Endocrine Pathology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Expression Pattern of Delta-Like 1 Homolog in Developing Sympathetic Neurons and Chromaffin Cells
Published in "Gene Expression Patterns 30: 49–54, 2018" which should be cited to refer to this work. Expression pattern of delta-like 1 homolog in developing sympathetic neurons and chromaffin cells ∗ Tehani El Faitwria,b, Katrin Hubera,c, a Institute of Anatomy & Cell Biology, Albert-Ludwigs-University Freiburg, Albert-Str. 17, 79104, Freiburg, Germany b Department of Histology and Anatomy, Faculty of Medicine, Benghazi University, Benghazi, Libya c Department of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland ABSTRACT Keywords: Delta-like 1 homolog (DLK1) is a member of the epidermal growth factor (EGF)-like family and an atypical notch Sympathetic neurons ligand that is widely expressed during early mammalian development with putative functions in the regulation Chromaffin cells of cell differentiation and proliferation. During later stages of development, DLK1 is downregulated and becomes DLK1 increasingly restricted to specific cell types, including several types of endocrine cells. DLK1 has been linked to Adrenal gland various tumors and associated with tumor stem cell features. Sympathoadrenal precursors are neural crest de- Organ of Zuckerkandl rived cells that give rise to either sympathetic neurons of the autonomic nervous system or the endocrine Development ffi Neural crest chroma n cells located in the adrenal medulla or extraadrenal positions. As these cells are the putative cellular Phox2B origin of neuroblastoma, one of the most common malignant tumors in early childhood, their molecular char- acterization is of high clinical importance. In this study we have examined the precise spatiotemporal expression of DLK1 in developing sympathoadrenal cells. We show that DLK1 mRNA is highly expressed in early sympa- thetic neuron progenitors and that its expression depends on the presence of Phox2B. -
Radiotherapy of Malignant Pheochromocytoma—A Case Report
Case Report Page 1 of 7 Radiotherapy of malignant pheochromocytoma—a case report Chi-Yuan Yeh Department of Radiation Oncology, Tungs’ Taichung Metroharbor Hospital, Taichung, Taiwan Correspondence to: Department of Radiation Oncology, Tungs’ Taichung Metroharbor Hospital, No.699, Sec. 8, Taiwan Blvd., Taichung City 435, Taiwan. Email: [email protected]. Abstract: Pheochromocytomas (PCC) are rare tumors with an estimated incidence of 0.4 to 9.5 cases per 1 million per year. About 5–26% of PCC are malignant and presents with metastasis, for which there is currently no effective therapy. The treatment of choice is for PCC is radical surgery to reduce tumor burden, to provide symptomatic relief of catecholamine excess although complete eradication of the lesions is often not feasible. A number of case reports have been published on the role of radiotherapy for the treatment of PCC. Here we present a 53-year-old male stage III malignant PCC patient who received postoperative adjuvant radiotherapy. A review of current literature is also presented. Keywords: Radiotherapy; pheochromocytoma (PCC); malignant pheochromocytoma; hypertension Received: 12 December 2018; Accepted: 12 August 2019; Published: 27 August 2019. doi: 10.21037/tro.2019.08.02 View this article at: http://dx.doi.org/10.21037/tro.2019.08.02 Introduction reaction confirmed PCC. The term PCC was derived from the Greek words Pheochromocytomas (PCC) and paragangliomas (PGL) phaios (“dusky”), chroma (“color”), and cytoma (“tumor”). are rare catecholamine-secreting tumors that arise from The dark staining reaction of PCC tumor was caused by the chromaffin cells of the adrenal medulla and the sympathetic oxidation of intracellular catecholamines when stained with ganglia respectively. -
1-Anatomy of the Pituitary Gland
Color Code Important Anatomy of Pituitary Gland Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, students should be able to: ✓ Describe the position of the pituitary gland. ✓ List the structures related to the pituitary gland. ✓ Differentiate between the lobes of the gland. ✓ Describe the blood supply of pituitary gland & the hypophyseal portal system. الغدة النخامية Pituitary Gland (also called Hypophysis Cerebri) o It is referred to as the master of endocrine glands. o It is a small oval structure 1 cm in diameter. o It doubles its size during pregnancy. lactation ,(الحمل) pregnancy ,(الحيض) A women experiences changes in her hormone levels during menstruation But only the pituitary gland will only increase in size during pregnancy .(سن اليأس) and menopause ,(الرضاعة) X-RAY SKULL: LATERAL VIEW SAGITTAL SECTION OF HEAD & NECK Extra Pituitary Gland Position o It lies in the middle cranial fossa. o It is well protected in sella turcica* (hypophyseal fossa) of body of sphenoid o It lies between optic chiasma (anteriorly) & mamillary bodies** (posteriorly). Clinical point: *سرج الحصان Anterior to the pituitary gland is the optic chiasm, so if there was a tumor in the pituitary gland or it was ** Part of hypothalamus enlarged this could press on the chiasm and disrupt the patients vision (loss of temporal field). Extra Pictures The purple part is the sphenoid bone Hypophyseal fossa Pituitary Gland The relations are important Important Relations • SUPERIOR: Diaphragma sellae: A fold of dura mater covers the pituitary gland & has an opening for passage of infundibulum (pituitary stalk) connecting the gland to hypothalamus. -
Endocrinology Review – Adrenal and Thyroid Disorders
FOCUS: ENDOCRINOLOGY Endocrinology Review – Adrenal and Thyroid Disorders LINDA S. GORMAN, JANELLE M. CHIASERA LEARNING OBJECTIVES This article represents the first of three articles focusing 1. Define endocrinology and list the major endocrine on the endocrine system. The first article will provide glands of the body. you with fundamental theory regarding the endocrine system that will serve as a basis for understanding the 2. Explain how feedback (positive and negative) Downloaded from promotes maintenance of normal levels of next two articles focusing on two specific endocrine hormones. glands, the thyroid and adrenal glands. 3. Differentiate between steroid and peptide hormones with regard to their mechanism of Endocrinology is the branch of medical science that action. deals with the endocrine system, a system that consists 4. Provide examples of peptide and steroid hormones. of several glands located in different parts of the body http://hwmaint.clsjournal.ascls.org/ 5. Explain how endocrine disorders are categorized. that secrete hormones directly into the bloodstream. Although every organ system in the body may respond ABBREVIATIONS: ACTH - adrenocorticotropic hor- to hormones, endocrinology focuses specifically on mone; ADH - antidiuretic hormone; CRH – cortico- endocrine glands whose primary function is hormone tropin releasing hormone; DHEA – dehydroepian- secretion. Major endocrine glands include the pituitary drosterone; FSH - follicle stimulating hormone; GHRH (anterior and posterior), hypothalamus, thyroid, - growth hormone -
Relation of the Anterior Pituitary to Ovarian Function
University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1934 Relation of the anterior pituitary to ovarian function Clyde S. Martin University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Part of the Medical Education Commons Recommended Citation Martin, Clyde S., "Relation of the anterior pituitary to ovarian function" (1934). MD Theses. 621. https://digitalcommons.unmc.edu/mdtheses/621 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. e .,.,.~, THE RELATION OF THE ANTERIOR PITUITARY TO OVARIAN FUNCTION BY CLYDE S. MARTIN SE!HOR THESIS UNIVERSITY OF NEBRASKA SCHOOL OF MEDICINE APRIL I934 THE RELATIOM OF THE ANTERIOR PITUITARY TO OV ARIAJ.T FUNCTION !n ~be last ten years especially, there has been demonstrated and proved, a definite relationship between the pituitary and the sex glands. This is of importance to every clinician, and gynecologist. In order to understand these various phenomena produced by the internal secretion of the pituitary, it is advisable to give here a brief discussion of the anatomical structure, with slight reference to histology. ANATOMY A~TD HI~TOLOGY The pituitary body is situated in the cranium a.t the base of the brain, surrounded by a bony encasement the sella turcica. -
Surgical Indications and Techniques for Adrenalectomy Review
