Stichopodidae 1185

Total Page:16

File Type:pdf, Size:1020Kb

Stichopodidae 1185 click for previous page Order Aspidochirotida - Stichopodidae 1185 Order Aspidochirotida - Stichopodidae STICHOPODIDAE iagnostic characters: Body square-shaped or trapezoidal in cross-section. Cuvierian organs absent. DGonads forming 2 tufts appended on each side of the dorsal mesentery. Dominant spicules in form of branched rods and C-and S-shaped rods. Key to the genera of Stichopodidae occurring in the area (after Clark and Rowe, 1971) 1a. Bivium covered with large papillae, leaf-shaped, simple or branched, and without podia regularly arranged longitudinally; spicules never developod as tables, but numerous grains, dichotomously branched rods ............................Thelenota 1b. Bivium covered with tubercules and papillae, at least on sides; trivium more or less covered by podia; spicules developod as tables, branched rods, and C-and S-shaped rods ..............................................Stichopus List of species of interest to fisheries occurring in the area The symbol * is given when species accounts are included. * Stichopus chloronotus Brandt, 1835 * Stichopus horrens Selenka, 1867 * Stichopus variegatus Semper, 1868 * Thelenota ananas (Jaeger, 1833) * Thelenota anax Clark, 1921 1186 Holothurians Stichopus chloronotus Brandt, 1835 Frequent synonyms / misidentifications: None / None. FAO names: En - Greenfish; Fr - Trépang vert. row of large papillae anus terminal calcareous ring mouth ventral, with papillae and 20 tentacles spicules of podia spicules of tentacles spicules of tegument (after Féral and Cherbonnier, 1986) Diagnostic characters: Body firm, rigid with quadrangular section, flattened ventrally (trivium); body wall easily disintegrates outside sea water. Radii of bivium with characteristic double row of large papillae, each radius ending in a small red or orange papilla. Trivium delimited by characteristic double row of large papillae; stout podia arranged regularly on 3 radial bands, with 10 rows in the medio-ventral band and 5 in the lateral. Mouth ventral, surrounded by a row of papillae and 20 green, stout tentacles. Anus terminal. Calcareous ring with large radial pieces and narrow interradials. Cuvierian tubules absent. Cloaca large and greenish. Colour: bivium dark green to black; trivium lighter. Spicules: presence of very characteristic tables with a narrow disc showing 4 holes, bearing a spire generally ending in a moderately spiny crown; tables with larger disc and simpler crown also present; presence of many C-shaped spicules; rosettes absent; tables in dorsal with have a large multiperforated disc, bearing a large spire; ventral papillae with long, smooth rods; ventral podia with denticulate rods and large multiperforated plates; tentacles with smooth and granular rods. Size: Maximum length about 35 cm, commonly to about 18 cm; mean live weight about 0.1 kg (up to 0.4 kg); body-wall thickness about 2 mm. Habitat, biology, and fisheries: A reef species, mostly found in shallow areas from near the surface to a depth of 15 m; generally occurs on reef flats and upper slopes. Populations reaching high densities on hard substrates, with a mean of around 0.04/m2. Shallow-water populations are generally smaller in size than those found in deeper waters. Biology poorly known. Probably harvested in some artisanal fisheries of the area. Collected by hand at low tide, or by divers. The processed product is of low commercial value. Distribution: Widespread in the tropical Indo-Pacific, excluding the Persian Gulf and Hawaii. Order Aspidochirotida - Stichopodidae 1187 Stichopus horrens Selenka, 1867 Frequent synonyms / misidentifications: Stichopus godeffroyi Semper, 1868 / None. FAO names: En - Selenka’s sea cucumber. anus terminal calcareous ring irregular warts spicule of tentacles mouth ventral, with papillae and 18 tentacles spicules of podia spicules of papillae spicules of tegument (after Féral and Cherbonnier, 1986) Diagnostic characters: Body firm, rigid, squarish in cross-section, flattened ventrally (trivium); body wall easily disintegrates outside sea water. Bivium covered with irregular warts, arranged in 10 longitudinal rows; warts larger near mouth. Trivium delimited by a characteristic double row of large papillae (4 to 5 mm); stout podia arranged in 4 rows, on 3 radial bands, their disc about 350 µm in diameter. Mouth