(Late Jurassic) World: II

Total Page:16

File Type:pdf, Size:1020Kb

(Late Jurassic) World: II Palaeogeography, Palaeoclimatology, Palaeoecology, 95 (1992): 229-252 229 Elsevier Science Publishers B.V., Amsterdam Paleoclimate of the Kimmeridgian/Tithonian (Late Jurassic) world: II. Sensitivity tests comparing three different paleotopographic settings George T. Moore a, Lisa Cirbus Sloan b, Darryl N. Hayashida a and Natasha P. Umrigar a aChevron Oil Field Research Company, La Habra, CA, USA bUniversity of Michigan, Ann Arbor, MI, USA (Received December 3, 1991; revised and accepted March 14, 1992) ABSTRACT Moore, G.T., Sloan, L.C., Hayashida, D.N. and Umrigar, N.P., 1992. Paleoclimate of the Kimmeridgian/Tithonian (Late Jurassic) world: II. Sensitivity tests comparing three different paleotopographic settings. Palaeogeogr,, Palaeoclimatol., Palaeoecol., 95: 229-252. Topography and location of continents largely determine present-day climate. We conclude that in the geologic past paleoto- pographic expression was equally important. However, in the geologic record paleotopography is difficult to assess and compile because it is largely a self-destructive environment without record and is rarely addressed in the literature. An objective of this study is to test the sensitivity of paleoclimate to paleotopography by comparing three different Late Jurassic scenarios. Paleotopography influences many paleoclimate parameters to varying degrees. To test the sensitivity of paleoclimate to modeled paleotopography for simulations incorporating a Late Jurassic reconstruction, we ran three simulations using the same boundary conditions of paleogeography (land and ocean) and atmospheric CO2 concentration, 4x the pre-lndustrial level (1120 ppm). One simulation contained mountain ranges of variable height to 3 kin. In another, all the mountain ranges were reduced to 1 km highlands. The third simulation used a constant 500 m height for all land grid cells. The sensitivity tests indicate that paleotopography is an important boundary condition. Without realistic paleotopography, flat or idealized continents surrounded by bodies of water do not produce realistic pateoclimate results. We conclude that in paleogeographic reconstructions the location and extent of mountain ranges and highlands should be recognized and given suitable elevations consistent with their plate tectonic origins, settings, and geologic ages. Introduction Tithonian, two connections were established between the Tethys Sea and the Panthalassa Ocean The Late Jurassic, particularly the Kimmerid- (Ross et al., 1992). Second, the Triassic Jurassic gian and Tithonian (154.7-145.6 Ma) (Harland high sea level stand occurs within this interval. et al., 1990), were significant stages of the Mesozoic Third, Upper Jurassic rocks contain immense, Era for several reasons. First, the time represented economically important deposits including petro- the important interval of Pangea's tectonic disin- leum source rocks, reserves of oil and gas, coal, tegration by the formation of new and the re- and evaporites. Finally, paleoclimate modeling of establishment of ancient seaway connections this epoch has not been attempted previously with (Fig. 1). North America completed its separation a general circulation model (GCM). from Gondwana, and Gondwana was split into a Modeling of this interval and correlation with northern and southern continent by the rift system paleoclimatically-sensitive sedimentary rocks con- opening the proto-Indian Ocean. By the late firms that the Late Jurassic was a time of high CO2 (Budyko et al., 1985; Berner, 1990) and an elevated Correspondence to: G.T. Moore, Chevron Oil Field Research greenhouse effect (Hallam, 1985; Moore et al., Company, La Habra, California. 1992). In this study, we used ll20ppm CO2, 4× 0031-0182/92/$05.00 © 1992 -- Elsevier Science Publishers B.V. All rights reserved. 230 G.T. MOORE ET AL. 180W 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180E 90N 60N "L ."*- "._ C"c'L,"/',,~AC'C-~Y",~., • ~ --._A,- • 30N 0 - "a~aL ............. 0 30S- Ocean 30S 60S 60S Austra/ ~.