Research Article Variation in Righting Times of Holothuria Atra, Stichopus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPC Beche-De-Mer Information Bulletin #39 – March 2019
ISSN 1025-4943 Issue 39 – March 2019 BECHE-DE-MER information bulletin v Inside this issue Editorial Towards producing a standard grade identification guide for bêche-de-mer in This issue of the Beche-de-mer Information Bulletin is well supplied with Solomon Islands 15 articles that address various aspects of the biology, fisheries and S. Lee et al. p. 3 aquaculture of sea cucumbers from three major oceans. An assessment of commercial sea cu- cumber populations in French Polynesia Lee and colleagues propose a procedure for writing guidelines for just after the 2012 moratorium the standard identification of beche-de-mer in Solomon Islands. S. Andréfouët et al. p. 8 Andréfouët and colleagues assess commercial sea cucumber Size at sexual maturity of the flower populations in French Polynesia and discuss several recommendations teatfish Holothuria (Microthele) sp. in the specific to the different archipelagos and islands, in the view of new Seychelles management decisions. Cahuzac and others studied the reproductive S. Cahuzac et al. p. 19 biology of Holothuria species on the Mahé and Amirantes plateaux Contribution to the knowledge of holo- in the Seychelles during the 2018 northwest monsoon season. thurian biodiversity at Reunion Island: Two previously unrecorded dendrochi- Bourjon and Quod provide a new contribution to the knowledge of rotid sea cucumbers species (Echinoder- holothurian biodiversity on La Réunion, with observations on two mata: Holothuroidea). species that are previously undescribed. Eeckhaut and colleagues P. Bourjon and J.-P. Quod p. 27 show that skin ulcerations of sea cucumbers in Madagascar are one Skin ulcerations in Holothuria scabra can symptom of different diseases induced by various abiotic or biotic be induced by various types of food agents. -
Seychelles: a Hotspot of Sea Cucumber Fisheries in Africa and the Indian Ocean Region
195 Seychelles: a hotspot of sea cucumber fisheries in Africa and the Indian Ocean region Riaz Aumeeruddy Island Conservation Society Victoria, Seychelles E-mail: [email protected] Chantal Conand Université de la Réunion Saint-Denis, France E-mail: [email protected] Aumeeruddy, R.; Conand, C. 2008. Seychelles: a hotspot of sea cucumber fisheries in Africa and the Indian Ocean region. In V. Toral-Granda, A. Lovatelli and M. Vasconcellos (eds). Sea cucumbers. A global review of fisheries and trade. FAO Fisheries and Aquaculture Technical Paper. No. 516. Rome, FAO. pp. 195–209. SUMMARY The Seychelles Archipelago, comprising 115 islands, is located in the middle of the Western Indian Ocean and has a large Exclusive Economic Zone (EEZ 1.4 millions km2). Sea cucumbers in Seychelles have been fished for more than a hundred years, but the fishery has recently seen a rapid development. Sea cucumbers are mostly collected by divers using SCUBA gear. They are processed for the export market. The population status is presented for the five main species caught (“pentard”, white teatfish, black teatfish, prickly redfish and sandfish) from the estimated stock and the overall density (ind./ha). Catch and effort data have been collected since 1999 by Seychelles Fishing Authority (SFA). The data are provided by the fishers as per the requirements of their fishing license conditions. The catch per unit effort (CPUE), expressed in numbers of sea cucumbers collected per diver per day, shows mostly a downward trend. The sea cucumber fishery in Seychelles was open-access until 1999. As part of a recent FAO- funded project, a management plan for the fishery has been prepared, based on the results of the resource assessment. -
Stichopodidae 1185