ventral, surrounded by a half row of papillae and 18 brown, short tentacles. Anus terminal. Calcareous ring with a deeply indented radial pieces and triangular interradials. Cuvierian tubules absent. Colour: bivium whitish to grey, with brown irregular dots; trivium lighter. Spicules: very characteristic rosettes, X-shaped, or elongate, numerous in the tegument; presence of numerous C-shaped spicules of 3 sizes; ventral tegument with tables of 2 sizes; some tables have a circular disc with 4 central and about 15 peripheral holes, bearing a spire with 4 pillars ending in a moderately spiny and cross-shaped crown; tables with a larger disc also present, more perforated, with a higher, spiny crown; only the first kind of table found in the dorsal tegument; tables in papillae provided with large multiperforated disc, with a long, conical, smooth spire, ending in a single point; ventral papillae containing long, smooth rods; ventral podia have long rods, with a central apophysis, and large, elongate, multiperforated plates; tentacles with large rods, either curved with few spines, or straight and very spiny. Size: Maximum length about 40 cm, commonly to about 20 cm; mean live weight about 0.2 kg (up to 0.5 kg); body-wall thickness about 2 mm. Habitat, biology, and fisheries: A reef species, mostly found in shallow areas from near the surface to a depth of 15 m; generally occurs in rubbles, or hidden in reef flats. A nocturnal species. Populations not reaching high densities, with a mean of around 0.007/m2. Biology poorly known. Probably not harvested, as the tegument disintegrates too quickly. An aquaculture programme for this species is presently being carried out, for stock enhancement purposes. Distribution: Widespread in the tropical Indo-Pacific. 1188 Holothurians Stichopus variegatus Semper, 1868 FAO names: En - Curryfish; Fr - Trépang curry. Frequent synonyms / misidentifications: None / None. papillae calcareous ring mouth ventral, anus with papillae and terminal 20 tentacles conical warts spicules of papillae spicules of tegument spicules of tentacles spicules of podia (after Féral and Cherbonnier, 1986) Diagnostic characters: Body firm, rigid, squarish in cross-section, flattened ventrally (trivium). Body wall easily disintegrates outside sea water. Bivium covered with irregular conical warts, arranged in 8 longitudinal rows, with smaller papillae in between. Trivium with yellow to pink podia, arranged in rows on the radii, their disc about 380 µm in diameter.Mouth ventral, surrounded by a circle of conical papillae and 20 yellowish tentacles. Anus terminal. Calcareous ring with a deeply indented radial pieces and small interradials. Cuvierian tubules absent. Colour: variable on bivium, yellow to greenish, with black spots; trivium lighter. Spicules: tables in the tegument with 2 forms of discs, some being undulated, with 8 to 20 holes, while others form a denticulate disc with 4 central holes and a variable number of peripheral holes; spire of tables with 4 pillars ending in a moderately spiny and perforated crown; some tables with large disc and irregular crown also present; tables in papillae have a very large multiperforated disc; rosettes cross-shaped, branching; X-shaped spicules occur in 3 different sizes; ventral podia with spiny rods and large multiperforated plates showing pentagonal holes; tentacles with long, narrow, and spiny rods and X-, S-, and C-shaped small spicules. Size: Maximum length about 50 cm, commonly to about 35 cm; mean live weight about 1 kg (up to 2.5 kg); body-wall thickness about 8 mm. Habitat, biology, and fisheries: A shallow-water species, found in coastal reefs and lagoons, mostly from near the surface to a depth of 25 m. Generally occurs in seagrass beds, rubbles, and muddy-sand bottoms. Populations not reaching high densities, with a mean of around 0.005/m2. Sexual reproduction takes place during the warm season. A species with a low potential fecundity and late sexual maturity. Probably rarely collected as the tegument disintegrates very easily, resulting in a low commercial value of the species. Distribution: Widespread in the tropical Indo-Pacific, excluding Hawaii. Order Aspidochirotida - Stichopodidae 1189 Thelenota ananas (Jaeger, 1833) Frequent synonyms / misidentifications: None / None. FAO names: En - Prickly redfish; Fr - Holothurie ananas. anus lobate papillae terminal calcareous ring mouth