~Y-'~~ ~ ~ ~aSea 90~ i ~ ] i ~ I i i I ~ i I ~ i I i 1 J i i I i ~ I t r I i r I i i r i i ~S 180W 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180E Fig. 1. Late Jurassic (Kimmeridgian/Tithonian; 154.7-145.6 Ma) paleogeography showing modern shorelines. Reconstruction based on Rowley (1992). the pre-Industrial level of 280 ppm CO2 (Pearman influence various model-generated paleoclimate et al., 1986; Barnola et al., 1987; Kuo et al., 1990). parameters. The first scenario we term "variable", Paleotopography is an important boundary con- with mountain ranges extending to elevations of dition for GCMs. There have been several climate 3 km. The heights are based on the plate tectonic modeling studies, which address the sensitivity of settings of the mountain ranges and the range of climate to topographic variations, and all agree on present-day elevations in similar settings. In the the importance of incorporating mountains into second simulation we set all the mountain ranges model boundary conditions (e.g. Kasahara and at a 1 km height. We term this case "1 km high- Washington, 1971; Manabe and Terpstra, 1974; lands". In the third simulation, all the continents Barron and Washington, 1984; Kutzbach et al., and islands are at 500 m with no topographic 1989; Ruddiman and Kutzbach, 1989; Sloan and variation. We refer to this case as "500 m Barron, 1992a). These investigations indicate that plateaus". orographic influence changes with latitude, season, continental distribution, and topographic Model description expression. Most prior paleotopographic studies considered The GCM used in this study is the National present day or late Cenozoic changes in mountain Center for Atmospheric Research's (NCAR) Com- elevations. Because of the nature of current geogra- munity Climate Model (CCM) Version 0. It runs phy and topographic expression, these cases dealt on a Cray X-MP at Chevron Oil Field Research primarily with climatic sensitivity to topographic Company, La Habra, California. The CCM uses changes in the Northern Hemisphere. The study thermodynamic and hydrodynamic laws applied presented here is different from those listed above to the atmosphere. The vertical dimension consists in two major ways. First, we explore paleoclimate of nine atmospheric levels and extends through sensitivity to paleotopography in the Late Jurassic. the troposphere into the middle stratosphere. The Second, the range of topographic changes consid- horizontal dimension consists of 40 latitude by 48 ered here includes substantial variations in the longitude grid points with each grid cell having an paleotopography of both hemispheres. approximate resolution of 4.5 ° latitude by 7.5 ° The purpose of this study is to evaluate three longitude. different paleotopographic scenarios and how they Moore et al. (1992) examine the simulated paleo- PALEOCkIMATE OF KIMMERIDGIAN/TITHONIAN WORLD: II. COMPARING PALEOTOPOGRAPHIC SETTINGS 231 climate of the Late Jurassic world with variable or quantitative elevation information is available, paleotopography. They describe the evolution of so we used a deductive approach to reconstruct the model and give pertinent characteristics of the the paleotopography. The distribution of "moun- CCM. Hereafter, Moore et al., (1992) will be tains" existing in the latest Jurassic was taken from referred to as "Part I". In this study we use a Ziegler et al. (1983) and modified with respect to solar constant value of 1370 W m -2 and a global the Late Jurassic plate tectonic framework (Row- CO2 concentration of l l20ppm. The bases for ley, 1992; Scotese, 1992). We assigned values in choosing these values are detailed in Part I. one kilometer intervals (up to 3 kin) to elevated These simulations employ a seasonal model in land grid points using present topographic ana- which solar insolation varies throughout the year. logues occurring in equivalent plate tectonic set- The atmosphere is coupled thermally but not tings as a model (the "variable" case). Non- dynamically to a mixed layer ocean, 50 m deep, mountain land cells are 500 m high. For the case with 5° x 5° surface resolution (Washington and of the "1 km highlands" we reduced all the moun- Meehl, 1984). Sea surface temperature (SST) and tains to a one km height. For the "500 m plateaus" sea ice extent are computed as a function of the case, all land grid cells are assigned that elevation. surface energy balance. Sea ice forms when the The distribution and elevation of the mountain SST falls below -1.8°C. The deeper ocean is ranges used in the simulations are shown in Fig. 2. external to the model. The lack of dynamic cou- The northern hemisphere mountain ranges consist pling has obvious model-induced limitations on of