Intestinal Absorptive Function Gut: First Published As 10.1136/Gut.35.1 Suppl.S5 on 1 January 1994
Gut 1994; supplement 1: S5-S9 S5 Intestinal absorptive function Gut: first published as 10.1136/gut.35.1_Suppl.S5 on 1 January 1994. Downloaded from R C Spiller Abstract causing them to lose some of their ordered The normal gut is adapted to intermittent array permitting better access of salivary feeding with complex macromolecular amylase.1 Grinding by the teeth and later by substrates of low sodium content. The the action of the 'antral pump', combined with high permeability of the upper small the action of salivary amylase, reduces the food intestine to sodium, together with sodium to an homogenous chyme, which is pumped rich saliva and pancreaticobiliary secre- into the duodenum at a rate of about 1-2 tions results in large sodium fluxes into kcallmin. Once within the duodenum, starch is the lumen. These substantial sodium hydrolysed extremely rapidly because of a influxes are matched by equally large superabundance of pancreatic amylase, which effluxes from the ileum and proximal cleaves the ot 1-4 glucocidic bonds in starch, colon, which are comparatively imperme- reducing the polymer to maltose, maltotriose, able to sodium and capable of active and ao limit dextrins. Attached to the brush sodium absorption. Resection of these border, facing into the gut lumen are the brush distal, sodium absorbing regions of the border hydrolases, large glycoproteins now intestine, lead to problems with sodium sequenced, which include maltase, isomaltase- depletion. Controliled transit of chyme is sucrase, and glucosidases capable of reducing essential to permit time for optimium ot limit dextrins and other polymers containing digestion and absorption and a range less than six glucose monomers, to glucose of feedback control mechanisms exist.
[Show full text]