And the Origins of Modern Meteorite Research URSULAB

Total Page:16

File Type:pdf, Size:1020Kb

And the Origins of Modern Meteorite Research URSULAB Meteor;t;cs & Planetary Science 3 1,545-588 (1996) a Meteoritical Society, 1996 Pnnted in USA. Invited Review Ernst Florens Friedrich Chladni (1756-1827) and the origins of modern meteorite research URSULAB. MARVIN Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02 138, USA Author's e-mail address: [email protected] (Received 1996 April 16; accepted in revised form 1996 July 3) ~ ~ Abstract-In 1794, Ernst F. F. Chladni published a 63-page book Uber den Ursprung der von Pallas gefun- denen und anderer ihr anlicher Eisenmassen und uber einige damit in Verbindung stehende Naturer- scheinungen in which he proposed that meteor-stones and iron masses enter the atmosphere from cosmic space and form fireballs as they plunge to Earth. These ideas violated two strongly held contemporary beliefs: (1) fragments of rock and metal do not fall from the sky, and (2) no small bodies exist in space beyond the Moon. From the beginning, Chladni was severely criticised for basing his hypotheses on his- torical eyewitness reports of falls which others regarded as folk tales and for taking gross liberties with the laws of physics. Eight years later, the study of fallen stones and irons was established as a valid field of investigation. Today, some scholars credit Chladni with founding meteoritics as a science; others regard his contributions as scarcely worthy of mention. Writings by his contemporaries suggest that Chladni's book alone would not have led to changes of prevailing theories; thus, he narrowly escaped the fate of those scientists who propose valid hypotheses prematurely. However between 1794 and 1798, four falls of stones were witnessed and widely publicized. There followed a series of epoch-making analyses of fallen stones and "native irons" by the chemist Edward C. Howard and the mineralogist Jacques-Louis de Bournon. They showed that all the stones were much alike in texture and composition but significantly different from the Earth's known crustal rocks. Of primary importance was Howard's discovery of nickel in the irons and the metal grains of the stones. This linked the two as belonging to the same natural phenomenon. The chemical results, published in 1802 February, persuaded leading scientists in England, France, and Germany that bodies fall from the sky. Within a few months, chemists in France reported similar results and a new field of study was inaugurated internationally-although opposition lingered on until 1803 April, when nearly 3,000 stones fell at L'Aigle in Normandy and transformed the last skeptics into believers. Chladni immediately received full credit for his hypothesis of falls, but decades passed before his linking of falling bodies with fireballs received general acceptance. His hypothesis of their origin met with strong resistance from those who argued that stones formed within the Earth's atmosphere or were ejected by lunar volcanoes. After 1860, when both of these hypotheses were abandoned, there followed a century of debate between pro- ponents of an interstellar vs. a planetary origin. Not until the 1950s did conclusive evidence of their elliptical orbits establish meteorite parent bodies as members of the solar system. Thus, nearly 200 years passed before the questions of origin that Chladni raised finally were resolved. TABLE OF CONTENTS Portugal, 1796 ............................................................................... 564 Mulletiwu, 1795; Bielaya Tserkov, 1796; Salles, 1798 ................ 564 Ironmasses, 1794 April ................... Meteoritics in the Late-Eightee Late-Twentieth Centuries.. ............ Chladni's Hypotheses.................................. Fireballs ......................................................................................... 549 Stones and Irons from the Sky ...................................................... 551 551 Analyses By Edward Howard and Atmospheric Origin .................................................... 552 Jacques-Louis de Bournon: 1802 .......................................... 567 Chladni's Compilation of Witnessed Falls ........................................... 552 A Second Small Planet: Between Mars and Jupiter ..................... 568 EichstKdt, Bavaria, 1785 ............................................................... 552 Lunar Volcanic Origin: Laplace's Hypothesis? ........... Tabor, Bohemia, 1753 .............. The Debates Intensify.................. .................569 Hraschina (Agram), Croatia, 17 New Falls: Fresh Evidence ................................. Pre-eighteenthcentury Falls ......................................................... 554 The Fall at Salles, France, 1789: A Belated Additonal Eighteenth-Century Falls ......... 554 De Drke, 1803: The First Meteorite Classifi Native Irons .................................................... 556 The Fall at L'Aigle, France, 1803 ................................................. 571 The Pall .................................................... 556 Josdf Izam: Lithologie AfmosphPrique, 1803 .............. 572 The Mesh De Fierro, Camp0 del Cielo, Argentina ..................... 557 Metallography Of Irons: Thomson, 1804; The Aken (Aachen) Mass ....................... Von WidmanstKtten, 1808 ...................................................... 574 German Responses to Chladni, 1794 ............ Two More Small Planets Discovered Two Witnessed Falls, 1794-1795 ................. between Mars and Jupiter ................................. Siena, Italy, 1794 .......................................................................... 558 Pierre M. S. Bigot de Wold Cottage, England, 1795 December of Meteoritics, 1812 ................................. 577 Edward King On Fallen Stones, 1796 .................................................. 561 Meteorite Origins: From Responses to King's Book ............................................................. 562 Origins Within the Earth-Moon System ........................................ 577 News Relating to Meteorites Crisscrosses Europe Asteroidal versus Interstellar Origin, circa 1854-1959 ................579 Stones Kept Falling ............................................... Meteorites from Asteroids and Other Planets 581 545 546 U. B. Marvin FIG. 1. Emst Florenz Friedrich Chladni. (Reproduced by courtesy of Deutschen Staatsbibliothek, Berlin.) Chladni and the origins of modern meteorite research 547 premature Ideas in Meteoritics ................................................ 583 right so early about his principal hypotheses that today many mete- TWO Treatises by Franz oriticists share the view expressed by Wolfgang Czegka (1993:376): The "Firsts" of William "Chladni founded meteoritics as a science by this paper." Ironmasses by Ernst Ch Catastrophic Impacts ..... Others, more cautious, credit Chladni with laying the ground- Conclusions: The Founding work for meteoritics' but question whether any one person founds a Chladni's Views on the New Science: 1809.................................. 584 new science. A warning against such claims was issued in 1982 by IRONMASSES, 1794 APRIL Reijer Hooykaas (1906-1 994), the distinguished historian of science in The Netherlands. He argued that too many authors develop a ten- At Eastertime in 1794 April, a book by Ernst F. F. Chladni (Fig. dency to hero-worship and then exaggerate the intellectual virtues of 1) was published simultaneously in two cities: Leipzig, to reach their heroes and overlook the merits of earlier and contemporary physicists and astronomers in Germany, and Riga, to reach a Ger- scholars. Hooykaas (198 1-1 982:22) wrote, man-reading public in northern Europe. The book, On the Origin of Like most saints, those of the Church Scientific seem to perform the Mass of Iron found by Pallas and of other similar Ironmasses, miracles and, in some cases, they give birth to a new science, and on a Few Natural Phenomena Connected Therewith, commonly which before they appeared on the scene, existed at best in an em- is called Ironmasses (Fig. 2). By featuring in his title a large mass bryonic state. of iron described by Pallas, Chladni sought to capture some of the As one example, Hooykaas cited the following statement by R. widespread interest aroused by the book of travels in Siberia pub- Marcard in his 1938 history of chemistry and alchemy: lished in 1776 by the celebrated German natural historian Peter Chemistry, like Minerva of old, sprang fully grown from the head Simon Pallas (1741-181 1). The Few Natural Phenomena of the of a most eminent French savant named Lavoisier. title were fireballs and fallen stones and irons. We know better about chemistry. The roots of modern chem- From boyhood, Chladni, born in Wittenberg in 1756 November istry were established well before 1789 when Antoine-Laurent de 30, held strong interests in mathematics, physics, music, and natural Lavoisier (1 743-1 794) issued his Trait6 e'le'mentaire de Chimie in history. However, at the insistence of his father, a professor and Dean which he enunciated the principle of conservation of mass and pro- of Jurisprudence at the University in Wittenberg, he studied law and vided a wealth of new insights on chemical reactions and cornbina- philosophy at Leipzig and Wittenberg. In 1782, he earned his doc- tions. Earlier contributions of importance included the works of torate of philosophy and law at Leipzig. Soon afterward his father Torbern Bergman (1735-1784) in Sweden who had described the died, leaving him no fortune other than the freedom to pursue his apparatus and techniques for
Recommended publications
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Ron Hartman and the Lucerne Valley Meteorites by Robert Verish Ron Hartman and the Lucerne Valley Meteorites
    Meteorite Times Magazine Contents by Editor Featured Monthly Articles Accretion Desk by Martin Horejsi Jim's Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob's Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Meteorite Calendar by Anne Black Meteorite of the Month by Editor Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2011 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner.
    [Show full text]
  • Geological Survey Canada
    70-66 GEOLOGICAL PAPER 70-66 ., SURVEY OF CANADA DEPARTMENT OF ENERGY, MINES AND RESOURCES REVISED CATALOGUE OF THE NATIONAL METEORITE COLLECTION OF CANADA LISTING ACQUISITIONS TO AUGUST 31, 1970 J. A. V. Douglas 1971 Price, 75 cents GEOLOGICAL SURVEY OF CANADA CANADA PAPER 70-66 REVISED CATALOGUE OF THE NATIONAL METEORITE COLLECTION OF CANADA LISTING ACQUISITIONS TO AUGUST 31, 1970 J. A. V. Douglas DEPARTMENT OF ENERGY, MINES AND RESOURCES @)Crown Copyrights reserved Available by mail from Information Canada, Ottawa from the Geological Survey of Canada 601 Booth St., Ottawa and Information Canada bookshops in HALIFAX - 1735 Barrington Street MONTREAL - 1182 St. Catherine Street West OTTAWA - 171 Slater Street TORONTO - 221 Yonge Street WINNIPEG - 499 Portage Avenue VANCOUVER - 657 Granville Street or through your bookseller Price: 75 cents Catalogue No. M44-70-66 Price subject to change without notice Information Canada Ottawa 1971 ABSTRACT A catalogue of the National Meteorite Collection of Canada, published in 1963 listed 242 different meteorite specimens. Since then specimens from 50 a dditional meteorites have been added to the collection and several more specimens have been added to the tektite collection. This report describes all specimens in the collection. REVISED CATALOGUE OF THE NATIONAL METEORITE COLLECTION OF CANADA LISTING ACQUISITIONS TO AUGUST 31, 1970 INTRODUCTION At the beginning of the nineteenth century meteorites were recog­ nized as unique objects worth preserving in collections. Increasingly they have become such valuable objects for investigation in many fields of scienti­ fic research that a strong international interest in their conservation and pre­ servation has developed (c. f.
    [Show full text]
  • Report of the United States National Museum
    — THE METEORITE COLLECTION IN THE U. S. NATIONAL MUSEUM; A CATALOGUE OF METEORITES REPRESENTED NOVEMBER 1, 1886, By F. W. Clarke. The following catalogue has been prepared mainly to facilitate ex- changes and to aid in the upbuilding of the collection. In addition to the usual information as to title, date of fall, and weight of specimen, it has beeu thought well to give the source from which each example was obtained ; and it may be interesting to note that the meteorites ac- credited to Dr. J. Berrien. Lindsley were mainly received by him from the late Dr. J. Lawrence Smith. In the catalogue of the Shepard col- lection, now on deposit in the Museum, the arrangement of Professor Shepard himself has been followed without change. Including the Shepard meteorites, over 200 falls are now on exhibition, giving the entire collection a very respectable place among the larger collections of the world. The Tucson iron is unique, and therefore a cut of it is inserted. METEORIC IRONS. 1. Scriba, Oswego County, N. Y. Fouud about 1834. Fragment, 9.15 grammes. By exchange from S. C. H. Bailey. 2. Burlington, Otsego County, N. Y. Ploughed up previous to 1819. Weight of specimen, 76.87 grammes. By exchange from Prof. C. U. Shepard. 3. Lockport, Niagara County, N. Y. Ploughed up earlier thau 1845. Slice weigh- ing 155 grammes. By exchange from the cabinet of Yale College. 4. Jenny's Cheek, Wayne County, W. Va. Found in 1884. Several small frag- ments, 25.5 grammes in all; largest fragment, 15.3 grammes.
    [Show full text]
  • A Complete Bibliography of Publications in Journal for the History of Astronomy
    A Complete Bibliography of Publications in Journal for the History of Astronomy Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 10 May 2021 Version 1.28 Title word cross-reference $8.95 [Had84]. $87 [CWW17]. $89.95 [Gan15]. 8 = 1;2;3 [Cov15]. $90 [Ano15f]. $95 [Swe17c]. c [Kin87, NRKN16, Rag05]. mul [Kur19]. muld [Kur19]. [Kur19]. · $100 [Apt14]. $120 [Hen15b]. $127 [Llo15]. 3 [Ano15f, Ash82, Mal10, Ste12a]. ∆ [MS04]. $135.00 [Smi96]. $14 [Sch15]. $140 [GG14]. $15 [Jar90]. $17.95 [Had84]. $19.95 -1000 [Hub83]. -4000 [Gin91b]. -601 [Mul83, Nau98]. 20 [Ost07]. 2000 [Eva09b]. [Hub83]. -86 [Mar75]. -Ft [Edd71b, Mau13]. $24.95 [Lep14, Bro90]. $27 [W lo15]. $29 -inch [Ost07]. -year [GB95]. -Year-Old [Sha14]. $29.25 [Hea15]. $29.95 [Eva09b]. [Ger17, Mes15]. 30 [Mau13]. $31.00 [Bra15]. $34 [Sul14]. $35 Zaga´_ n [CM10]. [Ano15f, Dev14b, Lau14, Mir17, Rap15a]. $38 [Dan19b, Vet19]. $39.95 [Mol14b]. /Catalogue [Kun91]. /Charles [Tur07]. $39.99 [Bec15]. $40 [Dun20, LF15, Rob86]. /Collected [Gin93]. /Heretic [Tes10]. 40 [Edd71b]. $42 [Nau98]. $45 [Kes15]. /the [War08]. $49.95 [Ree20]. $49.99 [Bec15]. $50 [Kru17, Rem15]. $55 [Bon19b]. $60 [Mal15]. 0 [Ave18, Hei14a, Oes15, Swe17c, Wlo15, 600 [GB95]. $72 [Ave18]. $79 [Wil15]. 1 2 Ash82]. [Dic97a]. 1970 [Kru08]. 1971 [Wil75]. 1973 [Doe19]. 1975 [Ost80]. 1976 [Gin02d]. 1979 1 [Ano15f, BH73a, Ber14, Bru78b, Eva87b, [Ano78d].
    [Show full text]
  • Pres2014-0193.Pdf
    552.6 0200 I 40.............. ... A GUIDE Tv THE COLLECTION OF METEORITES IN THE DEPARTMENT OF MINERALOGY IN THE BRITISH MUSEUM (NATURAL HISTORY), CROMWELL ROAD, SOUTH KENSINGTON. PRINTED BY ORDER OF THE TRUSTEES. 1882. P 22250 TABLE OF CONTENrrS. :: 9 PAHllS On Meteorites . 5 Catalogue of the Collection :-1. AERO&IDERITES 23 II. AEROSIDEROLITES 27 III. AEROLITES. 28 Ind,ex to the Collection . 35 The Collection of Meteorites will be found on the First Floor, in the Pavilion at the end of the Mineral Gallery: the smaller specimens are arranged in the two central table·cases, and the larger ones on separate stands. The position of any Meteorite of which a name is known can be found by help of the Alphabetical Index and of the Catalogue. 568577 ON l\lETEORITES. The Capitals rifer to cOITespondin.!J Letters on the Cases, and iudicate tlie pal,ticulll1' llane of glalSs behind which a portion of the or(r;illal JIeteorite zedl befoulld. The Numbers rifer to those in the first c07umn of thc Gllta70.!Jue, pa.r;cs 23-34, and also to correspond­ in,If iYumbers p7aced with the specimens. TILL the beginning of the present century, the fall of stones from the sky seemed an event so strange that neither scientific men nor the mass of the people could be brought to credit its possibility. Such faJls are, indE'ed, recorded by the early w)'itE'J's of lllany nations, Hebrew, Chinese, Greek and Roman; hut the ,,'itnesses of these events bave been in general laughed at for their delusions: perhapfl this is less to be wondered at when ,'Ie remember that the witnesses of a fall have been usually few in llumber, unaccustomed to exact observation, and have had a common tendency towards exaggeration and superstition.
    [Show full text]
  • County Approves New Campground Site Dress-Up Days P
    KINGSBURYIN FOCUS: XXXXXXXXXXXXX JOURNAL PAGE XX The voice of our communities since 1880 WEDNESDAY, DECEMBER 9, 2020 kingsburyjournal.com | $1.50 NEWS FROM COUNTY COMMISSION LakeYOUR TOWNPreston Season starts with County approves new campground site dress-up days p. 12 Students make BY DONNA PALMLUND for Travis Steffensen. This hearing had that the spots would be for friends and Kingsbury Journal been continued several times since last family to stay. He said he is not going to festive music p. 14 fall. Steffensen wants to put up a small advertise, and there would be no public At Tuesday’s Kingsbury County campground south of his rural Arling- access. Commission meeting, the commission ton home near Twin Lakes. He plans Steffenson reported that he is in the De Smet convened as the Board of Adjustment to have about 10 campsites, along with process of acquiring water, sewer and to consider a conditional-use permit one other permanent spot. He stated power. He has contacted neighboring landowners. Two of them had concerns, Looking back at but he produced signatures from several Christmas Past p. 16 of his neighbors who were not in oppo- sition to it. He has also been in contact Guidelines for with the South Dakota Department of Transportation and the Department of p. 28 winter sports Health. Kingsbury County State's Attorney Gregg Gass, who facilitated the meeting, Spend this Advent read a list of conditions that Steffensen learning about Jesus p. 5 must meet in order to proceed. Stef- fensen’s brother, John Steffensen, spoke Time to write your in opposition to the project.
    [Show full text]
  • Compiled Thesis
    SPACE ROCKS: a series of papers on METEORITES AND ASTEROIDS by Nina Louise Hooper A thesis submitted to the Department of Astronomy in partial fulfillment of the requirement for the Bachelor’s Degree with Honors Harvard College 8 April 2016 Of all investments into the future, the conquest of space demands the greatest efforts and the longest-term commitment, but it also offers the greatest reward: none less than a universe. — Daniel Christlein !ii Acknowledgements I finished this senior thesis aided by the profound effort and commitment of my thesis advisor, Martin Elvis. I am extremely grateful for him countless hours of discussions and detailed feedback on all stages of this research. I am also grateful for the remarkable people at Harvard-Smithsonian Center for Astrophysics of whom I asked many questions and who took the time to help me. Special thanks go to Warren Brown for his guidance with spectral reduction processes in IRAF, Francesca DeMeo for her assistance in the spectral classification of our Near Earth Asteroids and Samurdha Jayasinghe and for helping me write my data analysis script in python. I thank Dan Holmqvist for being an incredibly helpful and supportive presence throughout this project. I thank David Charbonneau, Alicia Soderberg and the members of my senior thesis class of astrophysics concentrators for their support, guidance and feedback throughout the past year. This research was funded in part by the Harvard Undergraduate Science Research Program. !iii Abstract The subject of this work is the compositions of asteroids and meteorites. Studies of the composition of small Solar System bodies are fundamental to theories of planet formation.
    [Show full text]
  • Bulk Mineralogy of Lunar Crater Central Peaks Via Thermal Infrared Spectra from the Diviner Lunar Radiometer - a Study of the Moon’S Crustal Composition at Depth
    Bulk mineralogy of Lunar crater central peaks via thermal infrared spectra from the Diviner Lunar Radiometer - A study of the Moon’s crustal composition at depth Eugenie Song A thesis submitted in partial fulfillment of the requirements for the degree of Master of Sciences University of Washington 2012 Committee: Joshua Bandfield Alan Gillespie Bruce Nelson Program Authorized to Offer Degree: Earth and Space Sciences 1 Table of Contents List of Figures ............................................................................................................................................... 3 List of Tables ................................................................................................................................................ 3 Abstract ......................................................................................................................................................... 4 1 Introduction .......................................................................................................................................... 5 1.1 Formation of the Lunar Crust ................................................................................................... 5 1.2 Crater Morphology ................................................................................................................... 7 1.3 Spectral Features of Rock-Forming Silicates in the Lunar Environment ................................ 8 1.4 Compositional Studies of Lunar Crater Central Peaks ...........................................................
    [Show full text]
  • Observing the Lunar Libration Zones
    Observing the Lunar Libration Zones Alexander Vandenbohede 2005 Many Look, Few Observe (Harold Hill, 1991) Table of Contents Introduction 1 1 Libration and libration zones 3 2 Mare Orientale 14 3 South Pole 18 4 Mare Australe 23 5 Mare Marginis and Mare Smithii 26 6 Mare Humboldtianum 29 7 North Pole 33 8 Oceanus Procellarum 37 Appendix I: Observational Circumstances and Equipment 43 Appendix II: Time Stratigraphical Table of the Moon and the Lunar Geological Map 44 Appendix III: Bibliography 46 Introduction – Why Observe the Libration Zones? You might think that, because the Moon always keeps the same hemisphere turned towards the Earth as a consequence of its captured rotation, we always see the same 50% of the lunar surface. Well, this is not true. Because of the complicated motion of the Moon (see chapter 1) we can see a little bit around the east and west limb and over the north and south poles. The result is that we can observe 59% of the lunar surface. This extra 9% of lunar soil is called the libration zones because the motion, a gentle wobbling of the Moon in the Earth’s sky responsible for this, is called libration. In spite of the remainder of the lunar Earth-faced side, observing and even the basic task of identifying formations in the libration zones is not easy. The formations are foreshortened and seen highly edge-on. Obviously, you will need to know when libration favours which part of the lunar limb and how much you can look around the Moon’s limb.
    [Show full text]
  • Meteorite Mineralogy Alan Rubin , Chi Ma Index More Information
    Cambridge University Press 978-1-108-48452-7 — Meteorite Mineralogy Alan Rubin , Chi Ma Index More Information Index 2I/Borisov, 104, See interstellar interloper alabandite, 70, 96, 115, 142–143, 151, 170, 174, 177, 181, 187, 189, 306 Abbott. See meteorite Alais. See meteorite Abee. See meteorite Albareto. See meteorite Acapulco. See meteorite Albin. See meteorite acapulcoites, 107, 173, 179, 291, 303, Al-Biruni, 3 309, 314 albite, 68, 70, 72, 76, 78, 87, 92, 98, 136–137, 139, accretion, 238, 260, 292, 347, 365 144, 152, 155, 157–158, 162, 171, 175, 177–178, acetylene, 230 189–190, 200, 205–206, 226, 243, 255–257, 261, Acfer 059. See meteorite 272, 279, 295, 306, 309, 347 Acfer 094. See meteorite albite twinning, 68 Acfer 097. See meteorite Aldrin, Buzz, 330 achondrites, 101, 106–108, 150, 171, 175, 178–179, Aletai. See meteorite 182, 226, 253, 283, 291, 294, 303, 309–310, 318, ALH 77307. See meteorite 350, 368, 374 ALH 78091. See meteorite acute bisectrix, 90 ALH 78113. See meteorite adamite, 83 ALH 81005. See meteorite addibischoffite, 116, 167 ALH 82130. See meteorite Adelaide. See meteorite ALH 83009. See meteorite Adhi Kot. See meteorite ALH 83014. See meteorite Admire. See meteorite ALH 83015. See meteorite adrianite, 117, 134, 167, 268 ALH 83108. See meteorite aerogel, 234 ALH 84001. See meteorite Aeschylus, 6 ALH 84028. See meteorite agate, 2 ALH 85085. See meteorite AGB stars. See asymptotic giant branch stars ALH 85151. See meteorite agglutinate, 201, 212, 224, 279, 301–302, 308 ALHA76004. See meteorite Agpalilik. See Cape York ALHA77005.
    [Show full text]
  • LPSC YXI 473 O Lunar and Planetary Institute Provided by the NASA
    LPSC YXI 473 THE COMPOSITION OF THE CRUST IN THE ORIENTALE REGION OF THE MOON: A PRE-GALILEO VIEW. B. Ray ~awkel,P.D. Spudisz, P.G. ~uceyl,and J.F. ~elll,1 Planetary Geosciences Division, Hawaii Institute of Geophysics, University of Hawaii, Honolulu, HI 96822, 2~.~.~.~.,Flagstaff, AZ 86001. In December, 1990, the Galileo spacecraft will encounter the Moon and provide a wealth of new spectral data and imagery for the western limb region that can be used to address a variety of important lunar issues. In order to prepare for this encounter, we are in the process of collecting new spectral data for the Orientale region. In November, 1989, we obtained a large number of UVNlS spectra (0.4-0.8 pm) for the western limb and this data are currently being reduced and analyzed. Other observing runs are planned in the near future. The Orientale basin has been the subject of extensive geologic and remote sensing studies in recent years and much has been leamede.g-, l1p12 . The purpose of this paper is to review recent remote sensing studies of Orientale and summarize our current understanding of the composition of the crust in this region. The Orientale impact occurred in rugged highlands on the southwestern limb of the Moon and was the last of the major basin-forming events. Valuable insight concerning lateral and vertical changes in the composition of the lunar crust can be provided by studies of material exposed by lunar impact basins. These impacts have excavated material from a variety of depths and deposited this ejecta in a systematic manner.
    [Show full text]