the meridionally oriented Sierra Nevada and oceanic heat transport and related atmospheric the NE-trending, rejuvenated Appalachians bor- feedbacks. dering the western and eastern margins of North America, respectively. We interpret the Sierra Nevada to have elevations ranging up to 3 kin. Kimmeridgian/Tithonian physical world and CCM Elevations in the Appalachians are limited to a boundary conditions 2 km maximum. The extensive eastern Asian range represents a continuous, meridionally oriented Paleogeography mountain system with the higher elevations exceed- ing 3 km. Three major rift systems produced oceanic sea- The southern hemisphere contains three regions ways that separated Pangea into major continental of elevated topography. Western and northwestern segments: North America, Eur-Asia, and Gond- Gondwana are rimmed by
Recommended publications
  • Triassic- Jurassic Stratigraphy Of
    Triassic- Jurassic Stratigraphy of the <JF C7 JL / Culpfeper and B arbour sville Basins, VirginiaC7 and Maryland/ ll.S. PAPER Triassic-Jurassic Stratigraphy of the Culpeper and Barboursville Basins, Virginia and Maryland By K.Y. LEE and AJ. FROELICH U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1472 A clarification of the Triassic--Jurassic stratigraphic sequences, sedimentation, and depositional environments UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1989 DEPARTMENT OF THE INTERIOR MANUEL LUJAN, Jr., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging in Publication Data Lee, K.Y. Triassic-Jurassic stratigraphy of the Culpeper and Barboursville basins, Virginia and Maryland. (U.S. Geological Survey professional paper ; 1472) Bibliography: p. Supt. of Docs. no. : I 19.16:1472 1. Geology, Stratigraphic Triassic. 2. Geology, Stratigraphic Jurassic. 3. Geology Culpeper Basin (Va. and Md.) 4. Geology Virginia Barboursville Basin. I. Froelich, A.J. (Albert Joseph), 1929- II. Title. III. Series. QE676.L44 1989 551.7'62'09755 87-600318 For sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225 CONTENTS Page Page Abstract.......................................................................................................... 1 Stratigraphy Continued Introduction... ..........................................................................................
    [Show full text]
  • Report of the Meeting of the Kimmeridgian Working Group
    Volumina Jurassica, 2015, Xiii (2): 153–158 Report of the Meeting of the Kimmeridgian Working Group Andrzej WIERZBOWSKI1 Convenor of the Kimmeridgian W.G. The Kimmeridgian Working Group Meeting organized under auspices of the International Subcomission on Ju- rassic Stratigraphy took place in Poland between 18 and 21 May 2015 at the Polish Geological Institute – National Research Institute in Warsaw, with a one and a half day excursion to the Jurassic outcrops in the Wieluń Upland (Polish Jura). It was arranged to discuss new advances in recognition of a unique base of the Kimmeridgian Stage, the Oxfordian/Kimmeridgian boundary since 2006 when the first proposal for the GSSP was made (see Wierzbowski et al., 2006). Fifteen researchers were present, mainly members of the Kimmeridgian Working Group: C. D’Arpa (Geological Museum, University of Palermo), M. Barski (Geological Faculty, University of Warsaw), E. Głowniak (Geological Faculty, University of Warsaw), J. Grabowski (Polish Geological Institute – NRI), S. Hesselbo (University of Exeter, chairmen of ISJS), M. Hodbod (Polish Geological Institute – NRI), B. Matyja (Geological Faculty, University of War- saw), A. Mironenko (Russia), N. Morton (former ISJS chairman, France), M. Rogov (Geological Institute, Russian Academy of Science, Moscow), G. Schweigert (Staatliches Museum, Stuttgart), J. Smoleń (Polish Geological Institute – NRI), K. Sobień (Polish Geological Institute – NRI), A. Wierzbowski (Polish Geological Institute – NRI), H. Wierz­ bowski (Polish Geological Institute – NRI), J. Wright (Department of Earth Sciences, Royal Holloway, University of London). Twelve presentations were given (including two posters). These included several aspects of the Oxfordian/ Kimmeridgian boundary such as ammonite biostratigraphy, dinoflagellate cyst biostratigraphy, magnetostratigraphy, geochemistry (both carbon and oxygen records as well as other geochemical data along with geochemical studies which enable the recognition of the paleoenvironmental changes in the succession).
