Properties of Special Parallelograms

Total Page:16

File Type:pdf, Size:1020Kb

Properties of Special Parallelograms Project AMP Dr. Antonio Quesada – Director, Project AMP Properties of Special Parallelograms Lab Summary: This lab consists of four activities that lead students through the construction of a trapezoid. Students then explore the shapes, making conclusions about the angles, diagonals, and sides of the shapes. Key Words: trapezoid Background Knowledge: Students should be familiar with the basic geometry software commands. This lab does not provided step by step instructions for constructing a trapezoid. Therefore, students should understand that to construct a trapezoid, parallel lines must be constructed first to serve as the bases of a trapezoid. To construct the legs, students then must construct segments connecting the parallel lines. Learning Objectives: Students will identify the basic properties of trapezoids. Materials: Geometry software Suggested procedure: Split students into groups of two or three. Pass out worksheets Assessment: Check the completed worksheets and student constructions. Project AMP Dr. Antonio Quesada – Director, Project AMP Trapezoids Team members’ names: __________________________________________________ File name: ____________________________________________________________ Goal: Construct a trapezoid and analyze some of it properties. 1. This lab does not give you step by step instructions. Using your prior Cabri skills, construct a Trapezoid. The guidelines for a trapezoid are given below. A trapezoid has the following properties: · It is four sided · Two sides are parallel · Label the vertices K, L, M, and N An example is shown below: 2. In your own words, explain how you constructed this trapezoid: __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ The parallel sides of the trapezoid are called the bases and the nonparallel sides are called the legs. The angles at the ends of the base are called base angles. 3. What are the base angles and the sides (How many)? __________________________________________________________________ What are the leg angles and sides (How many)? __________________________________________________________________ Project AMP Dr. Antonio Quesada – Director, Project AMP Note: If students are not familiar with Cabri, press F1 on the keyboard. A help menu for each tool selected will appear on the bottom of the screen. Now, we will take a look at a special type of trapezoid called an isosceles trapezoid. 1. Construct a circle and label the center of the circle P [Use circle tool] 2. Draw a line P and label line l. [Use the line tool] 3. Label the points E and F that intersect the line and the circle [Use the point tool] 4. Pick a point Q inside the circle, not on P. [Use the point tool] 5. Construct a parallel line m to line l [Use the parallel line tool] 6. Label the intersection of this line and the circle points G and H. [Use the point tool] 7. Now construct segments EF , FG , GH , and HE . 8. Hide lines l and m and the circle. [Use hide and show tool] Measure the sides and angles of the isosceles trapezoid and complete the chart below: Name of Side Length Name of Angle Measurement What observations can you make about the bases, the legs and the base angles? __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ Complete the following properties: The bases of an isosceles trapezoid are always _______________________. The legs of an isosceles trapezoid are always ______________________. The base angles of an isosceles trapezoid are always _____________________. Project AMP Dr. Antonio Quesada – Director, Project AMP Now, compare and contrast trapezoids to the other quadrilaterals. Is a trapezoid a parallelogram (hint- defining characteristic of a parallelogram)? Why or why not? __________________________________________________________________________________ __________________________________________________________________________________ Is a trapezoid a kite (hint – what defines a kite)? Why or why not? __________________________________________________________________________________ __________________________________________________________________________________ Let’s reflect! In the space below, draw a rough sketch of each quadrilateral. Rhombus Parallelogram Rectangle Kite Trapezoid Square Project AMP Dr. Antonio Quesada – Director, Project AMP Note: If students are not familiar with Cabri, press F1 on the keyboard. A help menu for each tool selected will appear on the bottom of the screen Extension: Compare and contrast the different kinds of quadrilaterals. Display your information as a written summary, diagram or chart. Compare these finding to the hands-on experience with quadrilaterals, Lab #1. Complete a final Venn Diagram or tree (similar to a family tree) showing the relationship of the following quadrilaterals: isosceles trapezoid, kite, parallelogram, rectangle, rhombus, square, and trapezoid. Project AMP Dr. Antonio Quesada – Director, Project AMP Extension: Using Cabri construct a Venn Diagram that shows the relationship of quadrilaterals, parallelograms, rectangles, squares, kites, and trapezoids. An example of a Venn Diagram is shown below. Project AMP Dr. Antonio Quesada – Director, Project AMP Extension: Using Cabri construct a Venn Diagram that shows the relationship of quadrilaterals, parallelograms, rectangles, squares, kites, trapezoids, and isosceles trapezoids. An example of a Venn Diagram is shown below. .
Recommended publications
  • Properties of Equidiagonal Quadrilaterals (2014)
    Forum Geometricorum Volume 14 (2014) 129–144. FORUM GEOM ISSN 1534-1178 Properties of Equidiagonal Quadrilaterals Martin Josefsson Abstract. We prove eight necessary and sufficient conditions for a convex quadri- lateral to have congruent diagonals, and one dual connection between equidiag- onal and orthodiagonal quadrilaterals. Quadrilaterals with both congruent and perpendicular diagonals are also discussed, including a proposal for what they may be called and how to calculate their area in several ways. Finally we derive a cubic equation for calculating the lengths of the congruent diagonals. 1. Introduction One class of quadrilaterals that have received little interest in the geometrical literature are the equidiagonal quadrilaterals. They are defined to be quadrilat- erals with congruent diagonals. Three well known special cases of them are the isosceles trapezoid, the rectangle and the square, but there are other as well. Fur- thermore, there exists many equidiagonal quadrilaterals that besides congruent di- agonals have no special properties. Take any convex quadrilateral ABCD and move the vertex D along the line BD into a position D such that AC = BD. Then ABCD is an equidiagonal quadrilateral (see Figure 1). C D D A B Figure 1. An equidiagonal quadrilateral ABCD Before we begin to study equidiagonal quadrilaterals, let us define our notations. In a convex quadrilateral ABCD, the sides are labeled a = AB, b = BC, c = CD and d = DA, and the diagonals are p = AC and q = BD. We use θ for the angle between the diagonals. The line segments connecting the midpoints of opposite sides of a quadrilateral are called the bimedians and are denoted m and n, where m connects the midpoints of the sides a and c.
    [Show full text]
  • Midsegment of a Trapezoid Parallelogram
    Vocabulary Flash Cards base angles of a trapezoid bases of a trapezoid Chapter 7 (p. 402) Chapter 7 (p. 402) diagonal equiangular polygon Chapter 7 (p. 364) Chapter 7 (p. 365) equilateral polygon isosceles trapezoid Chapter 7 (p. 365) Chapter 7 (p. 402) kite legs of a trapezoid Chapter 7 (p. 405) Chapter 7 (p. 402) Copyright © Big Ideas Learning, LLC Big Ideas Math Geometry All rights reserved. Vocabulary Flash Cards The parallel sides of a trapezoid Either pair of consecutive angles whose common side is a base of a trapezoid A polygon in which all angles are congruent A segment that joins two nonconsecutive vertices of a polygon A trapezoid with congruent legs A polygon in which all sides are congruent The nonparallel sides of a trapezoid A quadrilateral that has two pairs of consecutive congruent sides, but opposite sides are not congruent Copyright © Big Ideas Learning, LLC Big Ideas Math Geometry All rights reserved. Vocabulary Flash Cards midsegment of a trapezoid parallelogram Chapter 7 (p. 404) Chapter 7 (p. 372) rectangle regular polygon Chapter 7 (p. 392) Chapter 7 (p. 365) rhombus square Chapter 7 (p. 392) Chapter 7 (p. 392) trapezoid Chapter 7 (p. 402) Copyright © Big Ideas Learning, LLC Big Ideas Math Geometry All rights reserved. Vocabulary Flash Cards A quadrilateral with both pairs of opposite sides The segment that connects the midpoints of the parallel legs of a trapezoid PQRS A convex polygon that is both equilateral and A parallelogram with four right angles equiangular A parallelogram with four congruent sides and four A parallelogram with four congruent sides right angles A quadrilateral with exactly one pair of parallel sides Copyright © Big Ideas Learning, LLC Big Ideas Math Geometry All rights reserved.
