Shaping of Modern Southern African Biomes: Neogene Vegetation and Climate Changes

Total Page:16

File Type:pdf, Size:1020Kb

Shaping of Modern Southern African Biomes: Neogene Vegetation and Climate Changes See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/281116241 Shaping of modern southern African biomes: Neogene vegetation and climate changes Article in Transactions of the Royal Society of South Africa · August 2015 DOI: 10.1080/0035919X.2015.1072859 CITATIONS READS 15 331 2 authors: Frank Neumann Marion Bamford University of the Witwatersrand University of the Witwatersrand 70 PUBLICATIONS 1,252 CITATIONS 150 PUBLICATIONS 3,367 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: The Unique Hypatia diamond meteorite: a puzzling sample of a pre-Solar nebula View project Graphic correlation of deep offshore Niger Delta, Nigeria View project All content following this page was uploaded by Frank Neumann on 21 August 2015. The user has requested enhancement of the downloaded file. This article was downloaded by: [Institut Fuer Tierernaehrung/Fli] On: 21 August 2015, At: 03:24 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London, SW1P 1WG Transactions of the Royal Society of South Africa Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ttrs20 Shaping of modern southern African biomes: Neogene vegetation and climate changes Frank H. Neumannab & Marion K. Bamfordb a Forschungsstelle für Paläobotanik am Geologisch-Paläontologischen Institut, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 2, 48149 Münster, Germany b Evolutionary Studies Institute, University of the Witwatersrand, P Bag 3, Wits 2050, Johannesburg, South Africa Published online: 21 Aug 2015. Click for updates To cite this article: Frank H. Neumann & Marion K. Bamford (2015): Shaping of modern southern African biomes: Neogene vegetation and climate changes, Transactions of the Royal Society of South Africa, DOI: 10.1080/0035919X.2015.1072859 To link to this article: http://dx.doi.org/10.1080/0035919X.2015.1072859 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http:// www.tandfonline.com/page/terms-and-conditions Transactions of the Royal Society of South Africa, 2015 http://dx.doi.org/10.1080/0035919X.2015.1072859 Shaping of modern southern African biomes: Neogene vegetation and climate changes Frank H. Neumann1,2* & Marion K. Bamford2 1Forschungsstelle für Paläobotanik am Geologisch-Paläontologischen Institut, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 2, 48149 Münster, Germany; 2Evolutionary Studies Institute, University of the Witwatersrand, P Bag 3, Wits 2050, Johannesburg, South Africa *Author for correspondence E-mail: [email protected] Long-term trends in climate, hydrology and geomorphology contributed to the formation of the current biomes of southern Africa. The Neogene terrestrial fossil record is patchy, due to the geomorphological evolution of the subcontinent and the restricted distribution of suitable sediment deposits. Here we review the hypotheses on the evolution of the topography and environment and concentrate on the fossil record, especially pollen, wood, charcoal, leaves and biomarkers. Tectonic studies suggest a lower relief landscape than at present at the onset of the Neogene. Southern Africa was drained by two river systems – the Kalahari and the Karoo Rivers – and was affected by an initially weak, cool Benguela current along the western coastline, gradually promoting an aridity trend along the southwestern coast. The Cape region during the Miocene, when the Great Escarpment began to evolve, was characterised by humid, subtropical forests not unlike those still occurring on the much wetter subtropical eastern shore of southern Africa. Southern Namibia (Sperrgebiet) was probably covered by a “proto-savanna”; hyper-aridity developed further north along the Namibian coast. Probably with more uplift, the hydrological regime changed c. 15 Ma when the palaeo Karoo and Koa Rivers were captured by the