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • Letter to the Editor
    GeoArabia, Vol. 10, No. 3, 2005 Gulf PetroLink, Bahrain LETTER TO THE EDITOR from Ghaida Al-Sahlan ([email protected]), Kuwait Oil Company, Ahmadi, Kuwait n the recent GeoArabia, Haq and Al-Qahtani (2005) updated the chronostratigraphic Arabian Plate Iframework of Sharland et al. (2001). These studies cite the paper by Yousif and Nouman (1997) to represent the Jurassic type section of Kuwait. Yousif and Nouman published the composite log for the Minagish-27 well (see Figure on page 194) and depicted the Jurassic formations and stages, side-by- side, but only in a generalized manner. In order to refine the ages for this section, I would like to share some preliminary unpublished biostratigraphic and Sr isotope data (see Table and Notes) from analyses by Varol Research (1997 unpublished report), ExxonMobil (1998 unpublished report) and Fugro-Robertson (2004 unpublished report). To convert Sr ages (Ma) to biostages, or biostages to ages, I have used the Geological Time Scale (GTS) 2004 (Gradstein et al., 2004). I thank G.W. Hughes, A. Lomando, M. Miller and O. Varol for their comments. Unit or Boundary Age and Stage Gradstein et al. (2004) Makhul (Offshore) Tithonian-Berriasian (Bio) Base Makhul (N. Kuwait) No younger than Tithonian (Bio) greater than 145.5 + 4.0 Top Hith (W. Kuwait) 150.0 (Sr) = c. Tithonian/Kimmeridgian ? 150.8 + 4.0 Upper Najmah (S. Kuwait) 155.0 (Sr) = c. Kimmeridgian/Oxfordian 155.7 + 4.0 Najmah (N. Kuwait) No older than Oxfordian (Bio) less than 161.2 + 4.0 Lower Najmah Shale (N. Kuwait) middle and late Bathonian (Bio) 166.7 to 164.7 + 4.0 Top Sargelu (S.
    [Show full text]
  • The Late Jurassic Tithonian, a Greenhouse Phase in the Middle Jurassic–Early Cretaceous ‘Cool’ Mode: Evidence from the Cyclic Adriatic Platform, Croatia
    Sedimentology (2007) 54, 317–337 doi: 10.1111/j.1365-3091.2006.00837.x The Late Jurassic Tithonian, a greenhouse phase in the Middle Jurassic–Early Cretaceous ‘cool’ mode: evidence from the cyclic Adriatic Platform, Croatia ANTUN HUSINEC* and J. FRED READ *Croatian Geological Survey, Sachsova 2, HR-10000 Zagreb, Croatia Department of Geosciences, Virginia Tech, 4044 Derring Hall, Blacksburg, VA 24061, USA (E-mail: [email protected]) ABSTRACT Well-exposed Mesozoic sections of the Bahama-like Adriatic Platform along the Dalmatian coast (southern Croatia) reveal the detailed stacking patterns of cyclic facies within the rapidly subsiding Late Jurassic (Tithonian) shallow platform-interior (over 750 m thick, ca 5–6 Myr duration). Facies within parasequences include dasyclad-oncoid mudstone-wackestone-floatstone and skeletal-peloid wackestone-packstone (shallow lagoon), intraclast-peloid packstone and grainstone (shoal), radial-ooid grainstone (hypersaline shallow subtidal/intertidal shoals and ponds), lime mudstone (restricted lagoon), fenestral carbonates and microbial laminites (tidal flat). Parasequences in the overall transgressive Lower Tithonian sections are 1– 4Æ5 m thick, and dominated by subtidal facies, some of which are capped by very shallow-water grainstone-packstone or restricted lime mudstone; laminated tidal caps become common only towards the interior of the platform. Parasequences in the regressive Upper Tithonian are dominated by peritidal facies with distinctive basal oolite units and well-developed laminate caps. Maximum water depths of facies within parasequences (estimated from stratigraphic distance of the facies to the base of the tidal flat units capping parasequences) were generally <4 m, and facies show strongly overlapping depth ranges suggesting facies mosaics. Parasequences were formed by precessional (20 kyr) orbital forcing and form parasequence sets of 100 and 400 kyr eccentricity bundles.
