Endocrinology Review – Adrenal and Thyroid Disorders

Total Page:16

File Type:pdf, Size:1020Kb

Endocrinology Review – Adrenal and Thyroid Disorders FOCUS: ENDOCRINOLOGY Endocrinology Review – Adrenal and Thyroid Disorders LINDA S. GORMAN, JANELLE M. CHIASERA LEARNING OBJECTIVES This article represents the first of three articles focusing 1. Define endocrinology and list the major endocrine on the endocrine system. The first article will provide glands of the body. you with fundamental theory regarding the endocrine system that will serve as a basis for understanding the 2. Explain how feedback (positive and negative) Downloaded from promotes maintenance of normal levels of next two articles focusing on two specific endocrine hormones. glands, the thyroid and adrenal glands. 3. Differentiate between steroid and peptide hormones with regard to their mechanism of Endocrinology is the branch of medical science that action. deals with the endocrine system, a system that consists 4. Provide examples of peptide and steroid hormones. of several glands located in different parts of the body http://hwmaint.clsjournal.ascls.org/ 5. Explain how endocrine disorders are categorized. that secrete hormones directly into the bloodstream. Although every organ system in the body may respond ABBREVIATIONS: ACTH - adrenocorticotropic hor- to hormones, endocrinology focuses specifically on mone; ADH - antidiuretic hormone; CRH – cortico- endocrine glands whose primary function is hormone tropin releasing hormone; DHEA – dehydroepian- secretion. Major endocrine glands include the pituitary drosterone; FSH - follicle stimulating hormone; GHRH (anterior and posterior), hypothalamus, thyroid, - growth hormone releasing hormone; GnRH – gona- parathyroid, pineal, pancreas, adrenal (cortex and dotropin releasing hormone; HPT - hypothalamus, medulla), and gonads (ovaries and testes). Figure 1 pituitary, target gland; LH - luteinizing hormone; shows the various locations of endocrine glands. MBST - membrane-bound signal transducer; SRE - on September 28 2021 steroid response element; TRH - thyrotropin releasing hormone; TSH - thyroid stimulating hormone INDEX TERMS: Endocrine Glands, Hormones, Hy- drocortosone, Hypoalamo-hypophyseal System, Pitui- tary-Adrenal System, Stress Clin Lab Sci 2013;26(2):107 Linda S. Gorman, PhD, MLS (ASCP)CM, University of Kentucky, Lexington, KY Janelle M. Chiasera, PhD, MT (ASCP), University of Alabama at Birmingham, Birmingham, Alabama Address for Correspondence: Linda S. Gorman, PhD, Figure 1. Location of the Major Endocrine Glands. Image reprinted MLS (ASCP)CM, CLS Education Co-ordinator, Associate with permission of John Nagy. Professor, 900 S. Limestone Ave, Rm 126G CTW, University of Kentucky, Lexington, KY 40536-0200, The HPT Axis (859)-218-0855, [email protected] The endocrine system is part of the body’s extracellular communication system that links the brain to various VOL 26, NO 2 SPRING 2013 CLINICAL LABORATORY SCIENCE 107 FOCUS: ENDOCRINOLOGY parts of the body and acts to control body metabolism, Releasing Hormone (CRH), which affects adrenal growth and development, and reproduction. The hormones, to ones that foster sexual characteristics production and circulating levels of hormones are (Gonadotropin Releasing Hormone) and growth controlled by means of a feedback process that links the (Growth Hormone Releasing Hormone). Our focus hypothalamus to the pituitary and the pituitary to a here is on the thyroid and adrenal glands so we will target gland. This linkage is referred to as the leave the other hypothalamic hormones for others to hypothalamus, pituitary, target gland (HPT) axis.1,2 discuss. (Figure 2, Table 1.) Refer to Figure 2. Table 1. Releasing Hormones and Their Effect on Pituitary and Target Glands Hypothalmus Releases trophic homormones that lead to release of smulators Hypothalamic Cellular Target/Pituitary Target Gland/Target Hormone Gland Hormone Gland Hormone(s) Downloaded from Pituitary Corticotropin Releasing Corticotroph/ Adrenal gland Hormone (CRH) ACTH (Cortisol) Smulang hormones are released that target the gland of interest Thyrotropin Releasing Thyrotroph/TSH Thyroid Gland/ Hormone (TRH) T3 and T4 Target gland http://hwmaint.clsjournal.ascls.org/ Growth Hormone Somatotroph/GH All tissues Once smulated, the gland releases the hormone for target Releasing Hormone (GHRH) Figure 2. Hypothalamus, Pituitary, Target Gland (HPT) axis Gonadotropin