Kalahari/Orange River and drained western South Africa. Miocene fossil sites are missing in southeastern Africa. In southwestern Africa an enhanced aridity trend and the shift to a winter rainfall regime during the late Miocene-Pliocene was triggered by the development of the Westerly wind system and further strengthening of the cold Benguela current enhanced by the development of the Antarctic sheet and opening of the Drake passage. Eastern southern Africa was dominated by the Great Escarpment and relatively shorter deeply incised rivers and higher rainfall than the west. The Pliocene saw the evolution of the Fynbos and Succulent Karoo biomes including the further radiation of several drought adapted plant families encompassing the Asteraceae and Aizoaceae. At the transition towards the Pleistocene, the region around Sterkfontein in eastern central southern Africa, important for hominid evolution, experienced a shift from a woody environment towards more xeric, open conditions. The Savanna biome today stretches from northeastern South Africa as far north as East Africa; the Grassland and Fynbos biomes are unique and the more arid biomes are dominant in the western half of southern Africa. Keywords: Neogene; biomes; vegetation history; southern Africa INTRODUCTION Scott et al., 1997) or focus on selected biomes or regions Southern Africa has a rich variety of biomes, which were for (e.g. Linder, 2003; Cowling et al., 2005). Even rather recent Downloaded by [Institut Fuer Tierernaehrung/Fli] at 03:24 21 August 2015 example mapped by Pole Evans (1936), Adamson (1938), reviews of global vegetation dynamics during the Neogene Acocks (1953) and Rutherford & Westfall (1994)(Figure 1). indicate that Neogene profiles in southern Africa are scarce These biomes stretch from the winter rainfall regions encom- and that dating is often problematic in comparison to other passing the Fynbos biome and the Succulent Karoo biome in regions (e.g. Pound et al., 2012). Additionally many Neogene the west to the summer rainfall region in the eastern and profiles from southern Africa are presented in unpublished central interior incorporating the Grassland biome, unique to theses (e.g. Sciscio, 2011). Due to arid climate and the erosional southern Africa, and the southernmost extension of the character of the interior, most fossiliferous sediments accumu- Savanna biome. The latter extends as far north as eastern lated along the coasts and offshore (Scott, 1995). The scarcity of Africa and has a prominent role in the evolution of early homi- terrestrial Neogene sites in southern Africa makes the study of nins (Mucina & Rutherford, 2006; Cerling et al., 2011). The veg- marine records invaluable as this allows, at least to a limited etation of southern Africa underwent profound changes degree, an indication of the vegetation onshore (e.g. van during the Neogene, although some biomes might have a Zinderen Bakker, 1984; Dupont et al., 2005; Udeze & Oboh-I- Palaeogene origin (e.g. Albany thicket, see Cowling et al., kuenobe, 2005; Hoetzel et al., 2015). Although direct palaeobo- 2005). Existing reviews are partly outdated (e.g. Scott, 1995; tanical evidence in Neogene terrestrial sites is often lacking, © 2015 Royal Society of South Africa 2 Transactions of the Royal Society of South Africa Figure 1. Major biomes of southern Africa: biome map modified after Russo et al. 2010 (Low & Rebelo, 1996; Mucina & Rutherford, 2006), wind systems and ocean currents after Roberts et al.(2013); Neogene and Palaeogene fossil sites mentioned in text are indicated by black numbers (see text for references), red: cities and landscapes. geochemical approaches (e.g. studies of stable isotopes of spe- recognised by King (1955, 1962), was formed and is still pre- leothems [see Hopley et al., 2007] or stable carbon and oxygen served in some major basins, such as the Kalahari, Congo isotopic compositions of eggshells of Struthioniformes [see and Chad Basins (Burke & Gunnell, 2008). During the Ségalen et al., 2006, Dupont et al., 2013]) complete the knowl- Eocene (c. 56–34 Myr) the eastern continental margin of edge of fossil environments. The Neogene changes of southern Africa was inundated; while in the subsequent climate and vegetation are a consequence of several factors Oligocene (34–23 Myr) a regression followed (Perissinotto