THE MEDICAL BULLETIN OF SISLI ETFAL HOSPITAL DOI: 10.14744/SEMB.2019.05578 Med Bull Sisli Etfal Hosp 2020;54(1):8–22 Review Surgical Indications and Techniques for Adrenalectomy Mehmet Uludağ,1 Nurcihan Aygün,1 Adnan İşgör2 1Department of General Surgery, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey 2Department of General Surgery, Bahcesehir University Faculty of Medicine, Istanbul, Turkey Abstract Indications for adrenalectomy are malignancy suspicion or malignant tumors, non-functional tumors with the risk of malignancy and functional adrenal tumors. Regardless of the size of functional tumors, they have surgical indications. The hormone-secreting adrenal tumors in which adrenalectomy is indicated are as follows: Cushing’s syndrome, arises from hypersecretion of glucocorticoids produced in fasciculata adrenal cortex, Conn’s syndrome, arises from an hypersecretion of aldosterone produced by glomerulosa adrenal cortex, and Pheochromocytomas that arise from adrenal medulla and produce catecholamines. Sometimes, bilateral adre- nalectomy may be required in Cushing's disease due to pituitary or ectopic ACTH secretion. Adenomas arise from the reticularis layer of the adrenal cortex, which rarely releases too much adrenal androgen and estrogen, may also develop and have an indication for adrenalectomy. Adrenal surgery can be performed by laparoscopic or open technique. Today, laparoscopic adrenalectomy is the gold standard treatment in selected patients. Laparoscopic adrenalectomy can be performed transperitoneally or retroperitoneoscopi- cally. Both approaches have their advantages and disadvantages. In the selection of the surgery type, the experience and habits of the surgeon are also important, along with the patient’s characteristics. The most common type of surgery performed in the world is laparoscopic transabdominal lateral adrenalectomy, which most surgeons are more familiar with. -
2. Endocrine Control of the Oestrous Cycle
2. ENDOCRINE CONTROL OF THE OESTROUS CYCLE Introduction 2.1 The cyclic changes that occur in the female reproductive tract are initiated and regulated by the hypothalamic-pituitary-ovarian (HPO) axis. Although folliculogenesis occurs independently of hormonal stimulation up until the formation of early tertiary follicles, the gonadotrophins luteinising hormone (LH) and follicle stimulating hormone (FSH) are essential for the completion of follicular maturation and development of mature preovulatory (Graafian) follicles. The sites of production and key functions of the major reproductive hormones in the female rat are summarised in Table 2.1. Pituitary gonadotrophin secretion drives follicular maturation and oestrogen secretion 2.2 Levels of LH and FSH begin to increase just after dioestrus. Both hormones are secreted by the same secretory cells (gonadotrophs) in the pars distalis of the anterior pituitary (adenohypophysis). FSH stimulates development of the zona granulosa and triggers expression of LH receptors by granulosa cells. LH initiates the synthesis and secretion of androstenedione and, to a lesser extent, testosterone by the theca interna; these androgens are utilised by granulosa cells as substrates in the synthesis of oestrogen. Pituitary release of gonadotrophins thus drives follicular maturation and secretion of oestrogen during prooestrus. 2.3 Gonadotrophin secretion by the anterior pituitary is regulated by luteinising hormone-releasing hormone (LHRH), produced by the hypothalamus. LHRH is transported along the axons of hypothalamic neurones to the median eminence where it is secreted into the hypothalamic-hypophyseal portal system and transported to the anterior pituitary. The hypothalamus secretes LHRH in rhythmic pulses; this pulsatility is essential for the normal activation of gonadotrophs and subsequent release of LH and FSH. -
Haemorrhagic Retroperitoneal Paraganglioma