Releasing Gonadotroph/ Gonads/Testosterone Hormone (GnRH) LH and FSH and Estrogen In general terms, hormones are produced by specialized glands in one part of the body and travel through the bloodstream to result in a biological effect at a distant In the hypothalamus the tropic releasing hormones site. The hypothalamus is considered to be the “master come from neurons in the anterior hypothalamus and gland” of this axis as it takes signals from cortical are released thru the portal veins to the pituitary inputs, autonomic function, and other environmental sinusoids. The hypothalamic hormones stimulate the on September 28 2021 triggers and delivers signals (via releasing hormones) to selective pituitary release of hormones, often called 4 target cell types in the pituitary gland. The pituitary “stimulating hormones”. The pituitary stalk links the gland responds by releasing hormones that act on target posterior pituitary with the part of the hypothalamus glands to produce specific target gland hormones. For that secretes anti-diuretic hormone (ADH) and 4 example, thyrotrophin releasing hormone (TRH) oxytocin. These hormones are associated with the produced by the hypothalamus acts on thyrotroph cells posterior pituitary and not of interest here. of the pituitary gland to produce thyroid stimulating hormone (TSH). Thyroid stimulating hormone acts The Thyrotrophic releasing hormone (TRH) and directly on the thyroid gland (target gland) to produce Corticotrophic releasing hormones of the hypothalamus thyroid hormones. Refer to Table 1 for other examples are released into the hypothalamic portal vein system of releasing hormones and their effect on pituitary and that is separate from the general human circulatory target glands.1,2 system. These releasing hormones can travel thru the portal veins to the pituitary without being evident in 4 The hypothalamus gland is located in the brain above the venous blood. Once the tropic hormones enter the the brain stem and below the thalamus.3 In humans, the pituitary sinusoids they can stimulate the pituitary to hypothalamus is the size of an almond. Its functions produce/secrete specific stimulating hormones, such as include releasing the trophic hormones called “releasing Thyroid Stimulating Hormone (TSH) if the hormones”. These trophic hormones span from hypothalamus sends TRH or Adenocorticotropic Thyrotropin Releasing Hormone (TRH), which affects hormone (ACTH) if the hypothalamus sends CRH. the release of thyroid hormones, Corticotropin (Figures 3 and 4) 108 VOL 26, NO 2 SPRING 2013 CLINICAL LABORATORY SCIENCE FOCUS: ENDOCRINOLOGY Mechanism of Action Hypothalmus All hormones act on their specific glands/tissues Corticotropin Releasing Hormone or CRH through receptors located on the surface or within the cytosol of the cell. The binding between the hormones and the receptor serves as an initial signal resulting in a Pituitary cascade of events that result in the production of a Adrenocorticotropic Hormone or ACTH protein. Hormones are divided into two broad categories, peptide (water soluble) and steroid (water insoluble). Refer to Table 2. While all hormones react Adrenal Gland (cortex) with receptors, their mechanism of action varies Cortisol hormone depending on how they are categorized. Because they are water soluble, peptide hormones must interact with receptors that are located at the surface of the cell. Once Downloaded from Figure 3. Adrenal gland stimulation to produce cortisol hormone. bound to its receptor, the hormone receptor complex activates a membrane-bound signal transducer (MBST). Hypothalmus Often this signal transducer is guanine nucleotide- yroid Releasing Hormone or TRH binding regulatory protein, also called the G-protein complex. The MBST is coupled to the adenylate cyclase http://hwmaint.clsjournal.ascls.org/ and phospholipase enzyme systems and once activated Pituitary results in the production of a peptide hormone. Due to yroid Stimulating Hormone or TSH their water insoluble nature, steroid hormones may diffuse across the surface of the cell membrane and bind to their receptors in either the cytoplasmic or nuclear yroid gland fractions of the cells. Once the steroid hormone binds yroid T4 yroid T3 to its receptor, the receptor undergoes a conformational change resulting in activation of the entire hormone receptor complex. The activated complex has an Figure 4. Thyroid stimulation by TSH to produce thyroid increased