    [Show full text]
  • Cyclic Quadrilaterals
    GI_PAGES19-42 3/13/03 7:02 PM Page 1 Cyclic Quadrilaterals Definition: Cyclic quadrilateral—a quadrilateral inscribed in a circle (Figure 1). Construct and Investigate: 1. Construct a circle on the Voyage™ 200 with Cabri screen, and label its center O. Using the Polygon tool, construct quadrilateral ABCD where A, B, C, and D are on circle O. By the definition given Figure 1 above, ABCD is a cyclic quadrilateral (Figure 1). Cyclic quadrilaterals have many interesting and surprising properties. Use the Voyage 200 with Cabri tools to investigate the properties of cyclic quadrilateral ABCD. See whether you can discover several relationships that appear to be true regardless of the size of the circle or the location of A, B, C, and D on the circle. 2. Measure the lengths of the sides and diagonals of quadrilateral ABCD. See whether you can discover a relationship that is always true of these six measurements for all cyclic quadrilaterals. This relationship has been known for 1800 years and is called Ptolemy’s Theorem after Alexandrian mathematician Claudius Ptolemaeus (A.D. 85 to 165). 3. Determine which quadrilaterals from the quadrilateral hierarchy can be cyclic quadrilaterals (Figure 2). 4. Over 1300 years ago, the Hindu mathematician Brahmagupta discovered that the area of a cyclic Figure 2 quadrilateral can be determined by the formula: A = (s – a)(s – b)(s – c)(s – d) where a, b, c, and d are the lengths of the sides of the a + b + c + d quadrilateral and s is the semiperimeter given by s = 2 . Using cyclic quadrilaterals, verify these relationships.
    [Show full text]
  • Cyclic and Bicentric Quadrilaterals G
    Cyclic and Bicentric Quadrilaterals G. T. Springer Email: [email protected] Hewlett-Packard Calculators and Educational Software Abstract. In this hands-on workshop, participants will use the HP Prime graphing calculator and its dynamic geometry app to explore some of the many properties of cyclic and bicentric quadrilaterals. The workshop will start with a brief introduction to the HP Prime and an overview of its features to get novice participants oriented. Participants will then use ready-to-hand constructions of cyclic and bicentric quadrilaterals to explore. Part 1: Cyclic Quadrilaterals The instructor will send you an HP Prime app called CyclicQuad for this part of the activity. A cyclic quadrilateral is a convex quadrilateral that has a circumscribed circle. 1. Press ! to open the App Library and select the CyclicQuad app. The construction consists DEGH, a cyclic quadrilateral circumscribed by circle A. 2. Tap and drag any of the points D, E, G, or H to change the quadrilateral. Which of the following can DEGH never be? • Square • Rhombus (non-square) • Rectangle (non-square) • Parallelogram (non-rhombus) • Isosceles trapezoid • Kite Just move the points of the quadrilateral around enough to convince yourself for each one. Notice HDE and HE are both inscribed angles that subtend the entirety of the circle; ≮ ≮ likewise with DHG and DEG. This leads us to a defining characteristic of cyclic ≮ ≮ quadrilaterals. Make a conjecture. A quadrilateral is cyclic if and only if… 3. Make DEGH into a kite, similar to that shown to the right. Tap segment HE and press E to select it. Now use U and D to move the diagonal vertically.