ventral, with a circle of trivium bordered by large papillae papillae and 20 large tentacles spicules of podia spicules of tentacles spicules of tegument (after Féral and Cherbonnier, 1986) Diagnostic characters: Body firm, rigid, flattened ventrally (trivium). Bivium entirely covered with characteristic, large, leaf-shaped, lobate papillae. Trivium with brown to pink podia, more numerous on the radii, their disc about 400 µm in diameter. Mouth ventral, surrounded by a circle of conical papillae which are larger on dorsal side, and 20 large, brown tentacles. Anus terminal. Calcareous ring with large radial pieces and narrow interradials. Cuvierian tubules absent. Colour: variable on bivium, reddish orange to brown; trivium generally red; mature gonads deep purple. Spicules: tegument with cross-shaped spicules, spiny branched
Recommended publications
  • Northern Bougainville M a R I N E R E S O U R C E a S S E S S M E N T Autonomous Region of Bougainville
    November 2010 Asia Pacific Conservation Region Marine Program Report No 2/10 Northern Bougainville M a r i n e R e s o u r c e A s s e s s m e n t Autonomous Region of Bougainville Technical report of survey conducted from the 1st - 25th November 2008 By Richard Hamilton, Freda Paiva, Joe Aitsi, Tapas Potuku, Catherine Siota and Paul Lokani. Published by: The Nature Conservancy, Asia Pacific Conservation Region, Marine Program Contact Details: Richard Hamilton, 51 Edmondstone Street, South Brisbane, QLD 4101 Australia Email: [email protected] Suggested Citation: Hamilton R, Paiva F, Aitsi J, Potuku P, Siota C and Lokani P. (2010). Northern Bougainville Marine Resource Assessment, Autonomous Region of Bougainville. Technical report of survey conducted from the 1st- 25th November 2008. A report by the Marine Program of the Asia Pacific Conservation Region, The Nature Conservancy. 2/10. © 2010, The Nature Conservancy All Rights Reserved. Reproduction for any purpose is prohibited without prior permission. Cover Photo: White teatfish (Holothuria fuscogilva) © Richard Hamilton Available from: Asia Pacific Resource Centre The Nature Conservancy 51 Edmondstone Street South Brisbane, QLD 410. Australia Or via the worldwide web at: conserveonline.org/workspaces/pacific.island.countries.publications ii CONTENTS ACKNOWLEDGEMENTS .................................................................................................... iv EXECUTIVE SUMMARY ...................................................................................................
    [Show full text]
  • SPC Beche-De-Mer Information Bulletin #39 – March 2019
    ISSN 1025-4943 Issue 39 – March 2019 BECHE-DE-MER information bulletin v Inside this issue Editorial Towards producing a standard grade identification guide for bêche-de-mer in This issue of the Beche-de-mer Information Bulletin is well supplied with Solomon Islands 15 articles that address various aspects of the biology, fisheries and S. Lee et al. p. 3 aquaculture of sea cucumbers from three major oceans. An assessment of commercial sea cu- cumber populations in French Polynesia Lee and colleagues propose a procedure for writing guidelines for just after the 2012 moratorium the standard identification of beche-de-mer in Solomon Islands. S. Andréfouët et al. p. 8 Andréfouët and colleagues assess commercial sea cucumber Size at sexual maturity of the flower populations in French Polynesia and discuss several recommendations teatfish Holothuria (Microthele) sp. in the specific to the different archipelagos and islands, in the view of new Seychelles management decisions. Cahuzac and others studied the reproductive S. Cahuzac et al. p. 19 biology of Holothuria species on the Mahé and Amirantes plateaux Contribution to the knowledge of holo- in the Seychelles during the 2018 northwest monsoon season. thurian biodiversity at Reunion Island: Two previously unrecorded dendrochi- Bourjon and Quod provide a new contribution to the knowledge of rotid sea cucumbers species (Echinoder- holothurian biodiversity on La Réunion, with observations on two mata: Holothuroidea). species that are previously undescribed. Eeckhaut and colleagues P. Bourjon and J.-P. Quod p. 27 show that skin ulcerations of sea cucumbers in Madagascar are one Skin ulcerations in Holothuria scabra can symptom of different diseases induced by various abiotic or biotic be induced by various types of food agents.