affinity for chromatin at a site referred to as hormones T4 and T3. the steroid response element (SRE). The SRE binding on September 28 2021 ultimately causes the production of the nuclear product- The Pituitary -a specific protein.6,7 Peptide hormones are synthesized The pituitary gland, with its stimulating hormones, is as preprohormones and are packaged into secretory like a bus stop or railroad station. The pituitary takes in vesicles providing a ready available storage pool of the messages from hypothalamic released hormones and hormones to draw from. Steroid hormones, on the responds by sending out its own stimulating hormones. other hand, are all produced from cholesterol and are By itself the pituitary is the size of a pea5 and is located available bound to proteins. Because they are protein between the two
Recommended publications
  • Endocrinology Resident Profile Jill Trinacty
    Endocrinology Resident Profile Jill Trinacty July 2017 About me My name is Jill Trinacty, and I was raised in Berwick, Nova Scotia. I went completed my BSc. (Honours) at Saint Francis Xavier University in Antigonish, Nova Scotia. I spent a year as the Active Living Coordinator with the Town of Kentville then completed my MD at Dalhousie University. I moved to Ottawa, Ontario in 2013 for my residency in Internal Medicine at the University of Ottawa and am currently a PGY-5 in Endocrinology and Metabolism. Why I chose General Endocrinology In medical school I became interested in almost every area of medicine, but ultimately applied to internal medicine for a number of reasons. I have always been interested in Endocrinology, specifically diabetes. Diabetes affects so many people in our communities and can have significant morbidity and mortality. I liked the detail of internal medicine and the complexity of patients. Having some previous experience in public health, I knew that I wanted a career that would allow me to discuss lifestyle changes as an aspect of therapy – specifically nutrition and physical activity. I also wanted a career that would allow for work/life balance. Seeing the day-to-day lifestyle of each internal medicine subspecialty confirmed that Endocrinology was the right fit for me. Clinical Life What does a typical day of clinical duties involve? This is an example of my typical daily and weekly schedule: Endocrinology – A typical day 7:30 – 8:00 Clerical work / Chief resident duties. Review emails, follow up on patient results, approve vacation requests, make call schedule.
    [Show full text]
  • Thyroid Hormones in Fetal Growth and Prepartum Maturation
    A J FORHEAD and A L FOWDEN Thyroid hormones and fetal 221:3 R87–R103 Review development Thyroid hormones in fetal growth and prepartum maturation A J Forhead1,2 and A L Fowden1 Correspondence should be addressed 1Department of Physiology, Development and Neuroscience, University of Cambridge, Physiology Building, to A L Fowden Downing Street, Cambridge CB2 3EG, UK Email 2Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK [email protected] Abstract The thyroid hormones, thyroxine (T4) and triiodothyronine (T3), are essential for normal Key Words growth and development of the fetus. Their bioavailability in utero depends on " thyroid hormones development of the fetal hypothalamic–pituitary–thyroid gland axis and the abundance " intrauterine growth of thyroid hormone transporters and deiodinases that influence tissue levels of bioactive " maturation hormone. Fetal T4 and T3 concentrations are also affected by gestational age, nutritional and " neonatal adaptation endocrine conditions in utero, and placental permeability to maternal thyroid hormones, which varies among species with placental morphology. Thyroid hormones are required for the general accretion of fetal mass and to trigger discrete developmental events in the fetal brain and somatic tissues from early in gestation. They also promote terminal differentiation of fetal tissues closer to term and are important in mediating the prepartum maturational effects of the glucocorticoids that ensure neonatal viability. Thyroid hormones act directly through anabolic effects on fetal metabolism and the stimulation of fetal oxygen Journal of Endocrinology consumption. They also act indirectly by controlling the bioavailability and effectiveness of other hormones and growth factors that influence fetal development such as the catecholamines and insulin-like growth factors (IGFs).