Recommended publications
  • Tulbagh Renosterveld Project Report
    BP TULBAGH RENOSTERVELD PROJECT Introduction The Cape Floristic Region (CFR) is the smallest and richest floral kingdom of the world. In an area of approximately 90 000km² there are over 9 000 plant species found (Goldblatt & Manning 2000). The CFR is recognized as one of the 33 global biodiversity hotspots (Myers, 1990) and has recently received World Heritage Status. In 2002 the Cape Action Plan for the Environment (CAPE) programme identified the lowlands of the CFR as 100% irreplaceable, meaning that to achieve conservation targets all lowland fragments would have to be conserved and no further loss of habitat should be allowed. Renosterveld , an asteraceous shrubland that predominantly occurs in the lowland areas of the CFR, is the most threatened vegetation type in South Africa . Only five percent of this highly fragmented vegetation type still remains (Von Hase et al 2003). Most of these Renosterveld fragments occur on privately owned land making it the least represented vegetation type in the South African Protected Areas network. More importantly, because of the fragmented nature of Renosterveld it has a high proportion of plants that are threatened with extinction. The Custodians of Rare and Endangered Wildflowers (CREW) project, which works with civil society groups in the CFR to update information on threatened plants, has identified the Tulbagh valley as a high priority for conservation action. This is due to the relatively large amount of Renosterveld that remains in the valley and the high amount of plant endemism. The CAPE program has also identified areas in need of fine scale plans and the Tulbagh area falls within one of these: The Upper Breede River planning domain.
    [Show full text]
  • Maloti-Drakensberg Park, Lesotho & South Africa
    IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Maloti-Drakensberg Park - 2020 Conservation Outlook Assessment Maloti-Drakensberg Park 2020 Conservation Outlook Assessment SITE INFORMATION Country: Lesotho, South Africa Inscribed in: 2000 Criteria: (i) (iii) (vii) (x) The Maloti-Drakensberg Park is a transboundary site composed of the uKhahlamba Drakensberg National Park in South Africa and the Sehlathebe National Park in Lesotho. The site has exceptional natural beauty in its soaring basaltic buttresses, incisive dramatic cutbacks, and golden sandstone ramparts as well as visually spectacular sculptured arches, caves, cliffs, pillars and rock pools. The site's diversity of habitats protects a high level of endemic and globally important plants. The site harbors endangered species such as the Cape vulture (Gyps coprotheres) and the bearded vulture (Gypaetus barbatus). Lesotho’s Sehlabathebe National Park also harbors the Maloti minnow (Pseudobarbus quathlambae), a critically endangered fish species only found in this park. This spectacular natural site contains many caves and rock-shelters with the largest and most concentrated group of paintings in Africa south of the Sahara. They represent the spiritual life of the San people, who lived in this area over a period of 4,000 years. © UNESCO SUMMARY 2020 Conservation Outlook Finalised on 01 Dec 2020 SIGNIFICANT CONCERN The conservation outlook for Maloti-Drakensberg Park is of significant concern. The EKZNW management staff are highly dedicated and experienced and there is also significant appreciation for the values of the Maloti Drakensberg by communities living nearby as evidenced, for example, by the vehemently strong opposition to the possibility of oil and gas exploration in the area.
    [Show full text]
  • Lesotho Fourth National Report on Implementation of Convention on Biological Diversity
    Lesotho Fourth National Report On Implementation of Convention on Biological Diversity December 2009 LIST OF ABBREVIATIONS AND ACRONYMS ADB African Development Bank CBD Convention on Biological Diversity CCF Community Conservation Forum CITES Convention on International Trade in Endangered Species CMBSL Conserving Mountain Biodiversity in Southern Lesotho COP Conference of Parties CPA Cattle Post Areas DANCED Danish Cooperation for Environment and Development DDT Di-nitro Di-phenyl Trichloroethane EA Environmental Assessment EIA Environmental Impact Assessment EMP Environmental Management Plan ERMA Environmental Resources Management Area EMPR Environmental Management for Poverty Reduction EPAP Environmental Policy and Action Plan EU Environmental Unit (s) GA Grazing Associations GCM Global Circulation Model GEF Global Environment Facility GMO Genetically Modified Organism (s) HIV/AIDS Human Immuno Virus/Acquired Immuno-Deficiency Syndrome HNRRIEP Highlands Natural Resources and Rural Income Enhancement Project IGP Income Generation Project (s) IUCN International Union for Conservation of Nature and Natural Resources LHDA Lesotho Highlands Development Authority LMO Living Modified Organism (s) Masl Meters above sea level MDTP Maloti-Drakensberg Transfrontier Conservation and Development Project MEAs Multi-lateral Environmental Agreements MOU Memorandum Of Understanding MRA Managed Resource Area NAP National Action Plan NBF National Biosafety Framework NBSAP National Biodiversity Strategy and Action Plan NEAP National Environmental Action
    [Show full text]
  • A Global Overview of Protected Areas on the World Heritage List of Particular Importance for Biodiversity
    A GLOBAL OVERVIEW OF PROTECTED AREAS ON THE WORLD HERITAGE LIST OF PARTICULAR IMPORTANCE FOR BIODIVERSITY A contribution to the Global Theme Study of World Heritage Natural Sites Text and Tables compiled by Gemma Smith and Janina Jakubowska Maps compiled by Ian May UNEP World Conservation Monitoring Centre Cambridge, UK November 2000 Disclaimer: The contents of this report and associated maps do not necessarily reflect the views or policies of UNEP-WCMC or contributory organisations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP-WCMC or contributory organisations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. TABLE OF CONTENTS EXECUTIVE SUMMARY INTRODUCTION 1.0 OVERVIEW......................................................................................................................................................1 2.0 ISSUES TO CONSIDER....................................................................................................................................1 3.0 WHAT IS BIODIVERSITY?..............................................................................................................................2 4.0 ASSESSMENT METHODOLOGY......................................................................................................................3 5.0 CURRENT WORLD HERITAGE SITES............................................................................................................4
    [Show full text]
  • A Fine-Scale Conservation Plan for Cape Lowlands Renosterveld: Technical Report
    A Fine-Scale Conservation Plan for Cape Lowlands Renosterveld: Technical Report MAIN REPORT September 2003 Amrei von Hase Mathieu Rouget Kristal Maze Nick Helme Report No. CCU 2/03 Cape Conservation Unit Botanical Society of South Africa Pvt Bag X 10 7735 Claremont www.botanicalsociety.org.za/ccu Key Partners and Sponsors of the Cape Lowlands Renosterveld Project TABLE MOUNTAIN FUND 2 Acknowledgements Many individuals and organizations have contributed generously to the Cape Lowlands Renosterveld Project to whom the Botanical Society and the project team are greatly indebted. We express our appreciation to you in this section and in addition have provided acknowledgement to others in sections of this report where their contribution was relevant. We are particularly indebted to our key project partners, the Western Cape Nature Conservation Board (WCNCB), for putting their full support behind the project from its inception as well as their many contributions to the project. In Scientific Services we especially thank the late Chris Burgers, Helen de Klerk, Ernst Baard, Annelise le Roux, Guy Palmer and Andrew Turner for their guidance in the project planning and initiation stages, particularly on data and GIS matters. We are tremendously grateful to Chris who generously and infectiously shared with us his wealth of knowledge about the lowlands. In Operations we express our appreciation to the business unit managers, extension officers and regional ecologists who played a vital role particularly in shaping the final products of the project. We are especially grateful to Anton Wolfaardt and Chris Martens. Wendy Paisley of the Cape Conservation Unit (CCU) of the Botanical Society provided invaluable administrative and organizational support to the project.
    [Show full text]
  • Corrosion Map of South Africa's Macro Atmosphere
    Corrosion map of South Africa’s macro atmosphere AUTHORS: Darelle T. Janse van Rensburg1,2 The first atmospheric corrosion map of South Africa, produced by Callaghan in 1991, has become outdated, Lesley A. Cornish1 because it primarily focuses on the corrosivity of coastal environments, with little differentiation given Josias van der Merwe1 concerning South Africa’s inland locations. To address this problem, a study was undertaken to develop AFFILIATIONS: a new corrosion map of the country, with the emphasis placed on providing greater detail concerning 1School of Chemical and Metallurgical South Africa’s inland regions. Here we present this new corrosion map of South Africa’s macro atmosphere, Engineering and DST-NRF Centre of Excellence in Strong Materials, based on 12-month corrosion rates of mild steel at more than 100 sites throughout the country. Assimilations University of the Witwatersrand, and statistical analyses of the data (published, unpublished and new) show that the variability in the corrosion Johannesburg, South Africa rate of mild steel decreases significantly moving inland. Accordingly, the average first-year corrosion rate of 2Orytech (Pty) Ltd, Roodepoort, South Africa mild steel at the inland sites (at all corrosion monitoring spots located more than 30 km away from the ocean) measured 21±12 µm/a [95% CI: 18–23 µm/a]. The minimum inland figure was about 1.3 µm/a (recorded CORRESPONDENCE TO: at Droërivier in the Central Karoo) and the maxima were approximately 51 µm/a and 50 µm/a in the industrial Darelle Janse van Rensburg hearts of Germiston (Gauteng) and Sasolburg (Free State), respectively.
    [Show full text]
  • The Ecology of Large Herbivores Native to the Coastal Lowlands of the Fynbos Biome in the Western Cape, South Africa
    The ecology of large herbivores native to the coastal lowlands of the Fynbos Biome in the Western Cape, South Africa by Frans Gustav Theodor Radloff Dissertation presented for the degree of Doctor of Science (Botany) at Stellenbosh University Promoter: Prof. L. Mucina Co-Promoter: Prof. W. J. Bond December 2008 DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 24 November 2008 Copyright © 2008 Stellenbosch University All rights reserved ii ABSTRACT The south-western Cape is a unique region of southern Africa with regards to generally low soil nutrient status, winter rainfall and unusually species-rich temperate vegetation. This region supported a diverse large herbivore (> 20 kg) assemblage at the time of permanent European settlement (1652). The lowlands to the west and east of the Kogelberg supported populations of African elephant, black rhino, hippopotamus, eland, Cape mountain and plain zebra, ostrich, red hartebeest, and grey rhebuck. The eastern lowlands also supported three additional ruminant grazer species - the African buffalo, bontebok, and blue antelope. The fate of these herbivores changed rapidly after European settlement. Today the few remaining species are restricted to a few reserves scattered across the lowlands. This is, however, changing with a rapid growth in the wildlife industry that is accompanied by the reintroduction of wild animals into endangered and fragmented lowland areas.
    [Show full text]
  • SAEON Fynbos Node Science Plan: 2016 – 2018
    SAEON Fynbos Node Science Plan: 2016 – 2018 Compiled by Nicky Allsopp May 2016 Introduction: the Node and its key environmental issues The SAEON Fynbos Node’s science plan is written in the context of SAEON’s overarching mandate to detect and understand Global Change and the more detailed SAEON Core Science Framework focusing on drivers and responses to change. The exceptional biology of fynbos, the specific impacts shaped by the local socio- economic environment, as well as regional and global change pressures, predicate the need for a distinctive science plan for this unusual area. The Fynbos node is situated in a unique mega-diverse region, the Cape Floristic Region, with high levels on endemism and high turnover of species, especially plants, over short spatial distances (see box 1). Unfortunately, this region is faced by unprecedented rates of anthropogenic change. Almost half the vegetation types in the Fynbos Biome (see box 2 on nomenclature of this region) are vulnerable, endangered or critically endangered, or irreversibly lost (SANBI 2013), while 71% of all threatened plant species in South Africa occur in the Western Cape (see boxes 1 and 2), 96% of which are endemic to the region (Raimondo et al. 2009). The people of the Western Cape depend on these ecosystems for many services; particularly water. The mountains of the Fynbos Biome are major contributors of surface runoff, supplying water to agriculture, industry and people, as well as supporting other ecosystem services. The ecological infrastructure supporting water delivery is threatened by potential changes in ecological regime due to global change, excessive abstraction and poor management; especially of wetlands and rivers in production landscapes.
    [Show full text]
  • Eastern Cape Biodiversity Conservation Plan Technical Report
    EASTERN CAPE BIODIVERSITY CONSERVATION PLAN TECHNICAL REPORT Derek Berliner & Philip Desmet “Mainstreaming Biodiversity in Land Use Decision- Making in the Eastern Cape Province” DWAF Project No 2005-012 1 August 2007 Revision 1 (5 September 2005) Eastern Cape Biodiversity Conservation Plan Technical Report I Photo by Barry Clark Report Title; Eastern Cape Biodiversity Conservation Plan Technical Report. Date: 1 August 2007 Authors: Derek Berliner & Dr Phillip Desmet Contact details; Derek Berliner, Eco-logic Consulting, email: [email protected]. cell: 083 236 7155 Dr Phillip Desmet, email: [email protected], cell: 082 352 2955 Client: Department of Water Affairs and Forestry Principle funding agent: Development Bank of South Africa Citation: Berliner D. & Desmet P. (2007) Eastern Cape Biodiversity Conservation Plan: Technical Report. Department of Water Affairs and Forestry Project No 2005-012, Pretoria. 1 August 2007 (Unless otherwise quoted, intellectual property rights for the conceptual content of this report reside with the above authors) Eastern Cape Biodiversity Conservation Plan Technical Report II Acknowledgements The assistance of a large number of people has been essential to the success of this project. In particular, the authors would like to thank the funders of this project, the DBSA and DWAF, Nkosi Quvile (DWAF), Phumla Mzazi (DEDEA), Mandy Driver (SANBI), Julie Clarke (DBSA), Graeme Harrison (formerly DWAF) and members of the Project Steering Committee and Eastern Cape Implementation Committee for Bioregional Programmes. Our thanks also go to Ally Ashwell, John Allwood, Dave Balfour, Noluthando Bam, Rick Bernard, Roger Bills, Anton Bok, Andre Boshoff, Bill Branch, Mandy Cadman, Jim Cambray, Barry Clark, Willem Coetzer, P.
    [Show full text]
  • Physical Map Unit
    AfricaAnnabelle ate apples in the purple poppies. © 2015Physical Thomas Teaching Tools Map Annabelle ate apples in the purple poppies. © 2015 Thomas TeachingUnit Tools Thanks for Your Purchase! I hope you and your students enjoy this product. If you have any questions, you may contact me at [email protected]. © 2015 Thomas Teaching Tools © 2015 Thomas Teaching Tools Terms of Use This teaching resource includes one single-teacher classroom license. Photocopying this copyrighted product is permissible only for one teacher for single classroom use and for teaching purposes only. Duplication of this resource, in whole or in part, for other individuals, teachers, schools, institutions, or for commercial use is strictly forbidden without written permission from the author. This product may not be distributed, posted, stored, displayed, or shared electronically, digitally, or otherwise, without written permission of the author, MandyAnnabelle Thomas. ate Copying apples any in thepart purple of this poppies. product and placing it on the internet in any form (even a personal/classroom website) is strictly forbidden© 2015 Thomas and is a Teaching violation Toolsof the Digital Millennium Copyright Act (DMCA). You may purchase additional licenses at a reduced price on the “My Purchases”Annabelle page of TpTate ifapples you wish in the to purpleshare withpoppies. your fellow teachers, department, or school. If you have any questions, you may contact me© 2015 at [email protected] Thomas Teaching Tools . Thanks for downloading this product! I hope you and your students enjoy this resource. Feedback is greatly appreciated. Please fee free to contact me if you have any questions. My TpT Store: https://www.teacherspayteachers.com/Store/Tho mas-Teaching-Tools © 2015 Thomas Teaching Tools © 2015 Thomas Teaching Tools Teaching Notes Planning Suggestions This map unit is a great addition to any study of Africa.
    [Show full text]
  • A Review of the Impacts and Opportunities for African Urban Dragonflies
    insects Review A Review of the Impacts and Opportunities for African Urban Dragonflies Charl Deacon * and Michael J. Samways Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, Stellenbosch 7600, South Africa; [email protected] * Correspondence: [email protected] Simple Summary: The expansion of urban areas in combination with climate change places great pressure on species found in freshwater habitats. Dragonflies are iconic freshwater organisms due to their large body sizes and striking coloration. They have been widely used to indicate the impacts of natural and human-mediated activities on freshwater communities, while also indicating the mitigation measures required to ensure their conservation. Here, we review the major threats to dragonflies in southern Africa, specifically those in urban areas. We also provide information on effective mitigation measures to protect dragonflies and other aquatic insects in urban spaces. Using three densely populated areas as case studies, we highlight some of the greatest challenges for dragonflies in South Africa. More importantly, we give a summary of current mitigation measures which have maintained dragonflies in urban spaces. In addition to these mitigation measures, public involvement and raising awareness contribute greatly to the common cause of protecting dragonflies around us. Abstract: Urban settlements range from small villages in rural areas to large metropoles with densely Citation: Deacon, C.; Samways, M.J. packed infrastructures. Urbanization presents many challenges to the maintenance of freshwater A Review of the Impacts and quality and conservation of freshwater biota, especially in Africa. There are many opportunities Opportunities for African Urban as well, particularly by fostering contributions from citizen scientists.
    [Show full text]
  • Effects of Atmospheric CO2 Variability of the Past 800 Kyr on the Biomes of Southeast Africa
    Clim. Past, 15, 1083–1097, 2019 https://doi.org/10.5194/cp-15-1083-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Effects of atmospheric CO2 variability of the past 800 kyr on the biomes of southeast Africa Lydie M. Dupont1, Thibaut Caley2, and Isla S. Castañeda3 1MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany 2EPOC, UMR 5805, CNRS, University of Bordeaux, Pessac, France 3University of Massachusetts Amherst, Department of Geosciences, Amherst, MA, USA Correspondence: Lydie M. Dupont ([email protected]) Received: 6 February 2019 – Discussion started: 20 February 2019 Revised: 10 May 2019 – Accepted: 23 May 2019 – Published: 19 June 2019 Abstract. Very little is known about the impact of atmo- 1 Introduction spheric carbon dioxide pressure (pCO2) on the shaping of biomes. The development of pCO2 throughout the Brun- Understanding the role of atmospheric carbon dioxide pres- hes Chron may be considered a natural experiment to eluci- sure (pCO2) is paramount for the interpretation of the of date relationships between vegetation and pCO2. While the the palaeovegetation record. The effects of low pCO2 on glacial periods show low to very low values (∼ 220 to ∼ glacial vegetation have been discussed in a number of stud- 190 ppmv, respectively), the pCO2 levels of the interglacial ies (Ehleringer et al., 1997; Jolly and Haxeltine, 1997; Cowl- periods vary from intermediate to relatively high (∼ 250 to ing and Sykes, 1999; Prentice and Harrison, 2009; Prentice more than 270 ppmv, respectively). To study the influence of et al., 2017) predicting that glacial increases in C4 vegeta- pCO2 on the Pleistocene development of SE African vege- tion favoured by low atmospheric CO2 would have opened tation, we used the pollen record of a marine core (MD96- the landscape and lowered the tree line.
    [Show full text]