click for previous page Order Aspidochirotida - Stichopodidae 1185 Order Aspidochirotida - Stichopodidae STICHOPODIDAE iagnostic characters: Body square-shaped or trapezoidal in cross-section. Cuvierian organs absent. DGonads forming 2 tufts appended on each side of the dorsal mesentery. Dominant spicules in form of branched rods and C-and S-shaped rods. Key to the genera of Stichopodidae occurring in the area (after Clark and Rowe, 1971) 1a. Bivium covered with large papillae, leaf-shaped, simple or branched, and without podia regularly arranged longitudinally; spicules never developod as tables, but numerous grains, dichotomously branched rods ............................Thelenota 1b. Bivium covered with tubercules and papillae, at least on sides; trivium more or less covered by podia; spicules developod as tables, branched rods, and C-and S-shaped rods ..............................................Stichopus List of species of interest to fisheries occurring in the area The symbol * is given when species accounts are included. * Stichopus chloronotus Brandt, 1835 * Stichopus horrens Selenka, 1867 * Stichopus variegatus Semper, 1868 * Thelenota ananas (Jaeger, 1833) * Thelenota anax Clark, 1921 1186 Holothurians Stichopus chloronotus Brandt, 1835 Frequent synonyms / misidentifications: None / None. FAO names: En - Greenfish; Fr - Trépang vert. row of large papillae anus terminal calcareous ring mouth ventral, with papillae and 20 tentacles spicules of podia spicules of tentacles spicules of tegument (after Féral and Cherbonnier, 1986) Diagnostic characters: Body firm, rigid with quadrangular section, flattened ventrally (trivium); body wall easily disintegrates outside sea water. Radii of bivium with characteristic double row of large papillae, each radius ending in a small red or orange papilla. Trivium delimited by characteristic double row of large papillae; stout podia arranged regularly on 3 radial bands, with 10 rows in the medio-ventral band and 5 in the lateral. -
Yellow Coloured Mats from Lava Tubes of La Palma (Canary Islands, Spain
www.nature.com/scientificreports OPEN Yellow coloured mats from lava tubes of La Palma (Canary Islands, Spain) are dominated by Received: 27 July 2017 Accepted: 16 January 2018 metabolically active Actinobacteria Published: xx xx xxxx Jose L. Gonzalez-Pimentel1, Ana Z. Miller 1, Valme Jurado1, Leonila Laiz1, Manuel F. C. Pereira2 & Cesareo Saiz-Jimenez1 Microbial diversity in lava tubes from Canary Islands (Spain) has never been explored thus far ofering a unique opportunity to study subsurface microbiology. Abundant yellow coloured mats developing on coralloid speleothems in a lava tube from La Palma Islands were studied by next-generation sequencing and DNA/RNA clone library analyses for investigating both total and metabolically active bacteria. In addition, morphological and mineralogical characterization was performed by feld emission scanning electron microscopy (FESEM), micro-computed tomography, X-ray difraction and infrared spectroscopy to contextualize sequence data. This approach showed that the coralloid speleothems consist of banded siliceous stalactites composed of opal-A and hydrated halloysite. Analytical pyrolysis was also conducted to infer the possible origin of cave wall pigmentation, revealing that lignin degradation compounds can contribute to speleothem colour. Our RNA-based study showed for the frst time that members of the phylum Actinobacteria, with 55% of the clones belonging to Euzebyales order, were metabolically active components of yellow mats. In contrast, the DNA clone library revealed that around 45% of clones were afliated to Proteobacteria. Composition of microbial phyla obtained by NGS reinforced the DNA clone library data at the phylum level, in which Proteobacteria was the most abundant phylum followed by Actinobacteria. Microbial mats frequently coat extensive areas of walls and ceilings of karstic caves and lava tubes, usually devel- oping yellow, tan, orange, grey, pink and white-coloured bioflms1–6. -
Extremely Low Genetic Variability Within and Among Locations of the Greenfish Holothurian Stichopus Chloronotus Brandt, 1835 in Okinawa, Japan
Extremely low genetic variability within and among locations of the greenfish holothurian Stichopus chloronotus Brandt, 1835 in Okinawa, Japan Taha Soliman1,2,3, Okuto Takama1, Iria Fernandez-Silva1,4,5 and James D. Reimer1,6 1 Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan 2 National Institute of Oceanography and Fisheries, Alexandria, Egypt 3 Microbiology and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan 4 Section of Ichthyology, California Academy of Sciences, San Francisco, CA, USA 5 Department of Biochemistry, Genetics and Immunology, Campus Universitario, University of Vigo, Vigo, Spain 6 Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan ABSTRACT The greenfish sea cucumber Stichopus chloronotus is an economically and ecologically important sea cucumber species throughout its range. This species is widely distributed, inhabiting coral reefs of the Indo-Pacific Ocean. Our study evaluated population genetic structure and levels of genetic diversity in southern Japan. A total of 180 individuals were collected from eight locations from Okinawa and Okinoerabu Islands and sequenced using mitochondrial 16S ribosomal DNA (16S) and nuclear histone H3 (H3) gene. Only three 16S haplotypes were detected (518 bp) with haplotype diversity ranging from 0 to 0.56 and nucleotide diversity from 0 to 0.1%. H3 showed no variation among the studied locations. It is plausible that such results could be due to a shift to asexual reproduction. Additionally, the presence of the species on the east coast of Okinawa could only be Submitted 17 March 2016 detected in one location and all individuals consisted of a single haplotype. -
Correspondencecorrespondencebeche-De-Merbeche-De-Mer
38 SPC Beche-de-mer Information Bulletin #17 – October 2002 CorrespondenceCorrespondencebeche-de-merbeche-de-mer From: Pr C. Conand (sea cucumber expert), Université de la Réunion, Faculté des Sciences, 15 Ave René Cassin, 97715-SAINT-DENIS Cedex, France To : A. Bruckner, CITES, NOAA, Silver Spring, Colorado, USA, and C. Shelley, Australia, for R. Gabel US DI Washington, USA. RE: CITES: sea cucumbers for Appendix II – Reply to request for information Dear colleagues I shall first introduce myself as sea cucumber expert following numerous studies in the tropical Pacific and Indian oceans. I am the scientific editor of the Beche-de-Mer Information Bulletin published by the Secretariat of the Pacific Community (SPC), the only publication devoted to world sea cucumber issues (bi- ology, fisheries, markets). It can be found on the web at http://www.spc.int/coastfish. Recent studies have shown the worldwide overexploitation of most collected species. I believe it is the right time to draw international attention to these resources, but it is important to look in detail at which actions to undertake. I will give here a few personal opinions to help the discussion. The exploited sea cucumbers are only a few species among the 1200 presently described. Their taxonomy is very difficult and only a few specialists are still working and describing new species even among the ex- ploited ones (see Madagascar and Kenya…) (see references). As they are often considered in developed countries as ‘ugly or exotic’, the scientific studies are, therefore, not as advanced as for other marine resources and there is an urgent need for integrated studies. -
High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review
Mar. Drugs 2011, 9, 1761-1805; doi:10.3390/md9101761 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review Sara Bordbar 1, Farooq Anwar 1,2 and Nazamid Saari 1,* 1 Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mails: [email protected] (S.B.); [email protected] (F.A.) 2 Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-389-468-385; Fax: +60-389-423-552. Received: 3 August 2011; in revised form: 30 August 2011 / Accepted: 8 September 2011 / Published: 10 October 2011 Abstract: Sea cucumbers, belonging to the class Holothuroidea, are marine invertebrates, habitually found in the benthic areas and deep seas across the world. They have high commercial value coupled with increasing global production and trade. Sea cucumbers, informally named as bêche-de-mer, or gamat, have long been used for food and folk medicine in the communities of Asia and Middle East. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as Vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin), and minerals, especially calcium, magnesium, iron and zinc. A number of unique biological and pharmacological activities including anti-angiogenic, anticancer, anticoagulant, anti-hypertension, anti-inflammatory, antimicrobial, antioxidant, antithrombotic, antitumor and wound healing have been ascribed to various species of sea cucumbers. Therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives especially triterpene glycosides (saponins), chondroitin sulfates, glycosaminoglycan (GAGs), sulfated polysaccharides, sterols (glycosides and sulfates), phenolics, cerberosides, lectins, peptides, glycoprotein, glycosphingolipids and essential fatty acids. -
Complete Genome Sequence of Acidimicrobium Ferrooxidans Type Strain (ICPT)
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT) Permalink https://escholarship.org/uc/item/4cd3q8tr Author Clum, Alicia Publication Date 2009-07-20 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2009) 1: 38-45 DOI:10.4056/sigs.1463 Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT) Alicia Clum1, Matt Nolan1, Elke Lang2, Tijana Glavina Del Rio1, Hope Tice1, Alex Copeland1, Jan-Fang Cheng1, Susan Lucas1, Feng Chen1, David Bruce3, Lynne Goodwin3, Sam Pitluck1, Natalia Ivanova1, Konstantinos Mavromatis1 , Natalia Mikhailova1, Amrita Pati1, Amy Chen4, Krishna Palaniappan4, Markus Göker2, Stefan Spring2, Miriam Land5, Loren Hauser5, Yun- Juan Chang5, Cynthia C. Jeffries5, Patrick Chain1,6, Jim Bristow1, Jonathan A. Eisen1,7, Victor Markowitz4, Philip Hugenholtz1, Nikos C. Kyrpides1, Hans-Peter Klenk2, and Alla Lapidus1* 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Labora- tory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 Lawrence Livermore National Laboratory, Livermore, California, USA 7 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Alla Lapidus Keywords: Moderate thermophile, ferrous-iron-oxidizing, acidophile, Acidomicrobiales. Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the ge- nus, which until recently was the only genus within the actinobacterial family Acidimicrobia- ceae and in the order Acidomicrobiales. -
Marine Cyanolichens from Different Littoral Zones Are
bioRxiv preprint doi: https://doi.org/10.1101/209320; this version posted February 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Marine cyanolichens from different littoral 2 zones are associated with distinct bacterial 3 communities 4 Nyree J. West*1, Delphine Parrot2†, Claire Fayet1, Martin Grube3, Sophie Tomasi2 5 and Marcelino T. Suzuki4 6 1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, Observatoire Océanologique de Banyuls (OOB), 7 F-66650, Banyuls sur mer, France 8 2 UMR CNRS 6226, Institut des Sciences chimiques de Rennes, Equipe CORINT « Chimie Organique 9 et Interfaces », UFR Sciences Pharmaceutiques et Biologiques, Univ. Rennes 1, Université Bretagne 10 Loire, F-35043, Rennes, France 11 3 Institute of Plant Sciences, University of Graz, A-8010 Graz, Austria 12 4 Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies 13 Microbiennes (LBBM), Observatoire Océanologique, F-66650, Banyuls sur mer, France 14 †Current address: GEOMAR Helmholtz Centre for Ocean Research Kiel, Research Unit Marine 15 Natural Products Chemistry, GEOMAR Centre for Marine Biotechnology, 24106 Kiel, Germany 16 *Corresponding author: 17 Observatoire Océanologique de Banyuls sur mer, F-66650 Banyuls sur mer, France 18 19 Tel: +33 (0)4 30 19 24 29, Fax: +33 (0)4 68 88 73 98 20 Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/209320; this version posted February 6, 2018. -
1 Conference of the Parties to The
Conference of the Parties to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES); Seventeenth Regular Meeting: Taxa Being Considered for Amendments to the CITES Appendices The United States, as a Party to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), may propose amendments to the CITES Appendices for consideration at meetings of the Conference of the Parties. The seventeenth regular meeting of the Conference of the Parties to CITES (CoP17) is scheduled to be held in South Africa, September 24 to October 5, 2016. With this notice, we describe proposed amendments to the CITES Appendices (species proposals) that the United States might submit for consideration at CoP17 and invite your comments and information on these proposals. Please