    [Show full text]
  • Seychelles: a Hotspot of Sea Cucumber Fisheries in Africa and the Indian Ocean Region
    195 Seychelles: a hotspot of sea cucumber fisheries in Africa and the Indian Ocean region Riaz Aumeeruddy Island Conservation Society Victoria, Seychelles E-mail: [email protected] Chantal Conand Université de la Réunion Saint-Denis, France E-mail: [email protected] Aumeeruddy, R.; Conand, C. 2008. Seychelles: a hotspot of sea cucumber fisheries in Africa and the Indian Ocean region. In V. Toral-Granda, A. Lovatelli and M. Vasconcellos (eds). Sea cucumbers. A global review of fisheries and trade. FAO Fisheries and Aquaculture Technical Paper. No. 516. Rome, FAO. pp. 195–209. SUMMARY The Seychelles Archipelago, comprising 115 islands, is located in the middle of the Western Indian Ocean and has a large Exclusive Economic Zone (EEZ 1.4 millions km2). Sea cucumbers in Seychelles have been fished for more than a hundred years, but the fishery has recently seen a rapid development. Sea cucumbers are mostly collected by divers using SCUBA gear. They are processed for the export market. The population status is presented for the five main species caught (“pentard”, white teatfish, black teatfish, prickly redfish and sandfish) from the estimated stock and the overall density (ind./ha). Catch and effort data have been collected since 1999 by Seychelles Fishing Authority (SFA). The data are provided by the fishers as per the requirements of their fishing license conditions. The catch per unit effort (CPUE), expressed in numbers of sea cucumbers collected per diver per day, shows mostly a downward trend. The sea cucumber fishery in Seychelles was open-access until 1999. As part of a recent FAO- funded project, a management plan for the fishery has been prepared, based on the results of the resource assessment.
    [Show full text]
  • SPC Beche-De-Mer Information Bulletin #6 17
    April 1994 SPC Beche-de-mer Information Bulletin #6 17 BECHE-DE-MER CORRESPONDENCE Royal Hawaiian Sea Farms involved in research on sea cucumbers Dale Sarver from Hawaii (Royal Hawaiian Sea Farms, Inc., P.O. Box 3167, Kailua-Kona, Hawaii 96745) sent a letter to Chantal Conand to ask for information on an Hawaiian sea cucumber species he intends to study. Extracts from this letter are reproduced below. ...I recently received number 5 issue of the Beche de lifted out of the water. I have not been able to get a name Mer Information Bulletin. It was a very good issue for this animal. It looks like something in between a with lots of helpful information. Stichopus and a Thelenota, and is orange/red. I have enclosed a photo of one which started spontaneously We were successful in obtaining renewal for our sea spawning in our tanks a few hours after collection cucumber research through the US Department of (14:00hrs). It was a male and reared up in the typical Agriculture Small Business Innovation Research position whilst spawning. It stimulated one other male to program. So we will be working for at least another 2 start spawning too, but the third one did not respond. years on growout techniques for Stichopus horrens and possibly others. We will be trying to spawn this species during the winter. I would be grateful if you could identify this There is another Hawaiian species which we intend to animal for me. This species is interesting to us because it look at. It is fairly common in places below 30 meters on seems hardier in culture conditions, and people prefer it fine sand and coral rubble.
    [Show full text]
  • Echinodermata: Ophiuroidea: Ophiocomidae)
    Survey of the Shallow-water Echinoderms of Nauru, Micronesia Results of a Survey Performed 28 July to 1 August 1998 by Alexander M. Kerr February 2014 University of Guam Marine Laboratory Technical Report 158 ACKNOWLEDGEMENTS I thank Ian Chapman (Ewa Store) and his family for their hospitality and Felix Alefaio (Nauru Department of Fisheries and Marine Resources Authority) for assisting with the diving and for the nice book on inverts. For identification of non-holothuroid echinoderms, I thank Gordon Hendler (Natural History Museum of Los Angeles County), Rich Mooi (California Academy of Sciences), Loisette Marsh (Western Australia Museum) and Chuck Messing (Nova Southeastern University). This project was funded in part with assistance from Mr. and Mrs. Sergio S. Quenga and by a grant from The Explorers Club to AMK. Tubwa! i EXECUTIVE SUMMARY The island of Nauru in eastern Micronesia potentially possesses a diverse array of echinoderms. I performed a small survey to explore echinoderm diversity in Nauru's shallow-water marine environments. In five days of surveying between 28 July to 1 August 1998, I surveyed 12 sites around the island on reef flats and forereef slopes to 20 m depth and found 18 species of echinoderms, most of them new records for the island. Including previous surveys, a total of 24 species of echinoderms have now been identified from Nauru's waters: six holothuroids (sea cucumbers), five echinoids (sea urchins), five asteroids (sea stars), five ophiuroids (brittle stars) and three crinoids (feather stars). iii TABLE OF CONTENTS Acknowledgements iiii Executive Summary iiii Table of Contents vv Introduction 11 Methods 11 Site selection 11 Surveys and collections 13 Results and Discussion 14 Literature Cited 6 Appendix 1: Checklist of Nauru’s Echinoderms 9 Appendix 2: Author's contact information 11 v INTRODUCTION Our knowledge of the marine natural history of Nauru remains very poor.
    [Show full text]
  • Density and Population Parameters of Sea Cucumber Isostichopus Badionotus (Echinodermata: Stichopodidae) at Sisal, Yucatan
    Lat. Am. J. Aquat. Res., 46(2): 416-423Density, 2018 and population parameters of sea cucumber at Sisal, Yucatan 416 1 DOI: 10.3856/vol46-issue2-fulltext-17 Research Article Density and population parameters of sea cucumber Isostichopus badionotus (Echinodermata: Stichopodidae) at Sisal, Yucatan Alberto de Jesús-Navarrete1, María Nallely May Poot2 & Alejandro Medina-Quej2 1Departamento de Sistemática y Ecología Acuática, Estructura y Función del Bentos El Colegio de la Frontera Sur, Quintana Roo, México 2Instituto Tecnológico de Chetumal, Licenciatura en Biología, Chetumal, Quintana Roo, México Corresponding author: Alberto de Jesús-Navarrete ([email protected]) ABSTRACT. The density and population parameters of the sea cucumber Isostichopus badionotus from Sisal, Yucatan, Mexico were determined during the fishing season. Belt transects of 200 m2 were set in 10 sampling sites at two fishing areas. All organisms within the belt were counted and collected. In the harbor, 7,618 sea cucumbers were measured and weighed: the population parameters were determined using FISAT II. Mean densities of I. badionotus in April 2011, September 2011 and February 2012 were 0.84 ± 0.40, 0.51 ± 0.46, and 0.32 ± 0.17 ind m-2, respectively. Sea cucumber total length varied from 90 to 420 mm, with a uni-modal distribution. The growth parameters were: L∞ = 403 mm, K = 0.25, and to = -0.18, with an allometric growth (W = 2.81L1.781). The total mortality was 0.88, whereas natural mortality was 0.38, fish mortality was 0.50 and the exploitation rate 0.54. Even when sea cucumbers fishery in Sisal is recent and in development with a high density (5570 ind ha-1), it is necessary to establish management strategies to protect the resource, such as an annual catch quota, catching size (>280 mm length), monitoring of population density, and reproduction and larval distribution.
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1982 Rosenstiel School of Marine and Atmospheric Science, University of Miami. This manuscript is available at http://www.rsmas.miami.edu/bms and may be cited as: Cutress, B. M., & Miller, J. E. (1982). Eostichopus Arnesoni new genus and species (Echinodermata: Holothuroidea) from the Caribbean. Bulletin of Marine Science, 32(3), 715‐722. BULLETIN OF MARINE SCIENCE. 32(3): 715-722. 1982 CORAL REEF PAPER EOSTICHOPUS ARNESON! NEW GENUS AND SPECIES (ECHINODERMATA: HOLOTHUROIDEA) FROM THE CARIBBEAN Bertha M. Cutress and John E. Miller ABSTRACT Eostichopus new genus is erected for stichopodid holothurians whose ossicles include tables having large disks (>60 J.Lm wide) with more than 12 perforations and having spires with two or more crossbeams and spines at every junction of crossbeam with pillar. In Eostichopus amesoni new species, tables have numerous disk perforations (up to 100) and spire crossbeams (up to 10) and there are unique reticulate rods in the tentacles. C-shaped ossicles are also present. E. amesoni is known at present from Puerto Rico and Grenada at moderate depths. In July 1969 during a cruise of the University of Miami's R/V PILLSBURY,one specimen of a large stichopodid holothurian was taken by trawl off Grenada, W.J. The specimen was examined in April 1979 by one of us (J.E.M.) in the collections of the Rosenstiel School of Marine and Atmospheric Science, University of Miami (UMML) and, although in poor condition, was recognized as probably belonging to a new species.