    [Show full text]
  • The Quad Squad Conjectures About Quadrilaterals
    2 The Quad Squad Conjectures About Quadrilaterals Warm Up Learning Goals Classify each figure using as • Use diagonals to draw quadrilaterals. many names as possible. • Make conjectures about the diagonals of 1. special quadrilaterals. • Make conjectures about the angle relationships of special quadrilaterals. • Categorize quadrilaterals based upon their properties. • Make conjectures about the midsegments 2. of quadrilaterals. • Understand that the vertices of cyclic quadrilaterals lie on the same circle. 3. Key Terms • coincident • isosceles trapezoid • interior angle of a • midsegment © Carnegie Learning, Inc. 4. polygon • cyclic quadrilateral • kite You have classifi ed quadrilaterals by their side measurements and side relationships. What conjectures can you make about diff erent properties of quadrilaterals? LESSON 2: The Quad Squad • M1-127 GGEO_SE_M01_T02_L02.inddEO_SE_M01_T02_L02.indd 112727 55/22/18/22/18 112:512:51 PPMM GETTING STARTED Cattywampus A quadrilateral may be convex or concave. The quadrilaterals you are most familiar with—trapezoids, parallelograms, rectangles, rhombi, and squares—are convex. For a polygon to be convex it contains all of the line segments connecting any pair of points. It is concave if and only if at least Think one pair of its interior angles is greater than 180°. about: Consider the two quadrilaterals shown. A quadrilateral has exactly two diagonals. Why can a concave quadrilateral have Convex Concave only one angle greater than 180°? 1. Draw the diagonals in the two quadrilaterals shown. What do you notice? 2. Make a conjecture about the diagonals of a convex quadrilateral and about the diagonals of a concave quadrilateral. The diagonals of any convex quadrilateral create two pairs of vertical angles © Carnegie Learning, Inc.
    [Show full text]
  • CAIU Polygons and Quadrilaterals
    CK-12 FOUNDATION CAIU Polygons and Quadrilaterals Hankes CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform™. Copyright © 2011 CK-12 Foundation, www.ck12.org Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share Alike 3.0 Un- ported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc-sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), which is incorporated herein by this reference. Specific details can be found at http://www.ck12.org/terms. Printed: May 12, 2011 Author Wendy Hankes i www.ck12.org Contents 1 Angles in Polygons 1 1.1 Angles in Polygons ......................................... 1 2 Properties of Parallelograms 10 2.1 Properties of Parallelograms .................................... 10 3 Proving Quadrilaterals are Parallelograms 19 3.1 Proving Quadrilaterals are Parallelograms ............................ 19 4 Rectangles, Rhombuses 29 4.1 Rectangles, Rhombuses and Squares ............................... 29 5 Trapezoids and Kites 39 5.1 Trapezoids and Kites ........................................ 39 6 Quadrilaterals Review 53 6.1 Chapter 6 Review ......................................... 53 www.ck12.org ii Chapter 1 Angles in Polygons 1.1 Angles in Polygons Learning Objectives • Extend the concept of interior and exterior angles from triangles to convex polygons.
    [Show full text]
  • Chapter 7, Lesson 1 85
    Chapter 7, Lesson 1 85 Chapter 7, Lesson 1 18. They seem to be equal (and they seem to bisect each other). Set I (pages 260-261) Rhombuses. The aerial photographer Georg Gerster, the 19. They seem to be equal (and the opposite author of Below from Above (Abbeville Press, sides seem to be parallel). 1986), wrote about his photograph of the freeway overpass covered by carpets: 20. They seem to be perpendicular (and they "Years after having taken this photograph, I am seem to bisect each other). still amazed at this super-scale Paul Klee .... In Europe, special mats, a Swiss development, have •21. They are equiangular (or each of their been adopted. They retain the heat generated as angles is a right angle). the concrete hardens and make it unnecessary to 22. They are equilateral. keep wetting the concrete. The new procedure is more economical, though less colorful " Parallelograms. Theorem 24. 23. They seem to be parallel and equal. • 1. Two points determine a line. 24. They seem to be equal. 2. The sum of the angles of a triangle is 180°. 25. They seem to bisect each other. •3. Addition. SAT Problem. 4. Betweenness of Rays Theorem. •26. 2x + 2y = 180. (2x + 2y + 180 = 360.) 5. Substitution. 27. x + y = 90. Corollary. Set 11(pages 262-264) •6. The sum of the angles of a quadrilateral is Martin Gardner dedicated his book of mathemati• 360°. cal recreations, Penrose Tiles to Trapdoor Ciphers 7. Division. (W. H. Freeman and Company, 1989) to Roger Penrose with these words: 8.
