Triangles Shape Party

Total Page:16

File Type:pdf, Size:1020Kb

Triangles Shape Party Scalene Acute, Scalene Obtuse, Scalene Right, Isosceles Right, Isosceles Obtuse, Isosceles Acute, Equilateral 2 CARDS 2 CARDS 2 CARDS 2 THAT 2 THAT THAT CARDS HAVE CARDS HAVE HAVE THAT HAVE THAT HAVE At least 2 All sides of At least 2 angles Exactly 1 Exactly 1 sides of the different of different obtuse right same length length measurements angle angle 5-7 Players Scalene Acute Scalene Obtuse Scalene Right Equilateral Isosceles Acute Isosceles Obtuse Isosceles Right Scalene Obtuse Scalene Right Scalene Acute Scalene Obtuse Scalene Right Equilateral Isosceles Acute Isosceles Obtuse Equilateral Isosceles Acute Isosceles Obtuse Scalene Acute Scalene Obtuse Scalene Right Equilateral Isosceles Acute Isosceles Obtuse Scalene Acute Scalene Obtuse Scalene Right Scalene Acute Isosceles Right Isosceles Right Isosceles Right Isosceles Right Isosceles Obtuse Equilateral Isosceles Acute POLYGONS Equilateral Acute Triangle, Square, Right Trapezoid, Regular Pentagon, Irregular Pentagon, Irregular Hexagon, Scalene Obtuse Triangle, Regular Hexagon 2 CARDS 2 CARDS 2 CARDS 2 CARDS 3 CARDS THAT THAT THAT THAT THAT HAVE HAVE HAVE HAVE ARE Exactly 3 or At least 1 At least 3 At least 1 Regular exactly 4 Right Acute Angles Line of Polygons Sides Angle Symmetry SHAPE PARTY! 5-8 Players Scalene Acute Square Right Trapezoid Equilateral Acute Regular Pentagon Irregular Pentagon Regular Hexagon Irregular Hexagon Scalene Acute Square Right Trapezoid Equilateral Acute Regular Pentagon Irregular Pentagon Regular Hexagon Irregular Hexagon Scalene Acute Square Right Trapezoid Equilateral Acute Regular Pentagon Irregular Pentagon Regular Hexagon Irregular Hexagon Scalene Acute Square Right Trapezoid Equilateral Acute Regular Pentagon Irregular Pentagon Regular Hexagon Irregular Hexagon Scalene Acute Square Right Trapezoid Equilateral Acute Regular Pentagon Irregular Pentagon Regular Hexagon Irregular Hexagon shape shape shape party party party shape shape shape party party party shape shape shape party party party ISOSCELES ISOSCELES ISOSCELES TRAPEZOID TRAPEZOID TRAPEZOID ISOSCELES ISOSCELES ISOSCELES TRAPEZOID TRAPEZOID TRAPEZOID ISOSCELES ISOSCELES ISOSCELES TRAPEZOID TRAPEZOID TRAPEZOID shape shape shape party party party shape shape shape party party party shape shape shape party party party ISOSCELES RIGHT RIGHT TRAPEZOID TRAPEZOID TRAPEZOID RIGHT RIGHT RIGHT TRAPEZOID TRAPEZOID TRAPEZOID PARALLELOGRAM PARALLELOGRAM PARALLELOGRAM shape shape shape party party party shape shape shape party party party shape shape shape party party party PARALLELOGRAM PARALLELOGRAM RECTANGLE RECTANGLE RECTANGLE RECTANGLE RECTANGLE SQUARE SQUARE shape shape shape party party party shape shape shape party party party shape shape shape party party party SQUARE SQUARE SQUARE RHOMBUS RHOMBUS RHOMBUS RHOMBUS RHOMBUS KITE shape shape shape party party party shape shape shape party party party shape shape shape party party party KITE KITE KITE CONCAVE CONCAVE KITE QUADRILATERAL QUADRILATERAL CONCAVE CONCAVE CONCAVE QUADRILATERAL QUADRILATERAL QUADRILATERAL shape shape shape party party party shape shape shape party party party shape shape shape party party party PARTY PARTY PARTY ANIMAL ANIMAL ANIMAL PARTY PARTY POOPER PARTY POOPER ANIMAL PARTY POOPER PARTY POOPER QUADRILATERALS Parallelogram, Square, Rhombus, Right Trapezoid, Isosceles Trapezoid, Rectangle & Kite 2 CARDS 2 CARDS 2 CARDS 2 CARDS 3 CARDS THAT HAVE THAT HAVE THAT HAVE THAT HAVE THAT HAVE AT LEAST TWO SETS TWO SETS ONE PAIR OF AT LEAST TWO OF OF OPPOSITE ONE RIGHT OBTUSE CONGRUENT PARALLEL CONGRUENT ANGLE ANGLES SIDES SIDES ANGLES SHAPE PARTY 5-8 PLAYERS.
Recommended publications
  • Build a Tetrahedral Kite
    Aeronautics Research Mission Directorate Build a Tetrahedral Kite Suggested Grades: 8-12 Activity Overview Time: 90-120 minutes In this activity, you will build a tetrahedral kite from Materials household supplies. • 24 straws (8 inches or less) - NOTE: The straws need to be Steps straight and the same length. If only flexible straws are available, 1. Cut a length of yarn/string 4 feet long. then cut off the flexible portion. • Two or three large spools of 2. Take six straws and place them on a flat surface. cotton string or yarn (approximately 100 feet total) 3. Use your piece of string to join three straws • Scissors together in a triangular shape. On the side where • Hot glue gun and hot glue sticks the two strings are extending from it, one end • Ruler or dowel rod for kite bridle should be approximately 20 inches long, and the • Four pieces of tissue paper (24 x other should be approximately 4 inches long. 18 inches or larger) See Figure 1. • All-purpose glue stick Figure 1 4. Tie these two ends of the string tightly together. Make sure there is no room for the triangle to wiggle. 5. The three straws should form a tight triangle. 6. Cut another 4-inch piece of string. 7. Take one end of the 4-inch string, and tie that end to a corner of the triangle that does not have the string ends extending from it. Figure 2. 8. Add two more straws onto the longest piece of string. 9. Next, take the string that holds the two additional straws and tie it to the end of one of the 4-inch strings to make another tight triangle.
    [Show full text]
  • Square Rectangle Triangle Diamond (Rhombus) Oval Cylinder Octagon Pentagon Cone Cube Hexagon Pyramid Sphere Star Circle
    SQUARE RECTANGLE TRIANGLE DIAMOND (RHOMBUS) OVAL CYLINDER OCTAGON PENTAGON CONE CUBE HEXAGON PYRAMID SPHERE STAR CIRCLE Powered by: www.mymathtables.com Page 1 what is Rectangle? • A rectangle is a four-sided flat shape where every angle is a right angle (90°). means "right angle" and show equal sides. what is Triangle? • A triangle is a polygon with three edges and three vertices. what is Octagon? • An octagon (eight angles) is an eight-sided polygon or eight-gon. what is Hexagon? • a hexagon is a six-sided polygon or six-gon. The total of the internal angles of any hexagon is 720°. what is Pentagon? • a plane figure with five straight sides and five angles. what is Square? • a plane figure with four equal straight sides and four right angles. • every angle is a right angle (90°) means "right ang le" show equal sides. what is Rhombus? • is a flat shape with four equal straight sides. A rhombus looks like a diamond. All sides have equal length. Opposite sides are parallel, and opposite angles are equal what is Oval? • Many distinct curves are commonly called ovals or are said to have an "oval shape". • Generally, to be called an oval, a plane curve should resemble the outline of an egg or an ellipse. Powered by: www.mymathtables.com Page 2 What is Cube? • Six equal square faces.tweleve edges and eight vertices • the angle between two adjacent faces is ninety. what is Sphere? • no faces,sides,vertices • All points are located at the same distance from the center. what is Cylinder? • two circular faces that are congruent and parallel • faces connected by a curved surface.
    [Show full text]
  • Quadrilateral Theorems
    Quadrilateral Theorems Properties of Quadrilaterals: If a quadrilateral is a TRAPEZOID then, 1. at least one pair of opposite sides are parallel(bases) If a quadrilateral is an ISOSCELES TRAPEZOID then, 1. At least one pair of opposite sides are parallel (bases) 2. the non-parallel sides are congruent 3. both pairs of base angles are congruent 4. diagonals are congruent If a quadrilateral is a PARALLELOGRAM then, 1. opposite sides are congruent 2. opposite sides are parallel 3. opposite angles are congruent 4. consecutive angles are supplementary 5. the diagonals bisect each other If a quadrilateral is a RECTANGLE then, 1. All properties of Parallelogram PLUS 2. All the angles are right angles 3. The diagonals are congruent If a quadrilateral is a RHOMBUS then, 1. All properties of Parallelogram PLUS 2. the diagonals bisect the vertices 3. the diagonals are perpendicular to each other 4. all four sides are congruent If a quadrilateral is a SQUARE then, 1. All properties of Parallelogram PLUS 2. All properties of Rhombus PLUS 3. All properties of Rectangle Proving a Trapezoid: If a QUADRILATERAL has at least one pair of parallel sides, then it is a trapezoid. Proving an Isosceles Trapezoid: 1st prove it’s a TRAPEZOID If a TRAPEZOID has ____(insert choice from below) ______then it is an isosceles trapezoid. 1. congruent non-parallel sides 2. congruent diagonals 3. congruent base angles Proving a Parallelogram: If a quadrilateral has ____(insert choice from below) ______then it is a parallelogram. 1. both pairs of opposite sides parallel 2. both pairs of opposite sides ≅ 3.
    [Show full text]
  • Properties of Equidiagonal Quadrilaterals (2014)
    Forum Geometricorum Volume 14 (2014) 129–144. FORUM GEOM ISSN 1534-1178 Properties of Equidiagonal Quadrilaterals Martin Josefsson Abstract. We prove eight necessary and sufficient conditions for a convex quadri- lateral to have congruent diagonals, and one dual connection between equidiag- onal and orthodiagonal quadrilaterals. Quadrilaterals with both congruent and perpendicular diagonals are also discussed, including a proposal for what they may be called and how to calculate their area in several ways. Finally we derive a cubic equation for calculating the lengths of the congruent diagonals. 1. Introduction One class of quadrilaterals that have received little interest in the geometrical literature are the equidiagonal quadrilaterals. They are defined to be quadrilat- erals with congruent diagonals. Three well known special cases of them are the isosceles trapezoid, the rectangle and the square, but there are other as well. Fur- thermore, there exists many equidiagonal quadrilaterals that besides congruent di- agonals have no special properties. Take any convex quadrilateral ABCD and move the vertex D along the line BD into a position D such that AC = BD. Then ABCD is an equidiagonal quadrilateral (see Figure 1). C D D A B Figure 1. An equidiagonal quadrilateral ABCD Before we begin to study equidiagonal quadrilaterals, let us define our notations. In a convex quadrilateral ABCD, the sides are labeled a = AB, b = BC, c = CD and d = DA, and the diagonals are p = AC and q = BD. We use θ for the angle between the diagonals. The line segments connecting the midpoints of opposite sides of a quadrilateral are called the bimedians and are denoted m and n, where m connects the midpoints of the sides a and c.
    [Show full text]
  • Performance Based Learning and Assessment Task Kite Project
    Performance Based Learning and Assessment Task Kite Project I. ASSESSSMENT TASK OVERVIEW & PURPOSE: The students are instructed to: research the history, science, and design of kites; design a blueprint of their kite and find the measurements, scale factor, area, and perimeter of their blueprint; and construct and fly their kite. II. UNIT AUTHOR: Leslie Hindman, Washington-Lee High School, Arlington Public Schools III. COURSE: Geometry IV. CONTENT STRAND: Geometry, Measurement V. OBJECTIVES: Students will be able to • Design a scale model of a kite • Measure the dimensions and angles of the scale model • Determine the scale factor of the scale model • Compute the area and perimeter of the scale model • Construct and fly a kite VI. REFERENCE/RESOURCE MATERIALS: For Research: computer access For Scale Model Drawing: ruler, protractor, graph paper, calculator, Geometry SOL formula sheet For Kites: tissue paper, plastic table cloths, small wooden dowels, straws, yarn, fishing wire, markers, scissors, tape, glue VII. PRIMARY ASSESSMENT STRATEGIES: The task includes an assessment component that performs two functions: (1) for the student it will be a checklist and provide a self-assessment and (2) for the teacher it will be used as a rubric. The attached assessment list will assess the research section, scale model drawing, and kite construction. VIII. EVALUATION CRITERIA: Assessment List, corresponding rubric. IX. INSTRUCTIONAL TIME: 2 ninety minute class periods for research, scale model drawings, and kite construction. 1/2 ninety minute class period for flying kites. Kite Project Strand Geometry, Measurement Mathematical Objective(s) Students will be able to: • Design a scale model of a kite • Find the measures of the sides and angles of the scale model • Determine the scale factor of the scale model • Compute the area and perimeter of the scale model Related SOL • G.12 The student will make a model of a three-dimensional figure from a two- dimensional drawing and make a two-dimensional representation of a three- dimensional object.
    [Show full text]
  • Petrie Schemes
    Canad. J. Math. Vol. 57 (4), 2005 pp. 844–870 Petrie Schemes Gordon Williams Abstract. Petrie polygons, especially as they arise in the study of regular polytopes and Coxeter groups, have been studied by geometers and group theorists since the early part of the twentieth century. An open question is the determination of which polyhedra possess Petrie polygons that are simple closed curves. The current work explores combinatorial structures in abstract polytopes, called Petrie schemes, that generalize the notion of a Petrie polygon. It is established that all of the regular convex polytopes and honeycombs in Euclidean spaces, as well as all of the Grunbaum–Dress¨ polyhedra, pos- sess Petrie schemes that are not self-intersecting and thus have Petrie polygons that are simple closed curves. Partial results are obtained for several other classes of less symmetric polytopes. 1 Introduction Historically, polyhedra have been conceived of either as closed surfaces (usually topo- logical spheres) made up of planar polygons joined edge to edge or as solids enclosed by such a surface. In recent times, mathematicians have considered polyhedra to be convex polytopes, simplicial spheres, or combinatorial structures such as abstract polytopes or incidence complexes. A Petrie polygon of a polyhedron is a sequence of edges of the polyhedron where any two consecutive elements of the sequence have a vertex and face in common, but no three consecutive edges share a commonface. For the regular polyhedra, the Petrie polygons form the equatorial skew polygons. Petrie polygons may be defined analogously for polytopes as well. Petrie polygons have been very useful in the study of polyhedra and polytopes, especially regular polytopes.
    [Show full text]
  • 13. Dodecagon-Hexagon-Square
    In this chapter, we develop patterns on a 12-6-4 grid. To begin, we will first construct the grid of dodecagons, hexagons and squares. Next, we overlay patterns using the PIC method. Begin with a horizontal line and 3 circles as shown. This defines 6 points on the circumference of the center circle. Now several lines are drawn for reference. Begin with the diagonals connecting points on the center circle, then proceed to draw the inner segments making a 6-pointed star. Also, the central rectangle is bolded which will contain the final unit that can be tiled. The size of the hexagon can now be found as follows: First draw 2 circles about the midpoints of the two vertical edges of the unit. Then draw a circle, centered in the middle, that is tangent to these circles. Prepared by circleofsteve.com Then draw a circle of that radius at the 6 points shown below. Where these circles intersect the reference lines drawn, we can identify the sides of hexagons to inscribe. Prepared by circleofsteve.com Now by filing in the squares between the hexagons the dodecagons will appear. Prepared by circleofsteve.com The final grid appears below with the reference lines removed and the midpoints marked from which the incidence pattern can be drawn. Prepared by circleofsteve.com Several angles can naturally be identified based on the existing geometry. For example, 63.5 connects the midpoint of a square side with an opposing corner. Prepared by circleofsteve.com Continuing through all the polygons produces the following. Visible is the underlying grid and overlay design.
    [Show full text]
  • INTRODUCTION to QUADRILATERALS Square Rectangle Rhombus Parallelogram
    INTRODUCTION TO QUADRILATERALS square rectangle rhombus parallelogram trapezoid kite Mathematicians define regular quadrilaterals according to their attributes. a) Quadrilaterals are two-dimensional closed figures that have four sides and four angles. b) The sum of their four angles is 360 degrees. c) When we trace diagonals from one opposite corner to another in a quadrilateral, these lines always intersect (pass it through) and in some cases they bisect (cut the other line in half). d) Regular quadrilaterals are named square, rectangle, parallelogram, rhombus, trapezoid, and kite. e) VERY IMPORTANT TO REMEMBER THIS! : Although these are the names of the quadrilaterals, these words are also the names of groups of quadrilaterals. Each group has its own characteristics or attributes that distinguish them from the others. For instance, the figure square belongs obviously to the group of squares, but also belongs to the groups of trapezoids, parallelograms, rectangles, rhombuses, and kites, because it shares similar attributes with them. However, the group of squares has only one figure: square. This is because no other quadrilateral shares the attributes of the squares, which are having four equal sides and four right angles. TRAPEZOIDS a) Trapezoids form the largest group of quadrilaterals. They include the figures of square, rectangle, parallelogram, rhombus, and of course, trapezoid. (the figure kite does not belong to the group of trapezoids) b) Trapezoids have only one attribute: they have at least one parallel line. Also, a. They may or may not have two or even four equal in length sides. b. They may or may not have opposite sides of the same length c.
    [Show full text]
  • Midsegment of a Trapezoid Parallelogram
    Vocabulary Flash Cards base angles of a trapezoid bases of a trapezoid Chapter 7 (p. 402) Chapter 7 (p. 402) diagonal equiangular polygon Chapter 7 (p. 364) Chapter 7 (p. 365) equilateral polygon isosceles trapezoid Chapter 7 (p. 365) Chapter 7 (p. 402) kite legs of a trapezoid Chapter 7 (p. 405) Chapter 7 (p. 402) Copyright © Big Ideas Learning, LLC Big Ideas Math Geometry All rights reserved. Vocabulary Flash Cards The parallel sides of a trapezoid Either pair of consecutive angles whose common side is a base of a trapezoid A polygon in which all angles are congruent A segment that joins two nonconsecutive vertices of a polygon A trapezoid with congruent legs A polygon in which all sides are congruent The nonparallel sides of a trapezoid A quadrilateral that has two pairs of consecutive congruent sides, but opposite sides are not congruent Copyright © Big Ideas Learning, LLC Big Ideas Math Geometry All rights reserved. Vocabulary Flash Cards midsegment of a trapezoid parallelogram Chapter 7 (p. 404) Chapter 7 (p. 372) rectangle regular polygon Chapter 7 (p. 392) Chapter 7 (p. 365) rhombus square Chapter 7 (p. 392) Chapter 7 (p. 392) trapezoid Chapter 7 (p. 402) Copyright © Big Ideas Learning, LLC Big Ideas Math Geometry All rights reserved. Vocabulary Flash Cards A quadrilateral with both pairs of opposite sides The segment that connects the midpoints of the parallel legs of a trapezoid PQRS A convex polygon that is both equilateral and A parallelogram with four right angles equiangular A parallelogram with four congruent sides and four A parallelogram with four congruent sides right angles A quadrilateral with exactly one pair of parallel sides Copyright © Big Ideas Learning, LLC Big Ideas Math Geometry All rights reserved.
    [Show full text]
  • Day 7 Classwork for Constructing a Regular Hexagon
    Classwork for Constructing a Regular Hexagon, Inscribed Shapes, and Isosceles Triangle I. Review 1) Construct a perpendicular bisector to 퐴퐵̅̅̅̅. 2) Construct a perpendicular line through point P. P • A B 3) