Svaly Hrudníku , Přehled Zádových Svalů

Total Page:16

File Type:pdf, Size:1020Kb

Svaly Hrudníku , Přehled Zádových Svalů Muscles of thorax and abdomen. Muscle groups of the back. Vessels and nerves of the abdominal wall • Ivo Klepáček muscles inguina mm. epaxiales hypaxiales autochtonní heterochtonní musclesautochtonic heterochtonic Ep inguina Hyp Thoracic muscles • M.pectoralis major n.pectoralismuscles lat.+med. • M.pectoralis minor n.pectoralis med. • M.subclavius n.subclavius • M.serratus anterior n.thoracicus longus • Mm.intercostalesinguina externi, interni, intimi nn.intercostales I-XI • M.transversus thoracis nn.intercostales • Musculus diaphragma n.phrenicus M.pectoralis major Clavicular part Innervation: Sternal part pectoral nerves C5-Th1 Abdominalmuscles part adduction, rotation, accessory inspiratoryinguina muscle Muscles of the anterior axillar fold Thoracohumeral system M.pectoralis musclesminor inguina What compress subclavian or axillary artery A) Costa cervicalis B) mm. scaleni (m.scalenus minimus) C) Tumor inside spatium costoclaviculare D) Insertion of the m.pectoralis minor Intercostal muscles external intercostal m. M. intercostalis externus membrana intercostalis externa fascia thoracicamuscles superficialis (externa) internal intercostal m. M. intercostalis internus membrana intercostalis interna innermost intercostal m. M. intercostalis intimus fascia intercostalisinguina interna (endothoracica) Transverse thoracic m. M. transversus thoracis fascia intercostalis interna (endothoracica) Internal intercostal muscles + transversus ventral thoracic wall (dorsal view) muscles inguina m. transversus thoracis Internal and external intercostal muscles dorsal thoracic wall musclesAngulus costae (II) Intercostalis externus inguinaIntercostalis internus Membrana intercostalis interna Mm. intercostalis externus, internus, intimus musclesa transversus (transversalis) inguina IE muscles II inguina Mm. intercostalis externus, internus, intimus transversusmuscles (transversalis) thoracis et fasciae inguina muscles inguina Intercostal aa. et vv. muscles inguina Vein, Artery, Nerve, nerve, artery Spatium musclesintercostale - obsah inguina Punctio Punction muscles inguina Vessels and nerves of the dorsal thoracic wall Ao Superior intercostal vein v. intercostalismuscles superior Azygos vein v. azygos Sympathetic trunk Truncus sympathicus Thoracic duct Ductusinguina thoracicus Splanchnic nerves nn. splanchnici v. jugularis Ductus thoracicus v. subclavia v.cava superior v.hemiazygos accesoria v.azygos musclesv.hemiazygos v.lumbalis Vena cavainguina inferior ascendens Žilní systém Venous system trupu of the trunk Lymphatic vessels of the trunk muscles inguina Preparace a. et v. thoracica interna Dissection of the internal thoracic a. musclesand v. inguina Muscles of anterior abdominal wall muscles Function: Flexion Lateroflexion Rotation inguinaIncrease of intraabdominal pressure Forced expiration innervation: intercostal nerves, iliohypogastric, ilioinguinal Superficial mm. (ventral abdominal wall) mm. obliquus externus, internus, transversus external oblique, internal transverse abdominal muscles OE musclesOI T inguina M.rectus musclesabdominis hluboké svaly břicha deep abdominal inguinamuscle group (iliopsoas, quadratus lumborum mm.) m. rectus abdominis vagina musculorum rectorum rectus abdominis muscle musclesand its sheath inguina Linea arcuata Douglas line muscles(arcuate line) Linea inguinasemilunaris Spiegel line Semilunar line James Douglas 1675-1742 Engl. anatomist Vagina musculorum rectorum Adrian van den Spieghel /Adrianus Rectus sheath, vagina Spigelius) 1578-1625 Belgian anatomist muscles inguina Hlavní funkce břišních svalů Mainmuscles function of the abdominal muscles inguina Abdominal wall – ventral view muscles• Skin • Fascia abdominalis subcutanea et superficialis inguina• Muscles Antonio Scarpa (1752 – Petrus Camper (1722- 1832) Italian anatomist 1789), Dutch Anthropologist Caput Medusae muscles inguina muscles inguina Abdominal wall - dorsal musclesview • Peritoneum • Fascia transversalis (endoabdominalis) inguina• Muscles muscles inguina Canalis inguinalis Inguinal canal Stěnymuscles ???? Walls ???? inguina Inguinal canal (Canalis inguinalis – latin) musclesweakness of the abdominal wall 4 -5 cm long tube-like gap in the lower margin of the anterior abdominal wall above inguinal (groin) ligament It is the passage connecting inner and outer surfaceinguina of the muscular layers of the anterior abdominal wall It serves as communicating canal between subcutaneous and intra-abdominal structures female muscles inguinac male muscles inguina Transverse section Anulus inguinalis profundus Internalmuscles inguinal ring inguinac Anulus inguinalis superficialis External inguinal ring APONEUROSIS muscles inguinac Přední stěna Ventral wall muscles Dolní okraje plochých šlach OI aT inguinaDistal margine of OI and T aponeuroses Tříselný kanál Canalis inguinalis Groin canal, inguinal canal Strop dno 2.vrstva 2nd layer Roof bottom FASCIA TRANSVERSALIS muscles inguinac Tříselný kanál Canalis inguinalis Groin canal, inguinal canal Zadní stěna 3.vrstva 3rd layer Dorsal wall muscles inguina muscles inguina Zadní stěna tříselného kanálu Dorsal wall of the inguinal canal (intraabdominal view) Ligamentum interfoveolare Aponeurosis m.transv.abdom. m.transversus musclesabdominalis Vasa Inferior epigastric testicularia vessels Falx inguinalis Trigonum inguinaHesselbachi n. femoralis Ligamentum a. femoralis inguinale v. femoralis Ductus deferentialis vas deferens muscles inguina Fascia transversalis „fascia“ cremasterica aa. testicularis, cremasterica, deferentialis Plexus pampiniformis Ductus deferens muscles inguinac muscles inguina muscles Anulus inguinalis inguina superficialis 1- fossa supravesicals canalis inguinalis – příčný řez 2- fossa medialis inguinalis 3- fossa lateralis inguinalis Nepřímá hernie HERNIA INDIRECTA Přímá hernie HERNIA DIRECTA Fascia transversalis TA peritoneum IOA EOA muscles Superficial abd.fascia cremasteringuina Fascia Ifascia spermatica interna spermatica externa muscles inguina Diaphragma structure Vertebral part – from ligaments which surround deep abdominalmuscles muscles (arcuate mediale, laterale and mediana ligg.). Lumbar part – right side - from first three lumbar vertebraeinguina Lumbar part – left side - from first two lumbar vertebrae Sternal part - from xiphoid process and from false ribs Diaphragm phrenmuscles formation inguina Inferior view muscles inguina muscles inguina Diaphragm musclesopenings Aortic hiatus (aorta a ductus) Esophageal hiatus (jícen a vagus) Hiatus venae cava inferioris (vein and right phrenicinguina nerve) Arcades (muscles and splanchnic nerves and connections between ascending lumbar veins and azygos and hemiazygos veins) Superior view Sternocostalmuscles triangle Hiatus Lumbocostal triangle Medial esophageus (Bochdaleki) arcuate Lig. arcuatum medianum inguinalig. Lateral arcuate lig. QL PM Crus dextrum et sin Hiatus aorticus muscles4 5 inguina Diaphragm - innervation Nerves – motor fibres from phrenic nerves (C3,4,5). Sensitive fibers supply parietal and visceral pleuraemuscles + middle part is supplied from the sensitive fibers of phrenic nerve sensoric fibers are from the intercostal nerve. inguina Diaphragm and its function Muscle of abdominal straining: The diaphragm contraction aids that of the muscles of the anterior abdominal wall in raisingmuscles the intra-abdominal pressure to evacuate the pelvic contents (micturition, defecation, parturition). Weight-lifting muscle: The diaphragm contraction support the vertebral column and prevent flexion. It assists the postvertebralinguina muscles in the lifting of heavy weights. Thoracoabdominal pump: The descent of the diaphragm decreases the intrathoracic pressure and increases the intra-abdominal pressure. This pressures change compresses the blood in the inferior vena cava and forces it upward into the right atrium of the heart. Lymph can be passed faster to the thoracic duct, too. Diaphragma Diaphragm - absorbér peritoneální tekutiny -musclesabsorber of the peritoneal fluid inguina Diaphragma - herniation Hernia congenitalis congenital herniation – Pronikámuscles skrze penetrates through: Canalis pleuroparietalis (častěji vlevo; v důsledku nespojení septum transversum s pleuroperitoneální řasou Pleuroperitoneal canal (more on left side, because of non fusion between pleuroperitoneal fold and septum transversum Herniainguina traumatica traumatic herniation – Proniká skrze penetrates through: hiatus oesophageus - para-esophageální typ oesophageal opening - paraesophageal type muscles inguina muscles inguina Svaly zad Musculimuscles dorsi Back muscles inguina muscles inguina Zádové svaly Back muscles Superficial layer musclesMiddle layer Deep layer Spinotransversal system Spinospinal system inguinaTransversospinal system Suboccipital muscles muscles inguina Mm. intermediales Intermediate muscles musclesspinocostal system inguina • Serratus posterior superior • Serratus posterior inferior • Levatores costarum musclesmm. serrati serratus inguinasuperior serratus inferior Mm. dorsales profundi Deep back muscles (erector trunci systems) • Superficial and obliquely directed muscles• Erector spinae (trunci): iliocostalis, longissimus and spinalis parts Its separated continuation – splenius capitis and cervicis • Intermediate and obliquely directed inguinaTransversospinalis: semispinalis, multifidi and mm.rotatores • Deeply arranged • Mm. interspinales, intertransversarii muscles inguina Superficial and obliquely directed musclesSpino-transversal system Derivatives inguinaof the Fascia thoracolumbalis+ Fascia nuchae arrangement
Recommended publications
  • The Structure and Function of Breathing
    CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation.
    [Show full text]
  • Ch22: Actions of the Respiratory Muscles
    CHAPTER 22 ACTIONS OF THE RESPIRATORY MUSCLES André de Troyer he so-called respiratory muscles are those muscles that caudally and ventrally from their costotransverse articula- Tprovide the motive power for the act of breathing. Thus, tions, such that their ventral ends and the costal cartilages although many of these muscles are involved in a variety of are more caudal than their dorsal parts (Figure 22-2B, C). activities, such as speech production, cough, vomiting, and When the ribs are displaced in the cranial direction, their trunk motion, their primary task is to displace the chest wall ventral ends move laterally and ventrally as well as cra- rhythmically to pump gas in and out of the lungs. The pres- nially, the cartilages rotate cranially around the chon- ent chapter, therefore, starts with a discussion of the basic drosternal junctions, and the sternum is displaced ventrally. mechanical structure of the chest wall in humans. Then, the Consequently, there is usually an increase in both the lateral action of each group of muscles is analyzed. For the sake of and the dorsoventral diameters of the rib cage (see Figure clarity, the functions of the diaphragm, the intercostal mus- 22-2B, C). Conversely, a displacement of the ribs in the cau- cles, the muscles of the neck, and the muscles of the abdom- dal direction is usually associated with a decrease in rib cage inal wall are analyzed sequentially. However, since all these diameters. As a corollary, the muscles that elevate the ribs as muscles normally work together in a coordinated manner, their primary action have an inspiratory effect on the rib the most critical aspects of their mechanical interactions are cage, whereas the muscles that lower the ribs have an expi- also emphasized.
    [Show full text]
  • Respiratory Function of the Rib Cage Muscles
    Copyright @ERS Journals Ltd 1993 Eur Respir J, 1993, 6, 722-728 European Respiratory Journal Printed In UK • all rights reserved ISSN 0903 • 1936 REVIEW Respiratory function of the rib cage muscles J.N. Han, G. Gayan-Ramirez, A. Dekhuijzen, M. Decramer Respiratory function of the rib cage muscles. J.N. Han, G. Gayan-Ramirez, R. Respiratory Muscle Research Unit, Labo­ Dekhuijzen, M. Decramer. ©ERS Journals Ltd 1993. ratory of Pneumology, Respiratory ABSTRACT: Elevation of the ribs and expansion of the rib cage result from the Division, Katholieke Universiteit Leuven, co-ordinated action of the rib cage muscles. We wished to review the action and Belgium. interaction of the rib cage muscles during ventilation. Correspondence: M. Decramer The parasternal intercostal muscles appear to play a predominant role during Respiratory Division quiet breathing, both in humans and in anaesthetized dogs. In humans, the para­ University Hospital sternal intercostals act in concert with the scalene muscles to expand the upper rib Weligerveld 1 cage, and/or to prevent it from being drawn inward by the action of the diaphragm. B-3212 Pellenberg The external intercostal muscles are considered to be active mainly during inspira­ Leuven tion, and the internal intercostal muscles during expiration. Belgium The respiratory activity of the external intercostals is minimal during quiet breathing both in man and in dogs, but increases with increasing ventilation. In­ Keywords: Chest wall mechanics contractile properties spiratory activity in the external intercostals can be enhanced in anaesthetized ani­ rib cage muscles mals and humans by inspiratory mechanical loading and by col stimulation, rib displacement suggesting that the external intercostals may constitute a reserve system, that may be recruited when the desired expansion of the rib cage is increased.
    [Show full text]
  • Pectoral Region and Axilla Doctors Notes Notes/Extra Explanation Editing File Objectives
    Color Code Important Pectoral Region and Axilla Doctors Notes Notes/Extra explanation Editing File Objectives By the end of the lecture the students should be able to : Identify and describe the muscles of the pectoral region. I. Pectoralis major. II. Pectoralis minor. III. Subclavius. IV. Serratus anterior. Describe and demonstrate the boundaries and contents of the axilla. Describe the formation of the brachial plexus and its branches. The movements of the upper limb Note: differentiate between the different regions Flexion & extension of Flexion & extension of Flexion & extension of wrist = hand elbow = forearm shoulder = arm = humerus I. Pectoralis Major Origin 2 heads Clavicular head: From Medial ½ of the front of the clavicle. Sternocostal head: From; Sternum. Upper 6 costal cartilages. Aponeurosis of the external oblique muscle. Insertion Lateral lip of bicipital groove (humerus)* Costal cartilage (hyaline Nerve Supply Medial & lateral pectoral nerves. cartilage that connects the ribs to the sternum) Action Adduction and medial rotation of the arm. Recall what we took in foundation: Only the clavicular head helps in flexion of arm Muscles are attached to bones / (shoulder). ligaments / cartilage by 1) tendons * 3 muscles are attached at the bicipital groove: 2) aponeurosis Latissimus dorsi, pectoral major, teres major 3) raphe Extra Extra picture for understanding II. Pectoralis Minor Origin From 3rd ,4th, & 5th ribs close to their costal cartilages. Insertion Coracoid process (scapula)* 3 Nerve Supply Medial pectoral nerve. 4 Action 1. Depression of the shoulder. 5 2. Draw the ribs upward and outwards during deep inspiration. *Don’t confuse the coracoid process on the scapula with the coronoid process on the ulna Extra III.
    [Show full text]
  • On the Anatomy of Intercostal Spaces in Man and Certain Other Mammals1 by Prof
    ON THE ANATOMY OF INTERCOSTAL SPACES IN MAN AND CERTAIN OTHER MAMMALS1 BY PROF. M. A. H. SIDDIQI, M.B., D.L.O., M.S., F.R.C.S. (ENG.) AND DR A. N. MULLICK, M.B., B.S. Anatomy Department, King George's Medical College, Lucknow (India) TIHE standard description of the anatomy of the intercostal space has been discussed by Stibbe in a paper recently published in this Journal(2,3). Prof. Walmsley in 1916(1) showed that the intercostal nerves do not lie in the plane between the internal and external intercostal muscles but deep to the internal intercostal, and that they are separated from the pleura by a deeper musculo-fascial plane consisting of subcostal, intercostal and transversus thoracis muscles from behind forwards. According to Davies, Gladstone and Stibbe (3) there are four musculo-fascial planes in each space and in each space the main nerve lies with a collateral nerve deep to the internal intercostal. As the above paper effected a change in the teaching of the anatomy of intercostal space, we carried out the following investigations on human as well as on certain other Mammalian intercostal spaces. DISSECTION OF HUMAN INTERCOSTAL SPACES Sixty thoraces of different ages were dissected. From some of them the intercostal spaces were cut out en bloc to facilitate dissection; in others the thoracic wall was dissected as a whole. In the case of the foetuses microscopic sections were made to locate the muscular planes and the nerves. The results of our dissection were as follows: I. Intercostal muscles (fig.
    [Show full text]
  • Postural and Ventilatory Functions of Intercostal Muscles
    ACTA NEUROBIOL. EXP. 1973, 33: 355-380 Lecture delivered at Symposium "Neural control of breathing" held in Warszawa, August 1971 POSTURAL AND VENTILATORY FUNCTIONS OF INTERCOSTAL MUSCLES B. DURON Laboratory of Neurophysiology, Faculty of Medicine, Amiens, France Abstract. During spontaneous breathing, the interchondral muscles present a pat- tern of activity similar to that of the diaphragm. The external intercostals and most of the internal intercostals generally show electrical discharges not related to ventilatory rhythm. Studies of the electrical responses of these muscles in experi- mental variations of their length show that the external and internal intercostak are readily activated by this category of reflexes while the diaphragm and the interchondrals are not. Bilateral multisegmental sections of spinal dorsal roots do not affect the respiratory activity of the diaphragm and of the interchondral muscles; on the contrary, all types of activity - spontaneous or reflex - disappear from the intercostals. Electrical stimulation of appropriate points in the bulbar pyramids in decerebrate cats can activate at the same time different intercostals and leg muscles without modifying the rhythmic inspiratory activity of the diaphragm and the interchondrals. In preparations with chronically implanted electrodes, the inter- costal muscles are chiefly involved in posture. These results fit very well with our histological findings which disclose a much greater density of muscle spindles in external intercostals than in the diaphragm or in the interchondral muscles. INTRODUCTION Our conception of the role played by the intercostal muscles has been dominated for a long time by the anatomical concept of the "thoracic cage" starting with the original mechanical explanation of Hamberger (1748) based on geometric considerations.
    [Show full text]
  • Ventilatory Action of the Hypaxial Muscles of the Lizard Iguana Iguana: a Function of Slow Muscle
    exp. Biol. 143, 435-457 (1989) 435 rinted in Great Britain © The Company of Biologists Limited 1989 VENTILATORY ACTION OF THE HYPAXIAL MUSCLES OF THE LIZARD IGUANA IGUANA: A FUNCTION OF SLOW MUSCLE BY DAVID R. CARRIER* Department of Biology, The University of Michigan, Ann Arbor, MI 48109, USA Accepted 30 January 1989 Summary Patterns of muscle activity during lung ventilation, patterns of innervation and some contractile properties were measured in the hypaxial muscles of green iguanas. Electromyography shows that only four hypaxial muscles are involved in breathing. Expiration is produced by two deep hypaxial muscles, the transversalis and the retrahentes costarum. Inspiration is produced by the external and internal intercostal muscles. Although the two intercostal muscles are the main agonists of inspiration, neither is involved in expiration. This conflicts with the widely held notion that the different fibre orientations of the two intercostal muscles determine their ventilatory action. Several observations indicate that ventilation is produced by slow (i.e. non- twitch) fibres of these four muscles. First, electromyographic (EMG) activity recorded from these muscles during ventilation has an unusually low range of frequencies (<100Hz). Such low-frequency signals have been suggested to be characteristic of muscle fibres that do not propagate action potentials (i.e. slow fibres). Second, during inspiration, EMG activity is restricted to the medial sides of the two intercostal muscles. Muscle fibres from this region have multiple motor endplates and exhibit tonic contraction when immersed in saline solutions of high potassium content. Like the intercostals, the transversalis and retrahentes costarum muscles also contain fibres with multiple motor endplates.
    [Show full text]
  • The Anatomy and Function of the Equine Thoracolumbar Longissimus Dorsi Muscle
    Aus dem Veterinärwissenschaftlichen Department der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Lehrstuhl für Anatomie, Histologie und Embryologie Vorstand: Prof. Dr. Dr. Fred Sinowatz Arbeit angefertigt unter der Leitung von Dr. Renate Weller, PhD, MRCVS The Anatomy and Function of the equine thoracolumbar Longissimus dorsi muscle Inaugural-Dissertation zur Erlangung der tiermedizinischen Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Vorgelegt von Christina Carla Annette von Scheven aus Düsseldorf München 2010 2 Gedruckt mit der Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Dekan: Univ.-Prof. Dr. Joachim Braun Berichterstatter: Priv.-Doz. Dr. Johann Maierl Korreferentin: Priv.-Doz. Dr. Bettina Wollanke Tag der Promotion: 24. Juli 2010 3 Für meine Familie 4 Table of Contents I. Introduction................................................................................................................ 8 II. Literature review...................................................................................................... 10 II.1 Macroscopic anatomy ............................................................................................. 10 II.1.1 Comparative evolution of the body axis ............................................................ 10 II.1.2 Axis of the equine body ..................................................................................... 12 II.1.2.1 Vertebral column of the horse....................................................................
    [Show full text]
  • The Expiratory Muscles in Tetraplegia
    Paraplegia 29 (1991) 359-363 © 1991 International Medical Society of Paraplegia Paraplegia J Review Article: The Expiratory Muscles in Tetraplegia A. De Troyer, MD, M. Estenne, MD Respiratory Research Unit and Chest Service, Erasme University Hospital, Brussels School of Medicine, Brussels, Belgium. All the well-recognised muscles of expiration, such as the muscles of the anterolate­ ral wall of the abdomen, the expiratory intercostals, and the triangularis sterni, have a motor innervation that depends on segments situated in the thoracic or lum­ bar cord.I-3 Consequently, subjects with tetraplegia caused by transection of the cervical cord have severely compromised expiratory muscle function. Cough in these subjects is markedly impaired, and the clearance of bronchial secretions is defective. As a result, retention of secretions leading to atelectasis and bronchopul­ monary infections is a frequent occurrence. Expiratory muscle function, in fact, has traditionally been perceived as being totally lost in tetraplegia. Hence, cough would be a passive process resulting only from the elastic recoil properties of the respiratory system.4 Expiratory muscle function is totally lost indeed in subjects with transection of the upper cervical cord (CI-C4). However, a number of spirographic studies have established that most C5-C8 tetraplegic subjects generate a small expiratory reserve volume.5-1O Thus, although all the well-known muscles of expiration are paralysed, most tetraplegic subjects are still able to activate some muscles that can overcome the elastic resist­ ance to deflation of the chest wall and cause emptying of the lungs. If these muscles could be identified, one could train them for .strength and perhaps· improve the effectiveness of cough so as to reduce the number of bronchopulmonary infections.
    [Show full text]
  • Anatomy Module 3. Muscles. Materials for Colloquium Preparation
    Section 3. Muscles 1 Trapezius muscle functions (m. trapezius): brings the scapula to the vertebral column when the scapulae are stable extends the neck, which is the motion of bending the neck straight back work as auxiliary respiratory muscles extends lumbar spine when unilateral contraction - slightly rotates face in the opposite direction 2 Functions of the latissimus dorsi muscle (m. latissimus dorsi): flexes the shoulder extends the shoulder rotates the shoulder inwards (internal rotation) adducts the arm to the body pulls up the body to the arms 3 Levator scapula functions (m. levator scapulae): takes part in breathing when the spine is fixed, levator scapulae elevates the scapula and rotates its inferior angle medially when the shoulder is fixed, levator scapula flexes to the same side the cervical spine rotates the arm inwards rotates the arm outward 4 Minor and major rhomboid muscles function: (mm. rhomboidei major et minor) take part in breathing retract the scapula, pulling it towards the vertebral column, while moving it upward bend the head to the same side as the acting muscle tilt the head in the opposite direction adducts the arm 5 Serratus posterior superior muscle function (m. serratus posterior superior): brings the ribs closer to the scapula lift the arm depresses the arm tilts the spine column to its' side elevates ribs 6 Serratus posterior inferior muscle function (m. serratus posterior inferior): elevates the ribs depresses the ribs lift the shoulder depresses the shoulder tilts the spine column to its' side 7 Latissimus dorsi muscle functions (m. latissimus dorsi): depresses lifted arm takes part in breathing (auxiliary respiratory muscle) flexes the shoulder rotates the arm outward rotates the arm inwards 8 Sources of muscle development are: sclerotome dermatome truncal myotomes gill arches mesenchyme cephalic myotomes 9 Muscle work can be: addacting overcoming ceding restraining deflecting 10 Intrinsic back muscles (autochthonous) are: minor and major rhomboid muscles (mm.
    [Show full text]
  • Spontaneous Intercostal Bulge
    Self-assessment corner 179 Postgrad Med J: first published as 10.1136/pgmj.74.869.179 on 1 March 1998. Downloaded from Spontaneous intercostal bulge Rodney J Folz, Claude A Piantadosi, Emily K Folz A 48-year-old man had been diagnosed with severe chronic obstructive pulmonary disease and referred to our pulmonary clinic. His medical history revealed a 60-80 pack year smoking history and long-standing heavy alcohol consumption. He worked as an upholsterer, with exposure to glues and paints for 20 years. Tuberculin skin testing was negative with a positive Candida con- trol. Sputum Gram-stain revealed many polymorphonuclear leukocytes and was AFB-stain posi- tive. Culture growth indicated mycobacterium other than tuberculosis identified as Runyoun's Group III. Drug sensitivity testing demonstrated 0% resistance to the combination of isoniazid, rifampin, and ethionamide. His clinical condition gradually deteriorated despite antimicrobial therapy. Pulmonary function testing in 1994 demonstrated severe obstructive lung disease with a DLCO of 29% predicted (8.5 ml/min/mmHg). One month later, he developed acute bronchitis and during a severe coughing spell he noticed the acute onset of bulging of his left anterior chest wall. The bulge rapidly expanded during manoeuvres which increased intrathoracic pressure and rapidly reduced with cessation of these manoeuvres. In addition to the expansion and contraction of this chest wall bulge, physical examination was remarkable for sonorous breath sounds and the sound of 'gurgling' fluid within the bulge. A chest X-ray is shown in figure 1. A chest computed tomogra- phy (CT) scan (figure 2) was obtained in the semi-prone position during a Valsalva manoeuvre.
    [Show full text]
  • FIPAT-TA2-Part-2.Pdf
    TERMINOLOGIA ANATOMICA Second Edition (2.06) International Anatomical Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TA2, PART II Contents: Systemata musculoskeletalia Musculoskeletal systems Caput II: Ossa Chapter 2: Bones Caput III: Juncturae Chapter 3: Joints Caput IV: Systema musculare Chapter 4: Muscular system Bibliographic Reference Citation: FIPAT. Terminologia Anatomica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, 2019 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Anatomica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput II: OSSA Chapter 2: BONES Latin term Latin synonym UK English US English English synonym Other 351 Systemata Musculoskeletal Musculoskeletal musculoskeletalia systems systems
    [Show full text]