Bfn-Skripten 375

Total Page:16

File Type:pdf, Size:1020Kb

Bfn-Skripten 375 Aletta Bonn, Nicholas Macgregor, Jutta Stadler, Horst Korn, Sarah Stiffel, Katrin Wolf and Nikki van Dijk Helping ecosystems in Europe to adapt to climate change BfN-Skripten 375 2014 Helping ecosystems in Europe to adapt to climate change Aletta Bonn Nicholas Macgregor Jutta Stadler Horst Korn Sarah Stiffel Katrin Wolf Nikki van Dijk Cover picture: Sand dunes in Druridge Bay, UK (© Natural England / Graeme Peacock) Author’s addresses: Aletta Bonn Freie Universität Berlin / Berlin Brandenburg Institute of Sarah Stiffel Advanced Biodiversity Research Katrin Wolf Königin-Luise-Str.1-3 / 14195 Berlin E-Mail: [email protected] / now: [email protected] Nicholas Macgregor Natural England Hercules House, Hercules Road London, SE1 7DU, United Kingdom E-Mail: [email protected] Nikki van Dijk Atkins, Western House (Block B) Peterborough Business Park, Lynch Wood, Peterborough, PE2 6FZ, United Kingdom E-Mail: [email protected] Jutta Stadler Bundesamt für Naturschutz Horst Korn Außenstelle Insel Vilm 18581 Putbus, Germany E-Mail: [email protected] / [email protected] Supported by the Federal Agency for Nature Conservation with funds of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety. This publication is included in the literature database “DNL-online” (www.dnl-online.de). BfN-Skripten are not available in book trade. A pdf version can be downloaded from the internet at: http://www.bfn.de/0502_skripten.html. Publisher: Bundesamt für Naturschutz (BfN) Federal Agency for Nature Conservation Konstantinstrasse 110 53179 Bonn, Germany URL: http://www.bfn.de The publisher takes no guarantee for correctness, details and completeness of statements and views in this report as well as no guarantee for respecting private rights of third parties. Views expressed in this publication are those of the authors and do not necessarily represent those of the publisher. This work with all its parts is protected by copyright. Any use beyond the strict limits of the copyright law without the con-sent of the publisher is inadmissible and punishable. Reprint, as well as in extracts, only with permission of Federal Agency for Nature Conservation. Printed by the printing office of the Federal Ministry for Environment, Nature Conservation, Building and Nuclear Safety Printed on 100% recycled paper. ISBN 978-3-89624-110-8 Bonn, Germany 2014 CONTENTS 1 Summary .................................................................................................................... 11 2 Acknowledgements ................................................................................................... 13 3 2013 ENCA Climate Change Group recommendations for putting adaptation principles into action ................................................................................................ 15 4 ENCA Workshop on Adapting to climate change in nature conservation in norther and western Europe (Edinburgh 2011) .................................................. 17 4.1 Scope and structure of the workshop .......................................................................... 17 4.2 Mountain and sub-arctic ecosystems .......................................................................... 19 4.2.1 Climate impacts and conservation issues ......................................................... 19 4.2.2 Setting conservation objectives in a changing climate ...................................... 20 4.2.3 Adaptation actions ............................................................................................ 23 4.2.4 Information requirements ................................................................................. 24 4.2.5 Barriers and opportunities ................................................................................ 24 4.3 Peatland ecosystems .................................................................................................. 26 4.3.1 Climate impacts and conservation issues ......................................................... 26 4.3.2 Setting conservation objectives in a changing climate ...................................... 27 4.3.3 Adaptation actions ............................................................................................ 29 4.3.4 Information Requirements ................................................................................ 29 4.3.5 Barriers and Opportunities ............................................................................... 31 4.4 Coastal ecosystems .................................................................................................... 32 4.4.1 Climate impacts and conservation issues ......................................................... 32 4.4.2 Setting conservation objectives in a changing climate ...................................... 34 4.4.3 Adaptation actions ............................................................................................ 35 4.4.4 Information requirements ................................................................................. 36 4.4.5 Barriers and Opportunities ............................................................................... 37 4.5 Freshwater and riparian ecosystems ........................................................................... 38 4.5.1 Climate impacts and conservation issues ......................................................... 38 4.5.2 Setting conservation objectives in a changing climate ...................................... 39 4.5.3 Adaptation actions ............................................................................................ 41 4.5.4 Information requirements ................................................................................. 42 4.5.5 Barriers and Opportunities ............................................................................... 42 4.6 Forest and woodland ecosystems ............................................................................... 44 4.6.1 Climate impacts and conservation issues ......................................................... 44 4.6.2 Setting conservation objectives in a changing climate ...................................... 45 4.6.3 Adaptation actions ............................................................................................ 46 4.6.4 Information requirements ................................................................................. 48 4.6.5 Barriers and Opportunities ............................................................................... 48 4.7 Grassland ecosystems ................................................................................................ 50 3 4.7.1 Climate impacts and conservation issues ......................................................... 50 4.7.2 Setting conservation objectives in a changing climate ...................................... 51 4.7.3 Adaptation actions ............................................................................................ 51 4.7.4 Information requirements ................................................................................. 51 4.7.5 Barriers and Opportunities ............................................................................... 52 4.8 Urban ecosystems....................................................................................................... 53 4.8.1 Climate impacts and conservation issues ......................................................... 53 4.8.2 Setting conservation objectives in a changing climate ...................................... 54 4.8.3 Adaptation actions ............................................................................................ 55 4.8.4 Information requirements ................................................................................. 55 4.8.5 Barriers and Opportunities ............................................................................... 56 4.9 Summary of the 2011 Edinburgh workshop and the 2013 Bonn conference discussions ................................................................................................................. 57 4.9.1 Impacts ............................................................................................................ 57 4.9.2 Conservation objectives ................................................................................... 58 4.9.3 Conservation of species and ecosystems......................................................... 60 4.9.4 Key messages for focal ecosystems ................................................................ 63 5 Ecosystem-based adaptation and mitigation .......................................................... 65 6 Increasing connectivity as a climate change adaptation measure: review of concepts, evidence and recommendations ............................................................. 67 6.1 Introduction ................................................................................................................. 67 6.2 Fundamental concepts: connectivity and impact on population viability ....................... 67 6.2.1 The concepts of connectivity, fragmentation, and metapopulations .................. 67 6.2.2 What is connectivity in the context of climate change? ..................................... 68 6.2.3 Connectivity and metapopulation persistence .................................................. 69 6.2.4 Connectivity and local genetic diversity ............................................................ 70 6.3 Risks and trade-offs ...................................................................................................
Recommended publications
  • Colchester Natural History Society
    COLCHESTER NATURAL HISTORY SOCIETY COLCHESTER BOROUGH COUNCIL (CBC) LOCAL PLAN EXAMINATION MAIN MATTER 6 SOUTH COLCHESTER POLICY SC2 MIDDLWICK RANGES 1. In August 2017 Colchester Natural History Society (CNHS) responded to the CBC Draft Local Plan by acknowledging the policy plan to review the Middlewick ecology. In August 2019 in response to a ‘masterplan consultation’ CNHS opposed development citing species rarity and closeness to SSSI sites and added that as the Local Plan at that time had not been examined the masterplan consultation was premature. 2. CBC’s narrative supporting Local Plan Policy SC2: Middlewick Ranges, acknowledges that the site is a designated Local Wildlife Site (LOW). (Previously LoWS’s were titled SINC’s – Sites of Importance for Nature Conservation, a more accurate description of their function). The CBC narrative adds “3.3.2 Middlewick Ranges is a Local Wildlife Site (LoWS) dominated by acid grassland primarily designated for this and its invertebrate populations, but with important scrub, scattered trees and copses and hedgerows. Birch Brook LoWS to the south of the site supports the brook itself and mixed broadleaf and wet woodland, with some characteristics of ancient woodland. The habitats within the site are of high (up to County) biodiversity value, including approximately 53 Ha of acid grassland. The site supports a range of protected species such as invertebrates, breeding birds and bats.” 3. An independent report by Midland Ecology which is an appendix to this submission identifies seven nationally threatened and eight nationally scarce species. 4. The Midland Ecology report paragraph 3.3 makes the point that an important function of Local Wildlife Sites is to “complement or buffer statutory conservation sites (SSSIs)”.
