Acids in Combination with Sodium Dodecyl Sulfate Caused Quality

Total Page:16

File Type:pdf, Size:1020Kb

Acids in Combination with Sodium Dodecyl Sulfate Caused Quality Acids in Combination with Sodium Dodecyl Sulfate Caused Quality Deterioration of Fresh-Cut Iceberg Lettuce during Storage in Modified Atmosphere Package Wenqiang Guan, Lihan Huang, and Xuetong Fan Abstract: Recent studies showed that sodium acid sulfate (SAS) and levulinic acid (LA) in combination with sodium dodecyl sulfate (SDS) was effective in inactivating human pathogens on Romaine lettuce. The present study investigated the effects of LA and SAS in combination with SDS (as compared with citric acid and chlorine) on the inactivation of E. coli O157:H7 and sensory quality of fresh-cut Iceberg lettuce in modified atmosphere packages during storage at 4 ◦C. Results showed that LA (0.5% to 3%) and SAS (0.25% to 0.75%) with 0.05% SDS caused detrimental effects on visual quality and texture of lettuce. LA- and SAS-treated samples were sensorially unacceptable due to development of sogginess and softening after 7 and 14 d storage. It appears that the combined treatments caused an increase in the respiration rate of fresh-cut lettuce as indicated by higher CO2 and lower O2 in modified atmosphere packages. On the positive side, the acid treatments inhibited cut edge browning of lettuce pieces developed during storage. LA (0.5%), SAS (0.25%), and citric acid (approximately 0.25%) in combination with SDS reduced population of E. coli OH157:H7 by 0.41, 0.87, and 0.58 log CFU/g, respectively, while chlorine achieved a reduction of 0.94 log CFU/g without damage to the lettuce. Therefore, compared to chlorine, LA and SAS in combination with SDS have limited commercial value for fresh-cut Iceberg lettuce due to quality deterioration during storage. Keywords: chlorine, citric acid, E. coli O157:H7, fresh-cut lettuce, levulinic acid, sodium acid sulfate Introduction Washing fresh-cut produce after cutting and prior to packag- Consumption of fresh-cut fruits and vegetables has been increas- ing is an important step in reducing microbial populations. Dif- ing in developed countries in recent years. However, this increase ferent washing chemical agents have been studied to determine in consumption is accompanied by increased frequencies of food- their efficacy in the inactivation of pathogenic bacteria on veg- Quality borne illnesses caused by the presence of human pathogens on etables (Venkitanarayanan and others 2002; Herdt and Feng 2009; Keskinen and others 2009). Chlorine (sodium hypochlorite, 50 to or even inside fresh produce (Lynch and others 2009). Pathogen S: Sensory & Food contamination of fresh produce can occur in the field, handling, 200 ppm) has been widely used in lettuce washes mainly to sanitize processing, packaging, and distribution (Beuchat 1996). Lettuce washing water and to prevent cross-contamination, but its effec- (Lactuca sativa) is among the most highly consumed fresh-cut veg- tiveness in reducing microbial population of fresh produce is very etables, being a traditional ingredient in salads, sandwiches, and limited, achieving less than 1 log CFU/g (where CFU = colony- other items found in self-service restaurants. It is, nevertheless, forming unit) reduction of common pathogens (Beuchat and oth- known as a vehicle for pathogens and toxins, being one of the ers 1998; Herdt and Feng 2009; Velazquez´ and others 2009). The main leafy vegetables involved in cases of foodborne outbreaks in limited efficacy of chlorine in reducing bacterial populations and the United States. (Da Cruz and others 2008; Mandrell 2009). A its adverse effects, such as formation of trihalomethanes upon re- number of E. coli O157:H7 outbreaks have been linked to shred- action with organic matter, have raised concerns by consumers ded ready-to-eat Iceberg lettuce and prepackaged, ready-to-eat against chlorine use and may lead to new regulatory restrictions salads containing Iceberg and other leafy greens (Mandrell 2009). in the future (Richardson and others 1998). Thus, there is a need Therefore microbial contamination needs to be minimized and to identify and evaluate alternative sanitizers for use on fresh-cut the pathogen must be inactivated. vegetables. Different washing chemical agents have been studied to determine their efficacy in the inactivation of pathogenic bacteria on fresh-cut lettuce (Sapers and others 2001; Francisco and others 2009; Herdt and Feng 2009; Olmez and Akbas 2009). MS 20100426 Submitted 4/19/2010, Accepted 6/22/2010. Author Guan is with Organic acids have shown to be effective in reducing bacteria Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, populations on some fresh-cut fruits and vegetables. Common National Engineering and Technology Research Center for Preservation of Agriculture types of acids available for use in fresh-cut fruits and vegetables Products, Tianjin 300384, China. Author Huang and Fan are with U.S. Dept. of are mainly organic acids such as citric acid, malic acid, and lactic Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, U.S.A. Direct inquiries to author Fan acid (Zhang and Farber 1996; Venkitanarayanan and others 2002; (E-mail: [email protected]). Rosa and others 2009). It has been reported that dipping of Iceberg lettuce in 0.5% citric acid or 0.5% lactic acid solution for 2 min C 2010 Institute of Food Technologists R r doi: 10.1111/j.1750-3841.2010.01786.x Vol. 75, Nr. 8, 2010 Journal of Food Science S435 Further reproduction without permission is prohibited Lettuce treated with acids . could be as effective as chlorine for reducing microbial populations acid in the diluted FIT solution was estimated to be 0.25% as on fresh-cut Iceberg lettuce (Akbas and Olmez 2007a). FIT, a determined by titrating 10 mL diluted FIT with 0.1 N sodium commercialized sanitizer, is a mixture of mainly citric acid and hydroxide. Table 1 shows the list of treatments and concentrations sodium dodecyl sulfate (SDS) in aqueous solution. and pH of each solution. All dipping solutions were prepared daily In recent years, some new types of acids, which have been using deionized water at 4 ◦C. designated by the U.S. Food and Drug Administration (FDA) as Pieces from 8 heads of lettuce were randomized at first. Then an generally recognized as safe (GRAS), have also attracted interest aliquot (300g) of samples was submerged in 1500 mL of one of the as alternative sanitizers for decontamination of fresh-cut products. solutions while agitated on a shaker (Model M49125, BigbillTM, Fan and others (2009) found that it is possible to use sodium acid Barnsteed Intl., Dubuque, Iowa, U.S.A.) at 100 rpm. After the sulfate (NaHSO4, SAS) to control browning while inhibiting the treatment, the samples were rinsed in deionized water with a ratio growth of microorganisms on apple slices. SAS is a compound of 1:10 (sample:water) for 1 min. The lettuce pieces were then that has been used as a pH control agent, leavening agent, and drained and dried in a hand held, manual salad spinner and placed a processing aid (Anonymous 2008). Current uses for SAS are into polypropylene plastic film bags (PDF961, Cryovac, Duncan, in dressings, sauces, marinades, fillings, beverages, cheeses, and S.C., U.S.A.) with an oxygen transmission of 7000 mL/m2/24 h syrups. Zhao and others (2009) have recently reported that com- and carbon dioxide transmission of 21000 mL/m2/24 h. The bining levulinic acid (CH3C(O)CH2CH2CO2H, LA) with SDS bag sizes were approximately 15 × 14 cm and there were dramatically increased the bactericidal activity of these 2 chemicals; 100 g cut lettuce per bag. The packaged slices were then vac- a combination of 3% LA acid and 1% SDS for 20 s reduced both uumed and flushed with N2 using a Multivac C450 packaging Salmonella and E. coli O157:H7 populations by 6.7 log CFU/g machine (Multivac Inc., Kansas City, Mo., U.S.A.), and stored at ◦ on fresh-cut Romaine lettuce. However, sensory quality of let- 4 C until analysis. Sensory evaluation, headspace O2,andCO2 tuce treated with SAS has not been studied after storage. LA, a in the packages were measured at 1, 7, and 14 d of storage. There keto acid, can be produced at low cost and in high yield from were 4 replicates for each treatment. renewable feedstocks, and the antimicrobial properties of LA have Analysis of headspace O2 and CO2 in packages. On each been reported (Anonymous 2007). The safety of LA and SDS for day of quality analysis, O2 and CO2 in the headspace of packages humans has been widely tested, and they have been designated by were analyzed using a portable O2 and CO2 analyzer (DuralTrak the U.S. FDA as GRAS for direct addition to food as flavoring 902 D, Quantek Instruments, Grafton, Mass., U.S.A.). Samples substance or adjunct and multipurpose additives, respectively (21 in the packages after gas analysis were then used for subsequent Code of Federal Regulations [CFR] 172.515; 21 CFR 172.822) quality analysis. (FDA 2009). Visual quality. Visual quality was assessed immediately after There is no study directly comparing different acid sanitizers headspace analysis of packages by a 3-member trained panel (Kader (citric acid, SAS, and LA) in terms of their effect on both sen- and others 1983; Fan and Sokorai 2008). Overall visual quality sory quality and inactivation of E. coli O157:H7. Therefore, the was rated on a 9 to 1 scale: 9 = excellent, essentially free from objective of the present study was to compare and identify the defects; 7 = good, minor defects, not objectable; 5 = fair, slightly S: Sensory & Food effects of LA and SAS in combination with SDS in comparison to moderately objectionable defects, lower limit of sales appeal; with chlorine and citric acid, 2 commercially used sanitizers, on 3 = poor, excessive defects, limit of salability; 1 = extremely Quality the inactivation of E.
Recommended publications
  • Sodium Dodecyl Sulfate
    Catalog Number: 102918, 190522, 194831, 198957, 811030, 811032, 811033, 811034, 811036 Sodium dodecyl sulfate Structure: Molecular Formula: C12H25NaSO4 Molecular Weight: 288.38 CAS #: 151-21-3 Synonyms: SDS; Lauryl sulfate sodium salt; Dodecyl sulfate sodium salt; Dodecyl sodium sulfate; Sodium lauryl sulfate; Sulfuric acid monododecyl ester sodium salt Physical Appearance: White granular powder Critical Micelle Concentration (CMC): 8.27 mM (Detergents with high CMC values are generally easy to remove by dilution; detergents with low CMC values are advantageous for separations on the basis of molecular weight. As a general rule, detergents should be used at their CMC and at a detergent-to-protein weight ratio of approximately ten. 13,14 Aggregation Number: 62 Solubility: Soluble in water (200 mg/ml - clear, faint yellow solution), and ethanol (0.1g/10 ml) Description: An anionic detergent3 typically used to solubilize8 and denature proteins for electrophoresis.4,5 SDS has also been used in large-scale phenol extraction of RNA to promote the dissociation of protein from nucleic acids when extracting from biological material.12 Most proteins bind SDS in a ratio of 1.4 grams SDS to 1 gram protein. The charges intrinsic to the protein become insignificant compared to the overall negative charge provided by the bound SDS. The charge to mass ratio is essentially the same for each protein and will migrate in the gel based only on protein size. Typical Working Concentration: > 10 mg SDS/mg protein Typical Buffer Compositions: SDS Electrophoresis
    [Show full text]
  • Sodium Dodecyl Sulfate-Coated Alumina and C18 Cartridge for The
    J. Braz. Chem. Soc., Vol. 19, No. 8, 1523-1530, 2008. Printed in Brazil - ©2008 Sociedade Brasileira de Química 0103 - 5053 $6.00+0.00 Article Sodium Dodecyl Sulfate-Coated Alumina and C18 Cartridge for the Separation and Preconcentration of Cationic Surfactants Prior to their Quantitation by Spectrophotometric Method Mohammad Ali Karimi,*,a,b Reza Behjatmanesh-Ardakani,b Ali Aghaei Goudi b and Sara Zali b aDepartment of Chemistry, Faculty of Science, Payame Noor University (PNU), Sirjan, Iran bDepartment of Chemistry, Faculty of Science, Payame Noor University (PNU), Ardakan, Iran Um novo método de extração em fase sólida foi desenvolvido para separar e pré-concentrar traços de tensoativos catiônicos, tais como, brometo de dodeciltrimetilamônio (DTAB), brometo de cetiltrimetilamônio (CTAB) e cloreto de cetilpiridínio (CPC). Esse método é baseado na sorção do tensoativo aniônico (AS−), dodecilssulfato de sódio (SDS), sobre a superfície de γ-alumina, + enquanto um cartucho C18 é utilizado para a pré-concentração dos tensoativos catiônicos (CS ). O método espectrofotométrico, utilizado para a determinação dos tensoativos catiônicos, baseia-se na competição entre o corante catiônico, azul de metileno (MB+), e o CS+, para associação e formação do complexo SDS. O íon complexo formado (MB+) pode ser quantitativamente substituído pelo CS+, levando a um aumento da absorvância medida em 662 nm. Foram estabelecidas ótimas condições experimentais para a separação, pré-concentração e determinação dos tensoativos catiônicos. Sob essas condições otimizadas, realizou-se a pré-concentração (2×) e os resultados mostraram que a determinação do CPC, DTAB e CTAB poderia ser realizada nas faixas de concentração de 1×10-5-2×10-4, 4×10-5-5×10-4 and 5×10-5-5×10-4 mol L-1, respectivamente.
    [Show full text]
  • Sodium Lauryl Sulfate 1 Sodium Lauryl Sulfate
    Sodium lauryl sulfate 1 Sodium lauryl sulfate Sodium dodecyl sulfate Identifiers [1] CAS number 151-21-3 [2] ATC code A06 AG11 Properties Molecular formula NaC H SO 12 25 4 Molar mass 288.38 g mol−1 Density 1.01 g/cm³ Melting point 206 °C [3] (what is this?) (verify) Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) Infobox references Sodium lauryl sulfate (SLS), sodium laurilsulfate or sodium dodecyl sulfate (SDS or NaDS) (C H SO Na) is 12 25 4 an anionic surfactant used in many cleaning and hygiene products. The molecule has a tail of 12 carbon atoms, attached to a sulfate group, giving the molecule the amphiphilic properties required of a detergent. SLS is a highly effective surfactant and is used in any task requiring the removal of oily stains and residues. For example, it is found in higher concentrations with industrial products including engine degreasers, floor cleaners, and car wash soaps. It is used in lower concentrations with toothpastes, shampoos, and shaving foams. It is an important component in bubble bath formulations for its thickening effect and its ability to create a lather. Research showed that SLS is not carcinogenic when either applied directly to skin or consumed.[4] It has however been shown to irritate the skin of the face with prolonged and constant exposure (more than an hour) in young adults.[5] A clinical study found SLS toothpaste caused a higher frequency of aphthous ulcers than both cocoamidopropyl betaine or a detergent-free paste, on 30 patients with frequent occurrences of such ulcers.[6] A clinical study comparing toothpastes with and without SLS found that it had no significant effect on ulcer patterns.[7] Sodium lauryl sulfate 2 Applications SLS is a highly effective surfactant and is used in any task requiring the removal of oily stains and residues.
    [Show full text]
  • Hazard Communication Chemical Inventory Form
    Hazard Communication Chemical Inventory Form ESTIM. CAS STATE QTY. USAGE ROOM SDS DATE OF CHEMICAL NAME COMMON NAME MANUFACTURER NUMBER S,L,G ON HAND PER YEAR CAMPUS NO. DEPARTMENT ? INV. 90wGear Oil NAPA L 5 gal 1 Gal AVC Auto shop Facilities Y 4/2/2018 Acetylene Gas Airgas USA G 33 cu ft 4 cu ft AVC Auto shop Facilities Y 4/2/2018 Antifreeze (Ethylene Glycol) NAPA L 1 gal 2 Gal AVC Auto shop Facilities Y 4/2/2018 Brakleen CRC Industries G 8 cans 12 Cans AVC Auto shop Facilities Y 4/2/2018 CBC Plus Bowl Cleaner ECOLAB L 60 72 AVC Auto shop Facilities Y 4/2/2018 DOT3 Brake Fluid NAPA Mixture L 1 QT 1 QT AVC Auto shop Facilities Y 4/2/2018 Hydraulic Oil NAPA L 10 gal 4 gal AVC Auto shop Facilities Y 4/2/2018 Motor Oil NAPA L 48 Qt 32 Qt AVC Auto shop Facilities Y 4/2/2018 Oxygen Gas Airgas USA G 33 cu ft 10 cu ft AVC Auto shop Facilities Y 4/2/2018 Toluidine Blue 2% Carolina 92-31-9 L 20mL 0mL AVC B112 Science SDS 1/22/2018 Isopropyl Alcohol 2-Propanol, Isopropanol JT Baker(Avantor) 67-63-0 L 75mL 5mL AVC B112 Science SDS 1/22/2018 Ammonium Molybdate ammonium molybdate(VI), tetrahydrate, molybdicFlinn acid 12027-67-7 S 15g 10g AVC B112 Science SDS 1/22/2018 Ammonium Chloride ammonium muriate, sal ammoniac Flinn 12125-02-9 S 40g 5g AVC B112 Science SDS 1/22/2018 Ethylene Glycol Anti-Freeze JT Baker(Avantor) 107-21-1 L 1.25L 10mL AVC B112 Science SDS 1/22/2018 Sodium Bicarbonate Baking Soda VWR (Wards) 144-55-8 S 1,020g 10g AVC B112 Science No 1/22/2018 Sodium Borate Borax VWR 1303-96-4 S 225g 10g AVC B112 Science SDS 1/22/2018 Calcium Metal
    [Show full text]
  • Sodium Laurilsulfate Used As an Excipient
    9 October 2017 EMA/CHMP/351898/2014 corr. 1* Committee for Human Medicinal Products (CHMP) Sodium laurilsulfate used as an excipient Report published in support of the ‘Questions and answers on sodium laurilsulfate used as an excipient in medicinal products for human use’ (EMA/CHMP/606830/2017) * Deletion of the E number. Please see the corrected Annex for further details. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. Sodium laurilsulfate used as an excipient Table of contents Executive summary ..................................................................................... 3 Introduction ................................................................................................ 4 Scientific discussion .................................................................................... 4 1. Characteristics ....................................................................................... 4 1.1 Category (function) ............................................................................................. 4 1.2 Properties........................................................................................................... 4 1.3 Use in medicinal products ..................................................................................... 5 1.4 Regulatory
    [Show full text]
  • United States Patent (19) 11) Patent Number: 5,073,374 Mccarty 45 Date of Patent: Dec
    United States Patent (19) 11) Patent Number: 5,073,374 McCarty 45 Date of Patent: Dec. 17, 1991 54 FAST DISSOLVING BUCCAL TABLET 1380171 1/1975 United Kingdom . 21888.43 10/1987 United Kingdom . 75 Inventor: John A. McCarty, Biscayne Park, 04342 7/1987 World Int. Prop. O. .......... 424/435 Fla. OTHER PUBLICATIONS 73 Assignee: Schering Corporation, Kenilworth, N. Kornbloom and Stoopak, J. Pharm. Sci., 62:43-49 (1973). (21 Appl. No.: 278,099 Kahn and Rooke, Mfg. Chemist & Aerosol News, pp. 22 Filed: Nov. 30, 1988 25-26 (Jan. 1976). 51 int. Cl. ........................ A61K9/20: A61K 47/00 Kahn and Rooke, J. Pharm. Pharmacol., 28:633-636 52 U.S. Cl. .................................... 424/435; 424/434; (1976). 424/464; 424/465; 514/777 Primary Examiner-Thurman K. Page 58 Field of Search ................ 424/434, 435, 465,499 Assistant Examiner-James M. Spear 56 References Cited Attorney, Agent, or Firm-Anita W. Magatti; James R. Nelson U.S. PATENT DOCUMENTS 4,059,686 1/1977 Tanaka et al. ........................ 424/19 57 ABSTRACT 4,226,848 10/1980 Naggi et al. .......................... 424/19 A fast dissolving buccal tablet for administering a medi 4,292.299 9/1981 Suzuki et al. ......................... 424/16 4,572,832 2/1986 Kigasawa et al. .................... 424/19 canent includes the active ingredient, a lubricant and a 4,755,386 7/1988 Hsiao et al. ......................... 424/435 water soluble sugar, such as sorbitol, combined such that the buccal tablet dissolves in about one minute. FOREIGN PATENT DOCUMENTS 275853 10/1973 France . 10 Claims, No Drawings 5,073,374 1 2 the patient from swallowing the dosage form.
    [Show full text]
  • Microflex Gloves Chemical Compatibility Chart
    1 1 1 2 2 3 1 CAUTION (LATEX): This product contains natural rubber 2 CAUTION (NITRILE: MEDICAL GRADE): Components used 3 CAUTION (NITRILE: NON-MEDICAL GRADE)): These latex (latex) which may cause allergic reactions. Safe use in making these gloves may cause allergic reactions in gloves are for non-medical use only. They may NOT be of this glove by or on latex sensitized individuals has not some users. Follow your institution’s policies for use. worn for barrier protection in medical or healthcare been established. applications. Please select other gloves for these applications. Components used in making these gloves may cause allergic reactions in some users. Follow your institution’s policies for use. For single use only. NeoPro® Chemicals NeoPro®EC Ethanol ■NBT Ethanolamine (99%) ■NBT Ether ■2 Ethidium bromide (1%) ■NBT Ethyl acetate ■1 Formaldehyde (37%) ■NBT Formamide ■NBT Gluteraldehyde (50%) ■NBT Test Method Description: The test method uses analytical Guanidine hydrochloride ■NBT equipment to determine the concentration of and the time at which (50% ■0 the challenge chemical permeates through the glove film. The Hydrochloric acid ) liquid challenge chemical is collected in a liquid miscible chemical Isopropanol ■NBT (collection media). Data is collected in three separate cells; each cell Methanol ■NBT is compared to a blank cell which uses the same collection media as both the challenge and Methyl ethyl ketone ■0 collection chemical. Methyl methacrylate (33%) ■0 Cautionary Information: These glove recommendations are offered as a guide and for reference Nitric acid (50%) ■NBT purposes only. The barrier properties of each glove type may be affected by differences in material Periodic acid (50%) ■NBT thickness, chemical concentration, temperature, and length of exposure to chemicals.
    [Show full text]
  • Disposal of Solid Chemicals in the Normal Trash
    Disposal of Solid Chemicals in the Normal Trash Many solid chemicals can be safety discarded into the normal trash, provided they are in containers that are not broken or cracked and have tightly fitting caps. These chemicals are considered acceptable for ordinary disposal because they display none of the properties of hazardous waste, are of low acute toxicity, and have not been identified as having any chronic toxic effects as summarized in the National Institute of Occupational Safety and Health (NIOSH) “Registry of Toxic Effects of Chemical Substances”. Examples of chemicals acceptable for disposal as regular trash are listed below. To dispose of these chemicals, place the containers in a box lined with a plastic bag, tape the top of the box shut, write “Normal Trash” on the box and then place the box next to the lab trash container. Only solid forms of these chemicals can be disposed in this manner. Any questions about these chemicals or other chemicals that may be disposed of in the normal trash should be directed to the Hazardous Materials Technician (610) 330-5225. Chemicals Generally Acceptable for Disposal as Regular Trash Acacia powder, gum Detergent (most) Methyl salicylate Sodium carbonate arabic Cation exchange resins Methylene blue Sodium chloride Acid, Ascorbic Chromatographic Methyl stearate Sodium citrate Acid, Benzoic absorbents Nutrient agar Sodium dodecyl sulfate Acid, Boric Crystal violet Octacosane (SDS) Acid, Casamind Dextrin Parafin Sodium formate Acid, Citric Dextrose Pepsin Sodium iodide Acid, Lactic Diatomaceous
    [Show full text]
  • Contribution to the Production of Lactulose-Rich Whey by in Situ
    J. Dairy Sci. 99:1–19 http://dx.doi.org/10.3168/jds.2015-10037 © American Dairy Science Association®, 2016. Contribution to the production of lactulose-rich whey by in situ electro-isomerization of lactose and effect on whey proteins after electro-activation as confirmed by matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis Ourdia Kareb,*† Claude P. Champagne,†‡ and Mohammed Aïder†§1 *Department of Food Science, Université Laval, Quebec, Qc, G1V 0A6, Canada †Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Qc, G1V 0A6, Canada ‡Food Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant, St. Hyacinthe, Qc, J2S 8E3, Canada §Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec, Qc, G1V 0A6, Canada ABSTRACT findings of this study reveal that the whey treated by the safety electro-activation technology has both lact- Cheese-whey, a major co-product of the dairy indus- ulose-prebiotic and antioxidant properties and could try, has recently been the subject of many technologi- have a substantial application in the manufacture of cal applications. We studied the bioconversion of whey pharmaceutical and functional foods. into valuable bio-products such as a potential lactulose Key words: prebiotic whey, lactulose, electro- prebiotic and compounds with antioxidant properties. activation, isomerization, antioxidant capacity This paper examines efficiency, safety, and economics of electro-activation as an eco-friendly technology for a maximum valorization of whey. Thus, a bottom- INTRODUCTION up approach was therefore addressed. The effect of 4 Whey is the major co-product of the dairy industry experimental parameters—low working temperatures that is removed after the coagulation of casein during (0, 10, and 25°C), current intensities (400, 600, and cheese manufacturing (Zadow, 1994; Siso, 1996).
    [Show full text]
  • Evaluation of the Toxicity of Sodium Dodecyl Sulfate (SDS) in the Mucilair™ Human Airway Model in Vitro
    Evaluation of the Toxicity of Sodium Dodecyl Sulfate (SDS) in the MucilAir™ Human Airway Model In Vitro Clive S Roper, Joanne Vinall and Jonathan Welch Charles River Laboratories, Edinburgh, UK 1 INTRODUCTION 2 MATERIALS AND METHODS MucilAir™ is an in vitro airway model with morphology and functions mirroring the tracheo-bronchial epithelium. MucilAir™ units were obtained from 3 donors (1 unit per dose level from Donor 1 and 2 units per dose level from Donor 2 and Donor 3). SDS was MucilAir™ units comprise cells derived from human airway biopsies cultured at the air interface on permeable membranes obtained from Sigma-Aldrich, Dorset, UK. All other materials were obtained by Charles River and were analytical or tissue culture grade, as appropriate. by Epithelix Sàrl. This model is increasingly used in inhalation toxicity and pharmaceutical lead optimisation development and testing to identify potential airway toxicants and facilitate in vivo dose range finding. MucilAir™ was evaluated by treating units with SDS in saline solution (0-10 mM) for 24 h at a temperature of 37°C in a 5% CO2 atmosphere. The units were maintained in culture until 168 h post-dose. The monolayer integrity was determined by measurement of trans-epithelial electrical resistance ® MucilAir™ was evaluated for use in predicting upper airway toxicity. Tissues were treated with increasing concentrations (TEER) using a Millicell ERS meter at 0 h (pre-dose) and again at 24 h and 168 h post-dose. At 0, 24 and 168 h, the membrane integrity was assessed of sodium dodecyl sulphate (SDS). Monolayer integrity (trans-epithelial electrical resistance; TEER), membrane integrity by measurement of lactate dehydrogenase (LDH) release using the Promega CytoTox ONE™ Homogeneous Membrane Integrity Assay in culture (lactate dehydrogenase (LDH) release), metabolic competence (resazurin metabolism) and inflammatory mediator (IL-8) medium.
    [Show full text]
  • Solid Chemicals for the Normal Trash
    SOLID CHEMICALS FOR THE NORMAL TRASH Solid chemicals acceptable for disposal as regular trash are listed below: Acacia powder, gum arabic Calcium silicate Manganese sulfate Acid, Ascorbic Calcium sulfate Methyl red Acid, Benzoic Detergent (most) Methyl salicylate Acid, Boric Cation exchange resins Methylene blue Acid, Casamind Crystal violet Methyl stearate Acid, Citric Dextrin Nutrient agar Acid, Lactic Dextrose Octacosane Acid, Oleic Diatomaceous earth Parafin Acid, Phthalic Docosanoic acid Pepsin Acid, Salicycle Drierite (calcium sulfate, anhydrous) Peptone Acid, Silicic Ferric oxide Petroleum jelly Acid, Stearic Ferric phosphate Polyethylene, solid Acid, Succinic Ferric pyrophosphate Polystryene Acid, Tartaric Ferric sulfate Potassium acetate Acrylamide gels Ferrous ammonium sulfate Potassium bicarbonate Agar(s) Galactose Potassium bromide Albumen Geletin Potassium carbonate Alumina Gum arabic Potassium chloride Aluminum oxide Gum guaiac Potassium citrate Amino acids, naturally occurring Hexadecanol, 1- Potassium ferricyanide Ammonium bicarbonate Kaolin Potassium iodide Ammonium phosphate Lactose Potassium phosphate Ammonium sulfate Lanolin Potassium sodium tartrate Ammonium sulfamate Lauric acid Potassium sulfate Base, blood agar Lauryl sulfate Potassium sulfite Beef extract Lithium carbonate Potassium sulfocyanate Behenic acid Lithium chloride Pumice Bentonite Lithium sulfate Salts, naturally occurring Brain heart infusion Litmus Sand Bromphenol blue Magnesium carbonate Silica Broth, nutrient Magnesium chloride Silica gel, unused
    [Show full text]
  • First Line of Title
    ENHANCED REMOVAL OF SALMONELLA TYPHIMURIUM AND E. COLI O157:H7 FROM BLUEBERRIES AND STRAWBERRIES BY SOLUTIONS CONTAINING SODIUM DODECYL SULFATE AND ORGANIC ACIDS OR HYDROGEN PEROXIDE by Yingying Li A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Food Science Fall 2013 © 2013 Yingying Li All Rights Reserved ENHANCED REMOVAL OF SALMONELLA TYPHIMURIUM AND E. COLI O157:H7 FROM BLUEBERRIES AND STRAWBERRIES BY SOLUTIONS CONTAINING SODIUM DODECYL SULFATE AND ORGANIC ACIDS OR HYDROGEN PEROXIDE by Yingying Li Approved: __________________________________________________________ Changqing Wu, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Jack Gelb, Ph.D. Chair of the Department of Animal and Food Sciences Approved: __________________________________________________________ Mark W. Rieger, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: __________________________________________________________ James G. Richards, Ph.D. Vice Provost for Graduate and Professional Education ACKNOWLEDGMENTS My first and sincere appreciation goes to my advisor Dr. Changqing Wu for her continuous help and support in all stages of this thesis. I would like to thank my committee members Dr. Haiqiang Chen and Dr. Rolf Joerger for their interest in my work. In addition, I would like to thank my labmate, Wenqing Xu, who was always a great support in all my struggles and frustrations in my work and life in this country. I am also thankful to Melissa Ehrich, Kyle LeStrange, and Patrick Spanninger; they are wonderful labmates and friends. Finally, I would like to thank my parents for always believing in me, for their continuous love and their supports in my decisions.
    [Show full text]