    [Show full text]
  • 1-Anatomy of the Pituitary Gland
    Color Code Important Anatomy of Pituitary Gland Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, students should be able to: ✓ Describe the position of the pituitary gland. ✓ List the structures related to the pituitary gland. ✓ Differentiate between the lobes of the gland. ✓ Describe the blood supply of pituitary gland & the hypophyseal portal system. الغدة النخامية Pituitary Gland (also called Hypophysis Cerebri) o It is referred to as the master of endocrine glands. o It is a small oval structure 1 cm in diameter. o It doubles its size during pregnancy. lactation ,(الحمل) pregnancy ,(الحيض) A women experiences changes in her hormone levels during menstruation But only the pituitary gland will only increase in size during pregnancy .(سن اليأس) and menopause ,(الرضاعة) X-RAY SKULL: LATERAL VIEW SAGITTAL SECTION OF HEAD & NECK Extra Pituitary Gland Position o It lies in the middle cranial fossa. o It is well protected in sella turcica* (hypophyseal fossa) of body of sphenoid o It lies between optic chiasma (anteriorly) & mamillary bodies** (posteriorly). Clinical point: *سرج الحصان Anterior to the pituitary gland is the optic chiasm, so if there was a tumor in the pituitary gland or it was ** Part of hypothalamus enlarged this could press on the chiasm and disrupt the patients vision (loss of temporal field). Extra Pictures The purple part is the sphenoid bone Hypophyseal fossa Pituitary Gland The relations are important Important Relations • SUPERIOR: Diaphragma sellae: A fold of dura mater covers the pituitary gland & has an opening for passage of infundibulum (pituitary stalk) connecting the gland to hypothalamus.
    [Show full text]
  • Chronic Fatigue: Is It Endocrinology?
    I ORIGINAL PAPERS Chronic fatigue: is it endocrinology? Kate M Evans, Daniel E Flanagan and Terence J Wilkin Kate M Evans ABSTRACT – Fatigue and stress-related illnesses imal physical signs where initial investigations are MRCP, Consultant often become diagnoses of exclusion after exten- normal. It is possible to reassure the individual that Physician sive investigation. ‘Tired all the time’ is a frequent there is no significant disease at that point but there Daniel E reason for referral to the endocrine clinic, the are no clear data to address the question of whether Flanagan implicit question being – is there a subtle overt pathology will develop in the future. This paper FRCP, Consultant endocrine pathology contributing to the patient’s reports audit findings for a cohort of patients seen Physician symptoms? Often initial assessment suggests not in an endocrinology clinic with fatigue, including but there are no clear data to address the ques- Terence J Wilkin outcome data at five or more years later. FRCP, Professor of tion of whether overt pathology will develop in the Medicine future. This study observed outcomes after five Subjects and methods years in 101 consecutive and unselected referrals Department of to secondary care for ‘fatigue?cause’, where initial Consecutive and unselected referrals from primary Endocrinology and assessment did not suggest treatable endocrine care to the endocrinology service over a four-year Metabolism, Peninsula Medical pathology. The findings suggest that the clinical period (1995–99) were identified from the clinic School, Plymouth diagnosis of fatigue, based on history and tests to database. Referrals were included in the dataset if the and Derriford exclude anaemia, hypothyroidism and diabetes, is primary reason for referral or primary symptom was Hospital, Plymouth secure: these patients do not subsequently fatigue.
    [Show full text]
  • Endocrinology Test List Endocrinology Test List
    For Endocrinologists Endocrinology Test List Endocrinology Test List Extensive Capabilities Managing patients with endocrine disorders is complex. Having access to the right test for the right patient is key. With a legacy of expertise in endocrine laboratory diagnostics, Quest Diagnostics offers an extensive menu of laboratory tests across the spectrum of endocrine disorders. This test list highlights the extensive menu of laboratory diagnostic tests we offer, including highly specialized tests and those performed using highly specific and sensitive mass spectrometry detection. It is conveniently organized by glandular function or common endocrine disorder, making it easy for you to identify the tests you need to care for the patients you treat. Comprehensive Care Quest Diagnostics Nichols Institute has been pioneering state-of-the-art endocrine testing for over four decades. Our commitment to innovative diagnostics and our dedication to quality and service means we deliver solutions that enable you to make informed clinical decisions for comprehensive patient management. We strive to remain at the forefront of innovation in endocrine testing so you can deliver the highest level of patient care. Abbreviations and Footnotes NDM, neonatal diabetes mellitus; MODY, maturity-onset diabetes of the young; CH, congenital hyperinsulinism; MSUD, maple syrup urine disease; IHH, idiopathic hypogonadotropic hypogonadism; BBS, Bardet-Biedl syndrome; OI, osteogenesis imperfecta; PKD, polycystic kidney disease; OPPG, osteoporosis-pseudoglioma syndrome; CPHD, combined pituitary hormone deficiency; GHD, growth hormone deficiency. The tests highlighted in green are performed using highly specific and sensitive mass spectrometry detection. Panels that include a test(s) performed using mass spectrometry are highlighted in yellow. For tests highlighted in blue, refer to the Athena Diagnostics website (athenadiagnostics.com/content/test-catalog) for test information.
    [Show full text]
  • Recommended Standards in Endocrinology and Diabetes for Undergraduate Medical Education and Suggested Strategy for Implementation
    Recommended standards in endocrinology and diabetes for undergraduate medical education and suggested strategy for implementation Prepared by the Society for Endocrinology in partnership with Diabetes UK and the Association of British Clinical Diabetologists Contents Background to the document 2 Remit of the Task Force 2 Task Force composition 3 Curriculum aims 3 Learning outcomes 4 Core knowledge 4 Experiences 5 Key skills 5 Topics in diabetes and endocrinology 6 Strategy for dissemination and implementation 12 Background to the document A task force for undergraduate medical education was established within the umbrella of the Society for Endocrinology’s (SfE) Clinical Committee in order to promote and enhance teaching of clinical endocrinology and diabetes in UK medical schools. Diabetes UK and the Association of British Clinical Diabetologists (ABCD) joined the working group to provide expertise in diabetes. This proposal outlines in brief the remit of the group, together with suggested minimum standards for the curriculum – both content and learning outcomes. The document also outlines suggestions for a strategy for their dissemination and enhanced interface with undergraduate students. There are no proposals for the methods by which medical schools should teach or implement the curriculum as this is likely to be medical school-specific. Remit of the SfE/Diabetes UK/ABCD Task Force for undergraduate medical school curriculum Development of minimum standards for the medical undergraduate curriculum content in endocrinology and diabetes
    [Show full text]
  • Clinical Characteristics of Pain in Patients with Pituitary Adenomas
    C Dimopoulou and others Pain in patients with 171:5 581–591 Clinical Study pituitary adenomas Clinical characteristics of pain in patients with pituitary adenomas C Dimopoulou1, A P Athanasoulia1,3, E Hanisch1, S Held1, T Sprenger2,4,5, T R Toelle2, J Roemmler-Zehrer3, J Schopohl3, G K Stalla1 and C Sievers1 1Department of Endocrinology, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany, Correspondence 2Department of Neurology, Technische Universita¨ tMu¨ nchen, Munich, Germany, 3Medizinische Klinik und Poliklinik should be addressed IV, Ludwig-Maximilians-University, Munich, Germany, 4Department of Neurology, University Hospital Basel, Basel, to C Sievers Switzerland and 5Division of Neuroradiology, Department of Radiology, University Hospital Basel, Basel, Email Switzerland [email protected] Abstract Objective: Clinical presentation of pituitary adenomas frequently involves pain, particularly headache, due to structural and functional properties of the tumour. Our aim was to investigate the clinical characteristics of pain in a large cohort of patients with pituitary disease. Design: In a cross-sectional study, we assessed 278 patients with pituitary disease (nZ81 acromegaly; nZ45 Cushing’s disease; nZ92 prolactinoma; nZ60 non-functioning pituitary adenoma). Methods: Pain was studied using validated questionnaires to screen for nociceptive vs neuropathic pain components (painDETECT), determine pain severity, quality, duration and location (German pain questionnaire) and to assess the impact of pain on disability (migraine disability assessment, MIDAS) and quality of life (QoL). Results: We recorded a high prevalence of bodily pain (nZ180, 65%) and headache (nZ178, 64%); adrenocorticotropic adenomas were most frequently associated with pain (nZ34, 76%). Headache was equally frequent in patients with macro- and microadenomas (68 vs 60%; PZ0.266).
    [Show full text]
  • Endocrinology.Pdf
    Specialty Certified Medical Assistant SCMA® Certification PREREQUISITES The Specialty Certified Medical Assistant SCMA® certification ensures that medical WHO CAN BE CERTIFIED? assistants are recognized for their superb skills and extensive knowledge in their field. The chance to sit for an SCMA® Exam is earned by either: We also provide physicians a way to quantify the experience and knowledge of medical assistant applicants. • Completing an accredited Medical Assistant program through an organization such as the Commission of Allied Health Education Programs (CAAHEP) or the Accreditation Bureau of Health Education Schools (ABHES) PLUS one year experience on the job ABOUT THE EXAM • Completion of a U.S. Military medical program PLUS two years active duty as a Corpsman, COVERAGE Medic, or similar Each comprehensive exam consists of 170 questions testing: • Extensive experience (3+ years) in the specific therapeutic field • General CMA Knowledge Once a member becomes certified, he/she must maintain a current certification by • General Clinical Knowledge paying annual dues as well as submitting a minimum of 6 continuing education units • Knowledge of Specific Therapeutic Specialty (CEUs) every year. It is essential that 3 out of 6 CEU credits be in the concerned Clinical Specialty. The remaining three CEU credits can be earned in general or administrative area. General and Clinical questions cover common medical terminology, abbreviations; diagnostics; We accept most forms of CEUs to include lectures, classes, training seminars (with signature of specimen collection; patient positioning; normal limits for tests and vitals; anatomy; practice manager), etc. as well as CE units offered through the AAMA medications; infections and infection control; sterilization procedures, emergency care and procedures; basic triage; first aid; minor surgical assist; patient assessment and basic office procedures.
    [Show full text]
  • BISC 529 Endocrinology Course Syllabus
    Course Syllabus BISC 529 Endocrinology Instructor: Dr. Christopher Leary Office Location: Shoemaker Room 416 Semester: Fall 2018 Office Hours: 9-11:00, MWF Lecture: Shoemaker Room 408 E-mail: [email protected] Lecture times: MWF 11:00-11:50 Phone: 915-1087 Course purpose: This course is designed to provide a broad overview of vertebrate endocrinology. Course topics will include the various classes of hormones, sources of hormones, production and synthesis of hormones, receptors and target tissues, mechanisms of action and regulation, and methods used in endocrinology. Lecture and readings from the primary literature will focus on classical endocrine systems. Learning objectives: Upon completion of this course students should be capable of effectively communicating how endocrine systems function. Students should develop the ability to integrate across multiple endocrine systems to better understand the complexity of endocrine-related disorders. Students should also be capable of critically evaluating information provided by the media and literature on the topic. Lastly, students should gain a general understanding of the approaches used to study various facets of endocrinology. Text: “Hormones” by A.W. Norman and H.L. Henry, Academic Press 3rd Edition Attendance: You are responsible for all information and material provided during class. Attendance is expected and may be recorded each day of class. To comply with attendance verification requirements, a report of your attendance will be made during the first two weeks of class. Exam and quiz make-up policy: Students can make-up missed exams or quizzes only under the following circumstances: 1) illness with physician documentation, 2) family emergency with contact person provided, 3) University-sponsored function with written documentation from sponsoring department.
    [Show full text]
  • Relation of the Anterior Pituitary to Ovarian Function
    University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1934 Relation of the anterior pituitary to ovarian function Clyde S. Martin University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Part of the Medical Education Commons Recommended Citation Martin, Clyde S., "Relation of the anterior pituitary to ovarian function" (1934). MD Theses. 621. https://digitalcommons.unmc.edu/mdtheses/621 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. e­ .,.,.~, THE RELATION OF THE ANTERIOR PITUITARY TO OVARIAN FUNCTION BY CLYDE S. MARTIN SE!HOR THESIS UNIVERSITY OF NEBRASKA SCHOOL OF MEDICINE APRIL I934 THE RELATIOM OF THE ANTERIOR PITUITARY TO OV ARIAJ.T FUNCTION !n ~be last ten years especially, there has been demonstrated and proved, a definite relationship between the pituitary and the sex glands. This is of importance to every clinician, and gynecologist. In order to understand these various phenomena produced by the internal secretion of the pituitary, it is advisable to give here a brief discussion of the anatomical structure, with slight reference to histology. ANATOMY A~TD HI~TOLOGY The pituitary body is situated in the cranium a.t the base of the brain, surrounded by a bony encasement the sella turcica.