    [Show full text]
  • State Whether Each Sentence Is True Or False. If False, Replace The
    Chapter 6 Study Guide and Review State whether each sentence is true or false. If 4. The base of a trapezoid is one of the parallel sides. false, replace the underlined word or phrase to SOLUTION: make a true sentence. 1. No angles in an isosceles trapezoid are congruent. One of the parallel sides of a trapezoid is its base. The statement is true. SOLUTION: By definition, an isosceles trapezoid is a trapezoid in ANSWER: which the legs are congruent, both pairs of base true angles are congruent, and the diagonals are 5. The diagonals of a rhombus are perpendicular. congruent. SOLUTION: Thus, the statement "No angles in an isosceles A rhombus has perpendicular diagonals. The trapezoid are congruent." is false. It should be "both statement is true. pairs of base angles". ANSWER: ANSWER: true false, both pairs of base angles 6. The diagonal of a trapezoid is the segment that connects the midpoints of the legs. 2. If a parallelogram is a rectangle, then the diagonals are congruent. SOLUTION: SOLUTION: A diagonal is a segment that connects any two nonconsecutive vertices. The midsegment of a A rectangle is a parallelogram with four right angles, trapezoid is the segment that connects the midpoint of opposite sides parallel, opposite sides congruent, the legs of the trapezoid. opposite angles congruent, consecutive angles are supplementary, and the diagonals bisect each other. Thus, the statement "The diagonal of a trapezoid is The statement is true. the segment that connects the midpoints of the legs." ANSWER: is false. It should be the "midsegment". true ANSWER: 3.
    [Show full text]
  • Classifying Shapes
    CHARACTERISTICS AND CLASSIFICATION OF SHAPES 1.3.1 and 1.3.2 Geometric shapes occur in many places. After studying them using transformations, students start to see certain characteristics of different shapes. In these lessons students look at shapes more closely, noticing similarities and differences. They begin to classify them using Venn diagrams. Students begin to see the need for precise names, which expands their geometric vocabulary. The last lesson introduces probability. See the Math Notes box in Lesson 1.3.1 for more information about Venn diagrams. Example 1 Decide which shapes from the Lesson 1.2.6 Resource Page belong in each section of the Venn diagram below. #1: Two pairs of parallel sides #1 #2 #2: All sides are the same length Circle #1, represents all shapes on the resource page that #1 #2 have two pairs of parallel sides. There are four figures on regular hexagon rectangle the resource page that have this characteristic: the rhombus equilateral triangle square rectangle, the square, the rhombus, and the parallelogram. parallelogram These shapes will be contained in circle #1. Circle #2 regular pentagon represents all shapes on the resource page that have sides all the same length. There are five figures with this characteristic: the regular hexagon, the equilateral triangle, the square, the rhombus, and the regular pentagon. All five of these shapes will be completely contained in Circle #2. There are two shapes that are on both lists: the square and the rhombus. These two shapes have all sides the same length and they have two pairs of parallel sides.
    [Show full text]
  • Polygons and Quadrilaterals
    www.ck12.org Chapter 6. Polygons and Quadrilaterals CHAPTER 6 Polygons and Quadrilaterals Chapter Outline 6.1 ANGLES IN POLYGONS 6.2 PROPERTIES OF PARALLELOGRAMS 6.3 PROVING QUADRILATERALS ARE PARALLELOGRAMS 6.4 RECTANGLES,RHOMBUSES AND SQUARES 6.5 TRAPEZOIDS AND KITES 6.6 CHAPTER 6REVIEW This chapter starts with the properties of polygons and narrows to focus on quadrilaterals. We will study several different types of quadrilaterals: parallelograms, rhombi, rectangles, squares, kites and trapezoids. Then, we will prove that different types of quadrilaterals are parallelograms or something more specific. 301 6.1. Angles in Polygons www.ck12.org 6.1 Angles in Polygons Learning Objectives • Extend the concept of interior and exterior angles from triangles to convex polygons. • Find the sums of interior angles in convex polygons. • Identify the special properties of interior angles in convex quadrilaterals. Review Queue 1. Find x and y. (a) (b) 2. (a) Find w◦,x◦,y◦, and z◦. (b) What is w◦ + y◦ + z◦? (c) What two angles add up to y◦? (d) What are 72◦,59◦, and x◦ called? What are w◦,y◦, and z◦ called? Know What? To the right is a picture of Devil’s Post pile, near Mammoth Lakes, California. These posts are cooled lava (called columnar basalt) and as the lava pools and cools, it ideally would form regular hexagonal columns. However, variations in cooling caused some columns to either not be perfect or pentagonal. First, define regular in your own words. Then, what is the sum of the angles in a regular hexagon? What would each angle be? 302 www.ck12.org Chapter 6.
    [Show full text]
  • Geometry Vocabulary Word Wall Cards
    Geometry Vocabulary Word Wall Cards Mathematics vocabulary word wall cards provide a display of mathematics content words and associated visual cues to assist in vocabulary development. The cards should be used as an instructional tool for teachers and then as a reference for all students. Table of Contents Reasoning, Lines, and Slope of Lines in Coordinate Plane Distance Formula Transformations Line Symmetry (Examples) Basics of Geometry 1 Point Symmetry (Examples) Basics of Geometry 2 Rotation (Origin) Geometry Notation Reflection Logic Notation Translation Set Notation Dilation Conditional Statement Perpendicular Bisector Converse Constructions: Inverse o A line segment congruent to a given line Contrapositive segment Symbolic Representations in Logical Arguments o Perpendicular bisector of a line segment Conditional Statements and Venn Diagrams o A perpendicular to a given line from a point Deductive Reasoning not on the line Inductive Reasoning o A perpendicular to a given line at a point on Direct Proofs the line Properties of Congruence o A bisector of an angle Law of Detachment o An angle congruent to a given angle Law of Syllogism o A line parallel to a given line through a Counterexample point not on the given line Perpendicular Lines o An equilateral triangle inscribed in a circle Parallel Lines o A square inscribed in a circle Skew Lines o A regular hexagon inscribed in a circle Transversal Corresponding Angles Triangles Alternate Interior Angles Classifying Triangles by Sides Alternate Exterior Angles Classifying Triangles
    [Show full text]
  • What Is Covered: 2.4, 2.5, 2.6 and Chapters 3 and 4 ( Sections That We Covered in Class) What to Bring: Picture ID, Pencil, Eraser, Calculator (Optional)
    Math 1312 - Review for Test 2 When: Friday, October 21. Where: In class What is covered: 2.4, 2.5, 2.6 and Chapters 3 and 4 ( sections that we covered in class) What to bring: Picture ID, pencil, eraser, calculator (optional). How to study: Study the class notes, solve all the problems we solved in class. Go over the homework problems. If you have time, I also suggest solving the exercises in the “review” part -at the end of the chapters. Below I provided some practice problems for you. This is not a complete list, studying only these problems is not enough! What is covered 2.4 The angles of a Triangle You need to know: Terms: Scalene Triangle, Isosceles Triangle, Equilateral Triangle, Acute Triangle, Obtuse Triangle, Right Triangle, And Equiangular Triangle. Facts: In a triangle, the sum of the measures of the interior angles is 180 °. Each angle of an equiangular triangle measures 60 °. The acute angles of a right triangle are complementary. The measure of an exterior angle of a triangle equals the sum of the measures of the two nonadjacent interior angles. You need to be able to: Classify triangles; Find the measure of an exterior angle giving the measures of two nonadjacent interior angles of a triangle; Use all of the above facts. 2.5 Convex Polygons You need to know: Terms: Polygon, Quadrilateral, Pentagon, Hexagon, Heptagon, Octagon, Nonagon, and Decagon. Facts: The sum S of the measures of the interior angles of a polygon with n sides is given by S = (n - 2) ∗ 180 °.
    [Show full text]