    [Show full text]
  • Extremely Low Genetic Variability Within and Among Locations of the Greenfish Holothurian Stichopus Chloronotus Brandt, 1835 in Okinawa, Japan
    Extremely low genetic variability within and among locations of the greenfish holothurian Stichopus chloronotus Brandt, 1835 in Okinawa, Japan Taha Soliman1,2,3, Okuto Takama1, Iria Fernandez-Silva1,4,5 and James D. Reimer1,6 1 Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan 2 National Institute of Oceanography and Fisheries, Alexandria, Egypt 3 Microbiology and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan 4 Section of Ichthyology, California Academy of Sciences, San Francisco, CA, USA 5 Department of Biochemistry, Genetics and Immunology, Campus Universitario, University of Vigo, Vigo, Spain 6 Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan ABSTRACT The greenfish sea cucumber Stichopus chloronotus is an economically and ecologically important sea cucumber species throughout its range. This species is widely distributed, inhabiting coral reefs of the Indo-Pacific Ocean. Our study evaluated population genetic structure and levels of genetic diversity in southern Japan. A total of 180 individuals were collected from eight locations from Okinawa and Okinoerabu Islands and sequenced using mitochondrial 16S ribosomal DNA (16S) and nuclear histone H3 (H3) gene. Only three 16S haplotypes were detected (518 bp) with haplotype diversity ranging from 0 to 0.56 and nucleotide diversity from 0 to 0.1%. H3 showed no variation among the studied locations. It is plausible that such results could be due to a shift to asexual reproduction. Additionally, the presence of the species on the east coast of Okinawa could only be Submitted 17 March 2016 detected in one location and all individuals consisted of a single haplotype.
    [Show full text]
  • Correspondencecorrespondencebeche-De-Merbeche-De-Mer
    38 SPC Beche-de-mer Information Bulletin #17 – October 2002 CorrespondenceCorrespondencebeche-de-merbeche-de-mer From: Pr C. Conand (sea cucumber expert), Université de la Réunion, Faculté des Sciences, 15 Ave René Cassin, 97715-SAINT-DENIS Cedex, France To : A. Bruckner, CITES, NOAA, Silver Spring, Colorado, USA, and C. Shelley, Australia, for R. Gabel US DI Washington, USA. RE: CITES: sea cucumbers for Appendix II – Reply to request for information Dear colleagues I shall first introduce myself as sea cucumber expert following numerous studies in the tropical Pacific and Indian oceans. I am the scientific editor of the Beche-de-Mer Information Bulletin published by the Secretariat of the Pacific Community (SPC), the only publication devoted to world sea cucumber issues (bi- ology, fisheries, markets). It can be found on the web at http://www.spc.int/coastfish. Recent studies have shown the worldwide overexploitation of most collected species. I believe it is the right time to draw international attention to these resources, but it is important to look in detail at which actions to undertake. I will give here a few personal opinions to help the discussion. The exploited sea cucumbers are only a few species among the 1200 presently described. Their taxonomy is very difficult and only a few specialists are still working and describing new species even among the ex- ploited ones (see Madagascar and Kenya…) (see references). As they are often considered in developed countries as ‘ugly or exotic’, the scientific studies are, therefore, not as advanced as for other marine resources and there is an urgent need for integrated studies.
    [Show full text]
  • High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review
    Mar. Drugs 2011, 9, 1761-1805; doi:10.3390/md9101761 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review Sara Bordbar 1, Farooq Anwar 1,2 and Nazamid Saari 1,* 1 Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mails: [email protected] (S.B.); [email protected] (F.A.) 2 Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-389-468-385; Fax: +60-389-423-552. Received: 3 August 2011; in revised form: 30 August 2011 / Accepted: 8 September 2011 / Published: 10 October 2011 Abstract: Sea cucumbers, belonging to the class Holothuroidea, are marine invertebrates, habitually found in the benthic areas and deep seas across the world. They have high commercial value coupled with increasing global production and trade. Sea cucumbers, informally named as bêche-de-mer, or gamat, have long been used for food and folk medicine in the communities of Asia and Middle East. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as Vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin), and minerals, especially calcium, magnesium, iron and zinc. A number of unique biological and pharmacological activities including anti-angiogenic, anticancer, anticoagulant, anti-hypertension, anti-inflammatory, antimicrobial, antioxidant, antithrombotic, antitumor and wound healing have been ascribed to various species of sea cucumbers. Therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives especially triterpene glycosides (saponins), chondroitin sulfates, glycosaminoglycan (GAGs), sulfated polysaccharides, sterols (glycosides and sulfates), phenolics, cerberosides, lectins, peptides, glycoprotein, glycosphingolipids and essential fatty acids.
    [Show full text]
  • 1 Conference of the Parties to The
    Conference of the Parties to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES); Seventeenth Regular Meeting: Taxa Being Considered for Amendments to the CITES Appendices The United States, as a Party to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), may propose amendments to the CITES Appendices for consideration at meetings of the Conference of the Parties. The seventeenth regular meeting of the Conference of the Parties to CITES (CoP17) is scheduled to be held in South Africa, September 24 to October 5, 2016. With this notice, we describe proposed amendments to the CITES Appendices (species proposals) that the United States might submit for consideration at CoP17 and invite your comments and information on these proposals. Please note that we published an abbreviated version of this notice in the Federal Register on August 26, 2015, in which we simply listed each species proposal that the United States is considering for CoP17, but we did not describe each proposal in detail or explain the rationale for the tentative U.S. position on each species. CITES is an international treaty designed to control and regulate international trade in certain animal and plant species that are affected by trade and are now, or potentially may become, threatened with extinction. These species are listed in the Appendices to CITES, which are available on the CITES Secretariat’s website at http://www.cites.org/sites/default/files/eng/app/2015/E-Appendices-2015-02-05.pdf. Currently, 181 Parties, including the United States, have joined CITES.
    [Show full text]
  • Sea Cucumbers in the Western Indian Ocean Improving Management of an Important but Poorly Understood Resource
    Sea cucumbers in the western Indian Ocean Improving management of an important but poorly understood resource Sea cucumbers in the western Indian Ocean Improving management of an important but poorly understood resource Principal Investigators: Chantal CONAND Ecomar Laboratory Reunion University 97715 Saint Denis, Reunion, France Email: [email protected] Nyawira MUTHIGA, Wildlife Conservation Society Kibaki Flats No. 12 P.O. Box 99470 Mombasa, Kenya Email: [email protected] Co-Investigators: Kenya - Jacob OCHIEWO, Kenya Marine & Fisheries Research Institute Madagascar - Richard RASOLOFONIRINA, IH-SM and Aqua-lab Reunion - Patrick FROUIN, ECOMAR, Reunion University Seychelles - Riaz AUMEERUDDY, Seychelles Fisheries Authority Sweden - Maricela DE LA TORRE-CASTRO, Stockholm University Tanzania - Yunis MGAYA, University of Dar-es-salaam i Sea cucumbers in the western Indian Ocean Improving management of an important but poorly understood resource This publication is the fi nal output of the Marine Science for Management Program Project No. MASMA/AG/2005/01. This publication is available electronically at the following website: http://www.wiomsa.org All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher and contact with the author. © Western Indian Ocean Marine Science Association (WIOMSA) Published by: The Western Indian Ocean Marine Science Association (WIOMSA) Mizingani St, House No. 13644/10 P.O. Box 3298, Zanzibar United Republic of Tanzania Tel:+255 24 2233472/2234597 Fax:+255 24 2233852 Email: [email protected] Citation: Muthiga NA, Conand C (ed) 2014.
    [Show full text]