Yang et al. BMC Surg (2020) 20:304 https://doi.org/10.1186/s12893-020-00953-y CASE REPORT Open Access Haemorrhagic retroperitoneal paraganglioma initially manifesting as acute abdomen: a rare case report and literature review Yanliang Yang1, Guangzhi Wang2, Haofeng Lu1, Yaqing Liu2, Shili Ning2† and Fuwen Luo2*† Abstract Background: Paragangliomas (PGLs) are extremely rare neuroendocrine tumours arising from extra-adrenal chro- mafn cells. PGLs are clinically rare, difcult to diagnose and usually require surgical intervention. PGLs mostly present catecholamine-related symptoms. We report a case of Acute abdomen as the initial manifestation of haemorrhagic retroperitoneal PGL. There has been only one similar case reported in literature. Case presentation: We present a unique case of a 52-year-old female with acute abdomen induced by haemor- rhagic retroperitoneal PGL. The patient had a 5-h history of sudden onset of serve right lower quadrant abdominal pain radiating to the right fank and right lumbar region. Patient had classic symptoms of acute abdomen. Abdominal ultrasound revealed a large abdominal mass with a clear boundary. A Computed Tomography Angiography (CTA) of superior mesenteric artery was also performed to in the emergency department. The CTA demonstrated a large retro- peritoneal mass measured 9.0 7.3 cm with higher density inside. A provisional diagnosis of retroperitoneal tumour with haemorrhage was made. ×The patient received intravenous fuids, broad-spectrum antibiotics and somatostatin. On the 3rd day of admission, her abdominal pain was slightly relieved, but haemoglobin decreased from 10.9 to 9.4 g/ dL in 12 h suggesting that there might be active bleeding in the abdominal cavity. -
Endocrine System-Full.Docx
2 Endocrine System In the name of ALLAH, the Most Gracious, the Most Merciful brothers and sisters, the "PATHOLOGY TEAM" is proud to present "ENDOCRINE PATHOLOGY" . hope that u find it helpful, and hope that u get full marks. thanks to our fans, our team members and, special thanks to those who worked on this project (see credits ^^). plz, give us your prayers. :) credits Done By Revised by ﻣﺎﺯﻥ ﺍﻟﻌﻤﺮﻭ thyroid part meshal_s `im lonly & ﺳﻌﺪ ﺍﻟﻌﻴﻴﺪ adrenal part ﺻﺎﻟﺢ ﺍﻟﻤﻄﻠﻖ i`m lonly ﻋﺎﺩﻝ ﺍﻷﺣﻴﺪﺏ diabetes mellitus part Page stylist : Dafoor Mo3aser Head of Pathology Team …… AZK 3 Endocrine System Hyperthyroidism -Thyrotoxicosis is a hypermetabolic state caused by elevated circulating levels of free T3 and T4. -Because thyrotoxicosis is caused most commonly by HYPERFUNCTION of the thyroid gland, it is often referred to as HYPERTHYROIDISM. -In certain conditions the oversupply is related either to excessive release of preformed thyroid hormone (e.g., in thyroiditis) or to an extra-thyroidal source, rather than to hyperfunction of the gland. Table 20-2. Cause of Thyrotoxicosis Associated with Hyperthyroidism PRIMARY Diffuse toxic hyperplasia (Graves disease) Hyperfunctioning ("toxic") multinodular goiter Hyperfunctioning ("toxic") adenoma SECONDARY TSH-secreting pituitary adenoma (rare)* Not Associated with Hyperthyroidism Subacute granulomatous thyroiditis (painful) Subacute lymphocytic thyroiditis (painless) Struma ovarii (ovarian teratoma with thyroid) Factitious thyrotoxicosis (exogenous thyroxine intake) *Associated with increased TSH; all other causes of thyrotoxicosis associated with decreased TSH. TSH, Thyroid-stimulating hormone. The clinical manifestations: Include changes referable to the hypermetabolic state induced by excessive amounts of thyroid hormone as well as those related to overactivity of the sympathetic nervous system. -
1 General Overview of the Endocrine System Questions to Be Thinking
General Overview of the Endocrine System Questions to be thinking about to help organize your learning of the components of the Endocrine System: Anatomy 1) Where are the different hormone producing cells located? 2) What hormone does a particular type of endocrine cell or neuron produce? General Overview of the Endocrine System Questions to be thinking about to help organize your learning of the components of the Endocrine System: Hormones 1) What is their general chemical structure? 2) How does their structure affect their function? 3) Where are they produced? 4) What environmental or physiological stimuli regulate their production and secretion? 5) Is their production and secretion under direct neural or hormonal control? 6) What are their targets? 7) What effects do they produce on their targets? 8) How do they produce their effects on their targets (how is the signal transduced? i.e. receptor mechanisms) 1 Often endocrine cells are clumped together into a well defined gland (e.g. pituitary, thyroid, adrenal, testes, ovaries), but not always (e.g. gut, liver, lung). Often endocrine cells are clumped together into a well defined gland (e.g. pituitary, thyroid, adrenal, testes, ovaries), but not always (e.g. gut, liver, lung). Remember, it's cells that produce hormones, not glands. Although many glands secrete more than one type of hormone, most neurons or endocrine cells only produce one type of hormone (there are a few exceptions). 2 Some Terminology Neurohormone: a hormone that is produced by a neuron Some Terminology All of the hormones we discuss can be classified as belonging to one of 2 general functional categories: 1] Releasing hormone (or factors) — hormone that acts on endocrine cells to regulate the release of other hormones. -
Major Endocrine Glands of the Body Pineal Gland Pituitary Gland
Pituitary and Thyroid Hormones 1 Topics for today: • Anterior pituitary hormones • Posterior pituitary hormones • Portal system & releasing factors • Structure of thyroid gland • Action of thyroid hormones 2 Major endocrine glands of the body pineal gland pituitary gland parathyroid glands thyroid gland adrenal glands thymus gland pancreas ovaries (female) testes (male) 3 1 Hydrophilic hormone action mechanism cytoplasm Extracellular fluid second messenger hormone Multiple effects in the cell membrane receptor 4 Example: Action of Epinephrine 5 Pituitary/hypothalamus axis ...interaction of nervous system & endocrine system 6 2 Pituitary secretions neurosecretory cells anterior pituitary in hypothalamus - TSH - ACTH - growth hormone posterior pituitary - FSH - oxytocin - luteining hormone - antidiuretic hormone - prolactin 7 Pituitary secretions neurosecretory cells anterior pituitary in hypothalamus - TSH - ACTH - growth hormone posterior pituitary - FSH - oxytocin - luteining hormone - antidiuretic hormone - prolactin 8 Physiologic effects of hormones from the anterior pituitary • TSH - stimulates release of hormones from thyroid • ACTH - stimulates release of hormones from adrenal cortex • growth hormone - stimulate growth of somatic tissues • FSH - stimulates gamete formation and follicle development • luteining hormone - affects corpus luteum & Leydig cells • prolactin - stimulates development of mammary ductules 9 3 Physiologic effects of hormones from the posterior pituitary •ADH - increases reabsorption of water from kidney tubules -
The Endocrine System Dr
The Endocrine System Dr. Ali Ebneshahidi Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Endocrine System . The endocrine system interacts with the nervous system to coordinate and integrate body activities by means of hormones . Endocrine tissues and organs secrete hormone into body fluids (mainly blood and lymph) directly using diffusion. Exocrine tissues, such as salivary glands, and sebaceous glands, secrete chemical substances through ducts into an open space. Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Five major functions of hormones . a) Regulate metabolic processes (e.g. thyroid hormones). b) Control the rate of chemical reactions (e.g. growth hormone). c) Aid in the transport of substances across the cell membrane of target cells (e.g. insulin and glucagon). d) Regulate water and electrolyte balances (e.g. antidiurectic hormone, calcitonin, and aldosterone). e) Play a vital role in reproduction, growth and development (e.g. estrogens , progesterone, and testosterone). Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Major Endocrine Organs Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Chemistry of Hormones . Hormones are organic compounds secreted by endocrine glands, that have a potent effect in target cells Two types of hormones: . a) Protein hormones: made of amino acids joined by peptide bonds. fat – insoluble; as a result cannot diffuse across the membrane of target cells . most hormones belong to this group except hormones secreted by the gonads (testis and ovary) and the adrenal cortex. b) Steroid hormones: made of fatty acids using cholesterol as a functional group. Fat-soluble; as a result can diffuse into target cells .