    [Show full text]
  • A Comparison of the Dinosaur Communities from the Middle
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 July 2018 doi:10.20944/preprints201807.0610.v1 Peer-reviewed version available at Geosciences 2018, 8, 327; doi:10.3390/geosciences8090327 1 Review 2 A comparison of the dinosaur communities from 3 the Middle Jurassic of the Cleveland (Yorkshire) 4 and Hebrides (Skye) basins, based on their ichnites 5 6 Mike Romano 1*, Neil D. L. Clark 2 and Stephen L. Brusatte 3 7 1 Independent Researcher, 14 Green Lane, Dronfield, Sheffield S18 2LZ, England, United Kingdom; 8 [email protected] 9 2 Curator of Palaeontology, The Hunterian, University of Glasgow, University Avenue, Glasgow 10 G12 8QQ, Scotland, United Kingdom; [email protected] 11 3 Chancellor's Fellow in Vertebrate Palaeontology, School of Geosciences, University of Edinburgh, 12 Grant Institute, The King's Buildings, James Hutton Road, Edinburgh EH9 3FE, Scotland, United Kingdom; 13 [email protected] 14 * Correspondence: [email protected]; Tel.: 01246 417330 15 16 Abstract: 17 Despite the Hebrides and Cleveland basins being geographically close, research has not 18 previously been carried out to determine faunal similarities and assess the possibility of links 19 between the dinosaur populations. The palaeogeography of both areas during the Middle Jurassic 20 shows that there were no elevated landmasses being eroded to produce conglomeratic material in 21 the basins at that time. The low-lying landscape and connected shorelines may have provided 22 connectivity between the two dinosaur populations. 23 The dinosaur fauna of the Hebrides and Cleveland basins has been assessed based primarily 24 on the abundant ichnites found in both areas as well as their skeletal remains.
    [Show full text]
  • Facies, Phosphate, and Fossil Preservation Potential Across a Lower Cambrian Carbonate Shelf, Arrowie Basin, South Australia
    Palaeogeography, Palaeoclimatology, Palaeoecology 533 (2019) 109200 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Facies, phosphate, and fossil preservation potential across a Lower Cambrian T carbonate shelf, Arrowie Basin, South Australia ⁎ Sarah M. Jacqueta,b, , Marissa J. Bettsc,d, John Warren Huntleya, Glenn A. Brockb,d a Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA b Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia c Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia d Early Life Institute and Department of Geology, State Key Laboratory for Continental Dynamics, Northwest University, Xi'an 710069, China ARTICLE INFO ABSTRACT Keywords: The efects of sedimentological, depositional and taphonomic processes on preservation potential of Cambrian Microfacies small shelly fossils (SSF) have important implications for their utility in biostratigraphy and high-resolution Calcareous correlation. To investigate the efects of these processes on fossil occurrence, detailed microfacies analysis, Organophosphatic biostratigraphic data, and multivariate analyses are integrated from an exemplar stratigraphic section Taphonomy intersecting a suite of lower Cambrian carbonate palaeoenvironments in the northern Flinders Ranges, South Biominerals Australia. The succession deepens upsection, across a low-gradient shallow-marine shelf. Six depositional Facies Hardgrounds Sequences are identifed ranging from protected (FS1) and open (FS2) shelf/lagoonal systems, high-energy inner ramp shoal complex (FS3), mid-shelf (FS4), mid- to outer-shelf (FS5) and outer-shelf (FS6) environments. Non-metric multi-dimensional scaling ordination and two-way cluster analysis reveal an underlying bathymetric gradient as the main control on the distribution of SSFs.
    [Show full text]
  • And Early Jurassic Sediments, and Patterns of the Triassic-Jurassic
    and Early Jurassic sediments, and patterns of the Triassic-Jurassic PAUL E. OLSEN AND tetrapod transition HANS-DIETER SUES Introduction parent answer was that the supposed mass extinc- The Late Triassic-Early Jurassic boundary is fre- tions in the tetrapod record were largely an artifact quently cited as one of the thirteen or so episodes of incorrect or questionable biostratigraphic corre- of major extinctions that punctuate Phanerozoic his- lations. On reexamining the problem, we have come tory (Colbert 1958; Newell 1967; Hallam 1981; Raup to realize that the kinds of patterns revealed by look- and Sepkoski 1982, 1984). These times of apparent ing at the change in taxonomic composition through decimation stand out as one class of the great events time also profoundly depend on the taxonomic levels in the history of life. and the sampling intervals examined. We address Renewed interest in the pattern of mass ex- those problems in this chapter. We have now found tinctions through time has stimulated novel and com- that there does indeed appear to be some sort of prehensive attempts to relate these patterns to other extinction event, but it cannot be examined at the terrestrial and extraterrestrial phenomena (see usual coarse levels of resolution. It requires new fine- Chapter 24). The Triassic-Jurassic boundary takes scaled documentation of specific faunal and floral on special significance in this light. First, the faunal transitions. transitions have been cited as even greater in mag- Stratigraphic correlation of geographically dis- nitude than those of the Cretaceous or the Permian junct rocks and assemblages predetermines our per- (Colbert 1958; Hallam 1981; see also Chapter 24).
    [Show full text]
  • The Giant Pliosaurid That Wasn't—Revising the Marine Reptiles From
    The giant pliosaurid that wasn’t—revising the marine reptiles from the Kimmeridgian, Upper Jurassic, of Krzyżanowice, Poland DANIEL MADZIA, TOMASZ SZCZYGIELSKI, and ANDRZEJ S. WOLNIEWICZ Madzia, D., Szczygielski, T., and Wolniewicz, A.S. 2021. The giant pliosaurid that wasn’t—revising the marine reptiles from the Kimmeridgian, Upper Jurassic, of Krzyżanowice, Poland. Acta Palaeontologica Polonica 66 (1): 99–129. Marine reptiles from the Upper Jurassic of Central Europe are rare and often fragmentary, which hinders their precise taxonomic identification and their placement in a palaeobiogeographic context. Recent fieldwork in the Kimmeridgian of Krzyżanowice, Poland, a locality known from turtle remains originally discovered in the 1960s, has reportedly provided additional fossils thought to indicate the presence of a more diverse marine reptile assemblage, including giant pliosaurids, plesiosauroids, and thalattosuchians. Based on its taxonomic composition, the marine tetrapod fauna from Krzyżanowice was argued to represent part of the “Matyja-Wierzbowski Line”—a newly proposed palaeobiogeographic belt comprising faunal components transitional between those of the Boreal and Mediterranean marine provinces. Here, we provide a de- tailed re-description of the marine reptile material from Krzyżanowice and reassess its taxonomy. The turtle remains are proposed to represent a “plesiochelyid” thalassochelydian (Craspedochelys? sp.) and the plesiosauroid vertebral centrum likely belongs to a cryptoclidid. However, qualitative assessment and quantitative analysis of the jaws originally referred to the colossal pliosaurid Pliosaurus clearly demonstrate a metriorhynchid thalattosuchian affinity. Furthermore, these me- triorhynchid jaws were likely found at a different, currently indeterminate, locality. A tooth crown previously identified as belonging to the thalattosuchian Machimosaurus is here considered to represent an indeterminate vertebrate.
    [Show full text]
  • Kimmeridgian (Late Jurassic) Cold-Water Idoceratids (Ammonoidea) from Southern Coahuila, Northeastern Mexico, Associated with Boreal Bivalves and Belemnites
    REVISTA MEXICANA DE CIENCIAS GEOLÓGICAS Kimmeridgian cold-water idoceratids associated with Boreal bivalvesv. 32, núm. and 1, 2015, belemnites p. 11-20 Kimmeridgian (Late Jurassic) cold-water idoceratids (Ammonoidea) from southern Coahuila, northeastern Mexico, associated with Boreal bivalves and belemnites Patrick Zell* and Wolfgang Stinnesbeck Institute for Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany. *[email protected] ABSTRACT et al., 2001; Chumakov et al., 2014) was followed by a cool period during the late Oxfordian-early Kimmeridgian (e.g., Jenkyns et al., Here we present two early Kimmeridgian faunal assemblages 2002; Weissert and Erba, 2004) and a long-term gradual warming composed of the ammonite Idoceras (Idoceras pinonense n. sp. and trend towards the Jurassic-Cretaceous boundary (e.g., Abbink et al., I. inflatum Burckhardt, 1906), Boreal belemnites Cylindroteuthis 2001; Lécuyer et al., 2003; Gröcke et al., 2003; Zakharov et al., 2014). cuspidata Sachs and Nalnjaeva, 1964 and Cylindroteuthis ex. gr. Palynological data suggest that the latest Jurassic was also marked by jacutica Sachs and Nalnjaeva, 1964, as well as the Boreal bivalve Buchia significant fluctuations in paleotemperature and climate (e.g., Abbink concentrica (J. de C. Sowerby, 1827). The assemblages were discovered et al., 2001). in inner- to outer shelf sediments of the lower La Casita Formation Upper Jurassic-Lower Cretaceous marine associations contain- at Puerto Piñones, southern Coahuila, and suggest that some taxa of ing both Tethyan and Boreal elements [e.g. ammonites, belemnites Idoceras inhabited cold-water environments. (Cylindroteuthis) and bivalves (Buchia)], were described from numer- ous localities of the Western Cordillera belt from Alaska to California Key words: La Casita Formation, Kimmeridgian, idoceratid ammonites, (e.g., Jeletzky, 1965), while Boreal (Buchia) and even southern high Boreal bivalves, Boreal belemnites.
    [Show full text]
  • Orbital Pacing and Secular Evolution of the Early Jurassic Carbon Cycle
    Orbital pacing and secular evolution of the Early Jurassic carbon cycle Marisa S. Storma,b,1, Stephen P. Hesselboc,d, Hugh C. Jenkynsb, Micha Ruhlb,e, Clemens V. Ullmannc,d, Weimu Xub,f, Melanie J. Lengg,h, James B. Ridingg, and Olga Gorbanenkob aDepartment of Earth Sciences, Stellenbosch University, 7600 Stellenbosch, South Africa; bDepartment of Earth Sciences, University of Oxford, OX1 3AN Oxford, United Kingdom; cCamborne School of Mines, University of Exeter, TR10 9FE Penryn, United Kingdom; dEnvironment and Sustainability Institute, University of Exeter, TR10 9FE Penryn, United Kingdom; eDepartment of Geology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland; fDepartment of Botany, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland; gEnvironmental Science Centre, British Geological Survey, NG12 5GG Nottingham, United Kingdom; and hSchool of Biosciences, University of Nottingham, LE12 5RD Loughborough, United Kingdom Edited by Lisa Tauxe, University of California San Diego, La Jolla, CA, and approved January 3, 2020 (received for review July 14, 2019) Global perturbations to the Early Jurassic environment (∼201 to where they are recorded as individual shifts or series of shifts ∼174 Ma), notably during the Triassic–Jurassic transition and Toar- within stratigraphically limited sections. Some of these short-term cian Oceanic Anoxic Event, are well studied and largely associated δ13C excursions have been shown to represent changes in the with volcanogenic greenhouse gas emissions released by large supraregional to global carbon cycle, marked by synchronous igneous provinces. The long-term secular evolution, timing, and changes in δ13C in marine and terrestrial organic and inorganic pacing of changes in the Early Jurassic carbon cycle that provide substrates and recorded on a wide geographic extent (e.g., refs.
    [Show full text]
  • Quantitative Comparison of Geological Data and Model Simulations
    Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate Thomas Wong Hearing, Alexandre Pohl, Mark Williams, Yannick Donnadieu, Thomas Harvey, Christopher Scotese, Pierre Sepulchre, Alain Franc, Thijs Vandenbroucke To cite this version: Thomas Wong Hearing, Alexandre Pohl, Mark Williams, Yannick Donnadieu, Thomas Harvey, et al.. Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate. Nature Communications, Nature Publishing Group, 2021, 12, pp.3868. 10.1038/s41467-021-24141-5. hal-03273912 HAL Id: hal-03273912 https://hal.archives-ouvertes.fr/hal-03273912 Submitted on 29 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ARTICLE https://doi.org/10.1038/s41467-021-24141-5 OPEN Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate ✉ ✉ ✉ Thomas W. Wong Hearing 1,2 , Alexandre Pohl3,4 , Mark Williams 2 , Yannick Donnadieu 5, Thomas H. P. Harvey2, Christopher R. Scotese6, Pierre Sepulchre 7, Alain Franc 8,9 & Thijs R. A. Vandenbroucke 1 1234567890():,; Marine ecosystems with a diverse range of animal groups became established during the early Cambrian (~541 to ~509 Ma). However, Earth’s environmental parameters and palaeogeography in this interval of major macro-evolutionary change remain poorly con- strained.
    [Show full text]