    [Show full text]
  • Vitamin D Status and Its Relationship with Thyroid Function Parameters in Patients with Hypothyroidism
    Medical Laboratory Journal, Sep-Oct, 2019; Vol 13: No 5 Original Article Vitamin D Status and its Relationship with Thyroid Function Parameters in Patients with Hypothyroidism Mojtaba Zare Ebrahimabad (MSc) ABSTRACT Department of Biochemistry and Background and Objectives: Vitamin D is an essential secosteroid that plays a Biophysics, Metabolic Disorders Research Center, Faculty of Medicine, crucial role in the homeostasis of a few mineral elements, particularly calcium. Since vitamin Golestan University of Medical D deficiency and thyroid diseases are two important global health problems, we aimed to Sciences, Gorgan, Iran investigate a possible relationship of vitamin D and calcium levels with hypothyroidism in an Hanieh Teymoori (MSc) Department of Biochemistry and Iranian population. Biophysics, Metabolic Disorders Methods: This case-control study was conducted on 175 subjects with Research Center, Faculty of Medicine, hypothyroidism (75 males and 100 females) and 175 euthyroid controls (85 males and 90 Golestan University of Medical Sciences, Gorgan, Iran females) who were referred to a laboratory in Gorgan, Iran. Serum levels of 25- Hamid Reza Joshaghani (PhD) hydroxyvitamin D, calcium, thyroid-stimulating hormone (TSH), free triiodothyronine (free Professor of Clinical Biochemistry, T3) and thyroxine (total T4) were measured in all participants. Laboratory Sciences Research Center (LSRC), Golestan University of Results: Vitamin D and calcium were significantly lower in patients with Medical Sciences, Gorgan, Iran hypothyroidism (P<0.0001). Free T3 and calcium levels differed significantly among Corresponding author: Hamid Reza hypothyroid patients based on their vitamin D status (P<0.0001), but vitamin D levels were Joshaghani Tel: +98-1732436108 within sufficient range in all groups.
    [Show full text]
  • The Relationship Between Vitamin D Deficiency and Thyroid Function in the First Trimester of Pregnancy
    Original Article The relationship between Vitamin D deficiency and thyroid function in the first trimester of pregnancy Farahnaz Rostami 1, Lida Moghaddam-Benaem2, Navid Ghasemi 3, Sedighe Hantoushzadeh 4* 1Department of Midwifery & Reproductive Health, Faculty of Medical Sciences, Tarbiat Modares University, Al-e-Ahmad Highway, Tehran, Iran. 2 Department of Reproductive Health & Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. 3 Department of medicine, faculty of Medical Sciences Tehran, Islamic Azad University, Tehran, Iran.4 Maternal, fetal & Neonatal Research Center, Tehran University of Medical Sciences, Tehran, Iran. Abstract Aims and Objective: There are few studies about the relationship between vitamin D deficiency and thyroid hormone levels in pregnancy. This study aimed to assess the relation serum vitamin D levels with thyroid hormones in the first trimester of pregnancy in Iran. Methods: In this case-control research 430 pregnant women (215 mothers with vitamin D deficiency, and 215 without this deficiency) attending prenatal clinics in Tehran, Iran were studied. 25 hydroxy vitamin D levels and thyroid function tests [free tetraiodothyronine (FT4), thyroid stimulating hormone (TSH), and free triiodothyronine (FT3)] were measured in all mothers. Data were analyzed using SPSS version 22 software. Kolmogorov-Smirnov test was used for normality testing of continuous variables; Student T-Test, and Mann-Whitney U test were used to compare the continuous parametric and nonparametric variables respectively in the 2 study groups; Linear regression model was used to assess the effect of potentially effective variables besides vitamin D on thyroid function tests. Results: In Mann-Whitney U test performed, T4 levels (mean± SD) were significantly higher in vitamin D deficiency group compared with the control group (20.8 ±32.5 vs.14.4 ± 24.1 ng/dl, P-value: 0.04), but there were no significant differences between the 2 study groups regarding TSH, and free T3 levels.
    [Show full text]