note that we published an abbreviated version of this notice in the Federal Register on August 26, 2015, in which we simply listed each species proposal that the United States is considering for CoP17, but we did not describe each proposal in detail or explain the rationale for the tentative U.S. position on each species. CITES is an international treaty designed to control and regulate international trade in certain animal and plant species that are affected by trade and are now, or potentially may become, threatened with extinction. These species are listed in the Appendices to CITES, which are available on the CITES Secretariat’s website at http://www.cites.org/sites/default/files/eng/app/2015/E-Appendices-2015-02-05.pdf. Currently, 181 Parties, including the United States, have joined CITES. -
Sea Cucumbers in the Western Indian Ocean Improving Management of an Important but Poorly Understood Resource
Sea cucumbers in the western Indian Ocean Improving management of an important but poorly understood resource Sea cucumbers in the western Indian Ocean Improving management of an important but poorly understood resource Principal Investigators: Chantal CONAND Ecomar Laboratory Reunion University 97715 Saint Denis, Reunion, France Email: [email protected] Nyawira MUTHIGA, Wildlife Conservation Society Kibaki Flats No. 12 P.O. Box 99470 Mombasa, Kenya Email: [email protected] Co-Investigators: Kenya - Jacob OCHIEWO, Kenya Marine & Fisheries Research Institute Madagascar - Richard RASOLOFONIRINA, IH-SM and Aqua-lab Reunion - Patrick FROUIN, ECOMAR, Reunion University Seychelles - Riaz AUMEERUDDY, Seychelles Fisheries Authority Sweden - Maricela DE LA TORRE-CASTRO, Stockholm University Tanzania - Yunis MGAYA, University of Dar-es-salaam i Sea cucumbers in the western Indian Ocean Improving management of an important but poorly understood resource This publication is the fi nal output of the Marine Science for Management Program Project No. MASMA/AG/2005/01. This publication is available electronically at the following website: http://www.wiomsa.org All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher and contact with the author. © Western Indian Ocean Marine Science Association (WIOMSA) Published by: The Western Indian Ocean Marine Science Association (WIOMSA) Mizingani St, House No. 13644/10 P.O. Box 3298, Zanzibar United Republic of Tanzania Tel:+255 24 2233472/2234597 Fax:+255 24 2233852 Email: [email protected] Citation: Muthiga NA, Conand C (ed) 2014. -
Geological and Geo-Morphological Influences on Some Sea-Cumber
Geological and geo-morphological influences on some Sea-cucumber species in Northwest coast of Sri Lanka S.U.P. Jinadasa and D.C.T. Dissanayake National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 15, Sri Lanka Email: [email protected] or [email protected] Abstract Objectives Abundance and Mean The Continental shelf of Sri Lanka is having highly productive Major Objectives ecosystems mainly sea grass beds, marshy lands and coral reefs. The overall objectives of the research is development of a These ecosystems are valuable resource for the coastal communities relationship between bottom sediment distribution and the marine scientists. Also coastal ecosystems have been geomorphology and sea-cucumber abundance in northwest utilized as a food source and income generator to each coastal coast of Sri Lanka. nations. The current study is focused on bottom geology and relative Minor Objectives abundance of sea cucumber species Holoturia atra and Holothuria edulis which are commercially exploited in north western coast of (a) Collection of high relief hard bottom data and Digital Sri Lanka. This was the first effort in Sri Lanka to study abundance (a) (b) (c) Elevation Model (DEM) of the area of sea cucumbers with bottom sedimentological status. However, the Fig. 3(a), 3(b), 3(c) illustrate the gravel, sand and silt/ mud (b) Identification of gravel, sand, silt beds and comparison study is given encouraging results for further studies on other distribution with abundance of Sea cucumber species H.edulis (a) (b) bottom species such as sea urchins, gastropods and cephalopods. with abundance of Sea Cucumber.