    [Show full text]
  • Threatened Species Translocation Plan Button Wrinklewort (Rutidosis
    Threatened Species Translocation Plan Button Wrinklewort (Rutidosis leptorrhynchoides) Summary Button wrinklewort Rutidosis leptorrhynchoides is a perennial wildflower that grows in grasslands and woodlands in Victoria, NSW and the ACT. There are only 29 known extant populations of the species left and only 8 that contain 5000 or more plants. The species is listed as endangered both nationally (EPBC Act 1999) and locally (Nature Conservation Act 2014). Increasing the number of populations through the establishment of new, self-sustaining populations is identified as a key management objective for the preservation of R. leptorrhynchoides in perpetuity in the wild (ACT Government 2017). The translocation will be undertaken at the Barrer Hill restoration area (Molonglo River Reserve, ACT). The restoration area supports potentially suitable habitat, is within the species known range and is believed to have supported R. leptorrhynchoides in the past. Furthermore, the Molonglo River Reserve is recognised as a biodiversity offset with significant and ongoing funding committed to the restoration, protection and ongoing management of reserve. Objectives To establish a new, self-sustaining, genetically diverse population of Rutidosis leptorrhynchoides within the Molonglo River Reserve that is capable of surviving in both the short and long term. Proponents Parks and Conservation Service (PCS) and Conservation Research (CR), Environment and Planning Directorate (EPD). Australian National Botanic Gardens (ANBG) Greening Australia (GA) Translocation team Richard Milner – Ecologist (PCS) Greg Baines – Senior vegetation ecologist (CR) Emma Cook – Vegetation ecologist (CR) David Taylor (ANBG) Martin Henery (ANBG) Nicki Taws (GA) Background Description The Button Wrinklewort Rutidosis leptorrhynchoides (Figure 1) is an erect perennial forb from the daisy family (Asteraceae).
    [Show full text]
  • MULTIPLE SPECIES HABITAT CONSERVATION PLAN Annual Report 2015
    Western Riverside County Regional Conservation Authority MULTIPLE SPECIES HABITAT CONSERVATION PLAN Annual Report 2015 Cover Description On February 27, 2015, the RCA acquired a property known as TNC/Monte Cristo. The project is located north of Avocado Mesa Road in the unincorporated Tenaja area of the County of Riverside. The property size is 22.92 acres and was purchased with State and Federal grant funding. The property is located within Rough Step Unit 5, MSHCP Criteria Cell number 7029, within Tenaja of the Southwest Area Plan. The vegetation for this property consists of grassland, coastal sage scrub, and woodland and forest habitat. Within this area, species known to exist, include California red-legged frog, Bell’s sage sparrow, Cooper’s hawk, grasshopper sparrow, bobcat and mountain lion. The property is adjacent to previously conserved lands on the south and east and connects to conserved lands to the north and west. Conservation of this land will help to assemble the reserve for this area, protecting important grassland and woodland forest habitats that are vital to many species. Western Riverside County MULTIPLE SPECIES HABITAT CONSERVATION PLAN ANNUAL REPORT For the Period January 1, 2015 through December 31, 2015 Submitted by the Western Riverside County Regional Conservation Authority TABLE OF CONTENTS Section Page EXECUTIVE SUMMARY .................................................................................................... ES-1 1.0 INTRODUCTION.........................................................................................................
    [Show full text]
  • In Our Hands: the British and UKOT Species That Large Charitable Zoos & Aquariums Are Holding Back from Extinction (AICHI Target 12)
    In our hands: The British and UKOT species that Large Charitable Zoos & Aquariums are holding back from extinction (AICHI target 12) We are: Clifton & West of England Zoological Society (Bristol Zoo, Wild Places) est. 1835 Durrell Wildlife Conservation Trust (Jersey Zoo) est. 1963 East Midland Zoological Society (Twycross Zoo) est. 1963 Marwell Wildlife (Marwell Zoo) est. 1972 North of England Zoological Society (Chester Zoo) est. 1931 Royal Zoological Society of Scotland (Edinburgh Zoo, Highland Wildlife Park) est. 1913 The Deep est. 2002 Wild Planet Trust (Paignton Zoo, Living Coasts, Newquay Zoo) est. 1923 Zoological Society of London (ZSL London Zoo, ZSL Whipsnade Zoo) est. 1826 1. Wildcat 2. Great sundew 3. Mountain chicken 4. Red-billed chough 5. Large heath butterfly 6. Bermuda skink 7. Corncrake 8. Strapwort 9. Sand lizard 10. Llangollen whitebeam 11. White-clawed crayfish 12. Agile frog 13. Field cricket 14. Greater Bermuda snail 15. Pine hoverfly 16. Hazel dormouse 17. Maiden pink 18. Chagos brain coral 19. European eel 2 Executive Summary: There are at least 76 species native to the UK, Crown Dependencies, and British Overseas Territories which Large Charitable Zoos & Aquariums are restoring. Of these: There are 20 animal species in the UK & Crown Dependencies which would face significant declines or extinction on a global, national, or local scale without the action of our Zoos. There are a further 9 animal species in the British Overseas Territories which would face significant declines or extinction without the action of our Zoos. These species are all listed as threatened on the IUCN Red List. There are at least 19 UK animal species where the expertise of our Zoological Institutions is being used to assist with species recovery.
