Alkyne Cycloaddition Reactions Using Chelating Azides Wendy S. Brotherton Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES DEVELOPMENT OF COPPER(II)-MEDIATED AZIDE-ALKYNE CYCLOADDITION REACTIONS USING CHELATING AZIDES By WENDY S. BROTHERTON A Dissertation submitted to the Department of Chemistry and Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Spring Semester, 2012 Wendy S. Brotherton defended this dissertation on December 8, 2011. The members of the supervisory committee were: Lei Zhu Professor Directing Dissertation P. Bryant Chase University Representative Gregory B. Dudley Committee Member Igor V. Alabugin Committee Member Michael G. Roper Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii This manuscript is dedicated to my mother for all of her encouragement and sacrifices over the many years of my education. I would also like to dedicate this to my fiancé, Travis Ambrose, who has been so supportive and encouraging throughout this entire process. iii ACKNOWLEDGEMENTS I would like to thank Professor Lei Zhu for his guidance, support and assistance over the course of my graduate studies. I would like to express my gratitude to the past and present members of the Zhu group for their support and friendship over the years: Dr.
    [Show full text]
  • Synthesis of Silsesquioxanes with Substituted Triazole Ring Functionalities and Their Coordination Ability †
    molecules Article Synthesis of Silsesquioxanes with Substituted Triazole Ring Functionalities and Their Coordination Ability † Monika Rzonsowska 1,2,* , Katarzyna Kozakiewicz 1, Katarzyna Mituła 1,2 , Julia Duszczak 1,2, Maciej Kubicki 3 and Beata Dudziec 1,2,* 1 Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Pozna´n, Uniwersytetu Pozna´nskiego8, 61-614 Pozna´n,Poland; [email protected] (K.K.); [email protected] (K.M.); [email protected] (J.D.) 2 Centre for Advanced Technologies, Adam Mickiewicz University in Pozna´n,Uniwersytetu Pozna´nskiego10, 61-614 Pozna´n,Poland 3 Faculty of Chemistry, Adam Mickiewicz University in Pozna´n,Uniwersytetu Pozna´nskiego8, 61-614 Pozna´n,Poland; [email protected] * Correspondence: [email protected] (M.R.); [email protected] (B.D.); Tel.: +48-618291878 (B.D.) † Dedicated to Professor Julian Chojnowski on the occasion of his 85th birthday. Abstract: A synthesis of a series of mono-T8 and difunctionalized double-decker silsesquioxanes bearing substituted triazole ring(s) has been reported within this work. The catalytic protocol for their formation is based on the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) process. Diverse alkynes were in the scope of our interest—i.e., aryl, hetaryl, alkyl, silyl, or germyl—and the latter was shown to be the first example of terminal germane alkyne which is reactive in the applied process’ conditions. From the pallet of 15 compounds, three of them with pyridine-triazole and Citation: Rzonsowska, M.; thiophenyl-triazole moiety attached to T8 or DDSQ core were verified in terms of their coordinating Kozakiewicz, K.; Mituła, K.; properties towards selected transition metals, i.e., Pd(II), Pt(II), and Rh(I).
    [Show full text]
  • Multicomponent Reactions
    Multicomponent reactions Edited by Thomas J. J. Müller Generated on 24 September 2021, 08:23 Imprint Beilstein Journal of Organic Chemistry www.bjoc.org ISSN 1860-5397 Email: [email protected] The Beilstein Journal of Organic Chemistry is published by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften. This thematic issue, published in the Beilstein Beilstein-Institut zur Förderung der Journal of Organic Chemistry, is copyright the Chemischen Wissenschaften Beilstein-Institut zur Förderung der Chemischen Trakehner Straße 7–9 Wissenschaften. The copyright of the individual 60487 Frankfurt am Main articles in this document is the property of their Germany respective authors, subject to a Creative www.beilstein-institut.de Commons Attribution (CC-BY) license. Multicomponent reactions Thomas J. J. Müller Editorial Open Access Address: Beilstein J. Org. Chem. 2011, 7, 960–961. Heinrich-Heine-Universität Düsseldorf, Institut für Makromolekulare doi:10.3762/bjoc.7.107 Chemie und Organische Chemie, Lehrstuhl für Organische Chemie, Universitätsstr. 1, 40225 Düsseldorf, Germany Received: 11 July 2011 Accepted: 11 July 2011 Email: Published: 13 July 2011 Thomas J. J. Müller - [email protected] This article is part of the Thematic Series "Multicomponent reactions". Guest Editor: T. J. J. Müller © 2011 Müller; licensee Beilstein-Institut. License and terms: see end of document. Chemistry as a central science is facing a steadily increasing Now the major conceptual challenge comprises the engineering demand for new chemical entities (NCE). Innovative solutions, of novel types of MCR. Most advantageously and practically, in all kinds of disciplines that depend on chemistry, require new MCR can often be extended into combinatorial, solid phase or molecules with specific properties, and their societal conse- flow syntheses promising manifold opportunities for devel- quences are fundamental and pioneering.
    [Show full text]
  • Silver-Catalysed Reactions of Alkynes: Recent Advances
    Chemical Society Reviews Silver -Catalysed Reactions of Alkynes: Recent Advances Journal: Chemical Society Reviews Manuscript ID: CS-REV-01-2015-000027.R2 Article Type: Review Article Date Submitted by the Author: 02-Jun-2015 Complete List of Authors: Fang, Guichun; Northeast Normal University, Department of Chemistry Bi, Xihe; Northeast Normal University, Page 1 of 48Chem Soc Rev Chemical Society Reviews Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/ csr CRITICAL REVIEW Silver-Catalysed Reactions of Alkynes: Recent Advances Guichun Fang,a Xihe Bi*a,b Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x 5 Silver is a less expensive noble metal. Superior alkynophilicity due to π-coordination with the carbon- carbon triple bond, makes silver salts ideal catalysts for alkyne-based organic reactions. This review highlights the progress in alkyne chemistry via silver catalysis primarily over the past five years (ca. 2010–2014). The discussion is developed in terms of the bond type formed with the acetylenic carbon (i.e. , C–C, C–N, C–O, C–Halo, C–P and C–B). Compared with other coinage metals such as Au and Cu, 10 silver catalysis is frequently observed to be unique. This critical review clearly indicates that silver catalysis provides a significant impetus to the rapid evolution of alkyne-based organic reactions, such as alkynylation, hydrofunctionalization, cycloaddition, cycloisomerization, and cascade reactions. alkynylation, cycloaddition, cycloisomerization of functionalized 1. Introduction alkynes (enynes, multiynes, propargyl compounds, etc. ), and hydrofunctionalization.9 Moreover, in addition to the activation Alkynes and their derivatives are among the most valuable 50 of carbon-carbon triple bonds, other functional groups, such as 15 chemical motifs, because of their abundance and versatile 1 imines and carbonyls are also activated through coordination with reactivities.
    [Show full text]
  • Acetylene in Organic Synthesis: Recent Progress and New Uses
    Review Acetylene in Organic Synthesis: Recent Progress and New Uses Vladimir V. Voronin 1, Maria S. Ledovskaya 1, Alexander S. Bogachenkov 1, Konstantin S. Rodygin 1 and Valentine P. Ananikov 1,2,* 1 Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia; [email protected] (V.V.V.); [email protected] (M.S.L.); [email protected] (A.S.B.); [email protected] (K.S.R.) 2 N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia * Correspondence: [email protected] Received: 16 August 2018; Accepted: 17 September 2018; Published: 24 September 2018 Abstract: Recent progress in the leading synthetic applications of acetylene is discussed from the prospect of rapid development and novel opportunities. A diversity of reactions involving the acetylene molecule to carry out vinylation processes, cross-coupling reactions, synthesis of substituted alkynes, preparation of heterocycles and the construction of a number of functionalized molecules with different levels of molecular complexity were recently studied. Of particular importance is the utilization of acetylene in the synthesis of pharmaceutical substances and drugs. The increasing interest in acetylene and its involvement in organic transformations highlights a fascinating renaissance of this simplest alkyne molecule. Keywords: acetylene; vinylation; cross-coupling; addition reactions; drugs; pharmaceutical substances; biologically active molecule; monomers; polymers 1. Introduction Since the discovery of acetylene, new areas of acetylene chemistry have been continuously developed. The rich scope of chemical transformations available for a C≡C triple bond can be exemplified by coupling [1–5] and addition reactions [6,7].
    [Show full text]