    [Show full text]
  • Forest Habitat Loss and Fragmentation in Central Poland During the Last 100 Years
    Silva Fennica 44(4) research notes SILVA FENNICA www.metla.fi/silvafennica · ISSN 0037-5330 The Finnish Society of Forest Science · The Finnish Forest Research Institute Forest Habitat Loss and Fragmentation in Central Poland during the Last 100 Years Tomasz D. Mazgajski, Michał Żmihorski and Katarzyna Abramowicz Mazgajski, T.D., Żmihorski, M. & Abramowicz, K. 2010. Forest habitat loss and fragmentation in Central Poland during the last 100 years. Silva Fennica 44(4): 715–723. The process of habitat fragmentation consists of two components – habitat loss and fragmenta- tion per se. Both are thought to be among the most important threats to biodiversity. However, the biological consequences of this process such as species occurrence, abundance, or genetic structure of population are driven by current, as well as previous, landscape configurations. Therefore, historical analyses of habitat distribution are of great importance in explaining the current species distribution. In our analysis, we describe the forest fragmentation process for an area of 178 km2 in the northern part of Mazowsze region of central Poland. Topographical maps from the years 1890, 1957 and 1989 were used. Over the 100-year period, forest cover- age in this area changed from 17% to 5.6%, the number of patches increased from 19 to 42, while the area of the forest interior decreased from 1933 ha to 371 ha. The two components of fragmentation were clearly separated in time. Habitat loss occurred mainly during the first period (1890–1957) and fragmentation per se in the second (1957–1989). Moreover, we recorded that only 47.7% of all the currently (in 1989) afforested areas constitute sites where forests previously occurred (in 1890 and 1957).
    [Show full text]
  • Monitoring and Indicators of Forest Biodiversity in Europe – from Ideas to Operationality
    Monitoring and Indicators of Forest Biodiversity in Europe – From Ideas to Operationality Marco Marchetti (ed.) EFI Proceedings No. 51, 2004 European Forest Institute IUFRO Unit 8.07.01 European Environment Agency IUFRO Unit 4.02.05 IUFRO Unit 4.02.06 Joint Research Centre Ministero della Politiche Accademia Italiana di University of Florence (JRC) Agricole e Forestali – Scienze Forestali Corpo Forestale dello Stato EFI Proceedings No. 51, 2004 Monitoring and Indicators of Forest Biodiversity in Europe – From Ideas to Operationality Marco Marchetti (ed.) Publisher: European Forest Institute Series Editors: Risto Päivinen, Editor-in-Chief Minna Korhonen, Technical Editor Brita Pajari, Conference Manager Editorial Office: European Forest Institute Phone: +358 13 252 020 Torikatu 34 Fax. +358 13 124 393 FIN-80100 Joensuu, Finland Email: [email protected] WWW: http://www.efi.fi/ Cover illustration: Vallombrosa, Augustus J C Hare, 1900 Layout: Kuvaste Oy Printing: Gummerus Printing Saarijärvi, Finland 2005 Disclaimer: The papers in this book comprise the proceedings of the event mentioned on the back cover. They reflect the authors' opinions and do not necessarily correspond to those of the European Forest Institute. © European Forest Institute 2005 ISSN 1237-8801 (printed) ISBN 952-5453-04-9 (printed) ISSN 14587-0610 (online) ISBN 952-5453-05-7 (online) Contents Pinborg, U. Preface – Ideas on Emerging User Needs to Assess Forest Biodiversity ......... 7 Marchetti, M. Introduction ...................................................................................................... 9 Session 1: Emerging User Needs and Pressures on Forest Biodiversity De Heer et al. Biodiversity Trends and Threats in Europe – Can We Apply a Generic Biodiversity Indicator to Forests? ................................................................... 15 Linser, S. The MCPFE’s Work on Biodiversity .............................................................
    [Show full text]
  • Report of the Workshop on Assessing the Population Viability of Endangered Marine Mammals in U.S
    Report of the Workshop on Assessing the Population Viability of Endangered Marine Mammals in U.S. Waters 13–15 September 2005 Savannah, Georgia Prepared by the Marine Mammal Commission 2007 This is one of five reports prepared in response to a directive from Congress to the Marine Mammal Commission to assess the cost-effectiveness of protection programs for the most endangered marine mammals in U.S. waters TABLE OF CONTENTS List of Tables ..................................................................................................................... iv Executive Summary.............................................................................................................v I. Introduction..............................................................................................................1 II. Biological Viability..................................................................................................1 III. Population Viability Analysis..................................................................................5 IV. Viability of the Most Endangered Marine Mammals ..............................................6 Extinctions and recoveries.......................................................................................6 Assessment of biological viability...........................................................................7 V. Improving Listing Decisions..................................................................................10 Quantifying the listing process ..............................................................................10
    [Show full text]
  • Molecular Approaches in Natural Resource Conservation and Management
    MOLECULAR APPROACHES IN NATURAL RESOURCE CONSERVATION AND MANAGEMENT Recent advances in molecular genetics and genomics have been embraced by many scientists in natural resource conservation. Today, several major conservation and management journals are using the “genetics” editors of this book to deal solely with the influx of manuscripts that employ molecular data. The editors have attempted to synthesize some of the major uses of molecular markers in natural resource management in a book targeted not only at scientists but also at individuals actively making conservation and management decisions. To that end, the text features contributors who are major figures in molecular ecology and evolution – many having published books of their own. The aim is to direct and distill the thoughts of these outstanding scientists by compiling compelling case histories in molecular ecology as they apply to natural resource management. J. Andrew DeWoody is Professor of Genetics and University Faculty Scholar at Purdue University. He earned his MS in genetics at Texas A&M University and his PhD in zoology from Texas Tech University. His recent research in genetics, evolution, and ecology has been funded by organizations including the National Science Foundation, the U.S. Department of Agriculture (USDA) National Research Initiative, the Great Lakes Fishery Trust, and the National Geographic Society. His research is published in more than thirty-five journals, and he has served as Associate Editor for the North American Journal of Fisheries Management, the Journal of Wildlife Management,andGenetica. John W. Bickham is Professor in the Department of Forestry and Natural Resources (FNR) and Director of the Center for the Environment at Purdue University.
    [Show full text]
  • Understanding the Ecology of Extinction: Are We Close to the Critical Threshold?
    Ann. Zool. Fennici 40: 71–80 ISSN 0003-455X Helsinki 30 April 2003 © Finnish Zoological and Botanical Publishing Board 2003 Understanding the ecology of extinction: are we close to the critical threshold? Tim G. Benton Institute of Biological Sciences, University of Stirling, FK9 4LA, UK (e-mail: [email protected]) Received 25 Nov. 2002, revised version received 20 Jan. 2003, accepted 21 Jan. 2003 Benton, T. G. 2003: Understanding the ecology of extinction: are we close to the critical threshold? — Ann. Zool. Fennici 40: 71–80. How much do we understand about the ecology of extinction? A review of recent lit- erature, and a recent conference in Helsinki gives a snapshot of the “state of the art”*. This “snapshot” is important as it highlights what we currently know, the tools avail- able for studying the process of extinction, its ecological correlates, and the theory concerning extinction thresholds. It also highlights that insight into the ecology of extinction can come from areas as diverse as the study of culture, the fossil record and epidemiology. Furthermore, it indicates where the gaps in knowledge and understand- ing exist. Of particular note is the need either to generate experimental data, or to make use of existing empirical data — perhaps through meta-analyses, to test general theory and guide its future development. Introduction IUCNʼs 2002 Red List, a total of 11 167 species are currently known to be threatened (http:// Few would argue that managing natural popu- www.redlist.org/info/tables/table1.html), though lations and their habitats is one of the greatest this is a gross underestimate of the true value, as, challenges for humans in the 21st century.
    [Show full text]
  • Extinction Debt: a Challenge for Biodiversity Conservation
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Review Extinction debt: a challenge for biodiversity conservation Mikko Kuussaari1, Riccardo Bommarco2, Risto K. Heikkinen1, Aveliina Helm3, Jochen Krauss4, Regina Lindborg5, Erik O¨ ckinger2, Meelis Pa¨ rtel3, Joan Pino6, Ferran Roda` 6, Constantı´ Stefanescu7, Tiit Teder3, Martin Zobel3 and Ingolf Steffan-Dewenter4 1 Finnish Environment Institute, Research Programme for Biodiversity, P.O. Box 140, FI-00251 Helsinki, Finland 2 Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, SE-750 07 Uppsala, Sweden 3 Institute of Ecology and Earth Sciences, University of Tartu, Lai St 40, Tartu 51005, Estonia 4 Population Ecology Group, Department of Animal Ecology I, University of Bayreuth, Universita¨ tsstrasse 30, D-95447 Bayreuth, Germany 5 Department of System Ecology, Stockholm University, SE-106 91 Stockholm, Sweden 6 CREAF (Center for Ecological Research and Forestry Applications) and Unit of Ecology, Department of Animal Biology, Plant Biology and Ecology, Autonomous University of Barcelona, E-08193 Bellaterra, Spain 7 Butterfly Monitoring Scheme, Museu de Granollers de Cie` ncies Naturals, Francesc Macia` , 51, E-08402 Granollers, Spain Local extinction of species can occur with a substantial proportion of natural habitats worldwide have been lost delay following habitat loss or degradation.
    [Show full text]
  • Critical Thresholds Associated with Habitat Loss for Two Vernal Pool-Breeding Amphibians
    Ecological Applications, 14(5), 2004, pp. 1547±1553 q 2004 by the Ecological Society of America CRITICAL THRESHOLDS ASSOCIATED WITH HABITAT LOSS FOR TWO VERNAL POOL-BREEDING AMPHIBIANS REBECCA NEWCOMB HOMAN,1,3 BRYAN S. WINDMILLER,2 AND J. MICHAEL REED1 1Department of Biology, Tufts University, Medford, Massachusetts 02155 USA 2Hyla Ecological Services, P.O. Box 182, Lincoln, Massachusetts 01773 USA Abstract. A critical threshold exists when the relationship between the amount of suitable habitat and population density or probability of occurrence exhibits a sudden, disproportionate decline as habitat is lost. Critical thresholds are predicted by a variety of modeling approaches, but empirical support has been limited or lacking. We looked for critical thresholds in two pool-breeding amphibians that spend most of the year in adjacent upland forest: the spotted salamander (Ambystoma maculatum) and the wood frog (Rana sylvatica). These species were selected because of their reported poor dispersal capacities and their dependency on forest habitat when not breeding. Using piecewise regression and binomial change-point tests, we looked for a relationship between the probability of oc- cupancy of a site and forest cover at ®ve spatial scales, measuring forest cover in radial distances from the pond edge of suitable breeding ponds: 30 m, 100 m, 300 m, 500 m, and 1000 m. Using piecewise regression, we identi®ed signi®cant thresholds for spotted sala- manders at the 100-m and 300-m spatial scale, and for wood frogs at the 300-m scale. However, binomial change-point tests identi®ed thresholds at all spatial scales for both species, with the location of the threshold (percent habitat cover required) increasing with spatial scale for spotted salamanders and decreasing with spatial scale for wood frogs.
    [Show full text]
  • Translocation of Imperiled Species Under Changing Climates
    Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: The Year in Ecology and Conservation Biology Translocation of imperiled species under changing climates Mark W. Schwartz1 and Tara G. Martin2 1John Muir Institute of the Environment, University of California, Davis, California. 2Climate Adaptation Flagship, CSIRO Ecosystem Sciences, Ecoscience Precinct, Queensland, Australia Address for correspondence: Mark W. Schwartz, Department of Environmental Science & Policy, 1 Shields Avenue, University of California, Davis, CA 95616. [email protected] Conservation translocation of species varies from restoring historic populations to managing the relocation of imperiled species to new locations. We review the literature in three areas—translocation, managed relocation, and conservation decision making—to inform conservation translocation under changing climates. First, climate change increases the potential for conflict over both the efficacy and the acceptability of conservation translocation. The emerging literature on managed relocation highlights this discourse. Second, conservation translocation works in concert with other strategies. The emerging literature in structured decision making provides a framework for prioritizing conservation actions—considering many possible alternatives that are evaluated based on expected benefit, risk, and social–political feasibility. Finally, the translocation literature has historically been primarily concerned with risks associated with the target species. In contrast,
    [Show full text]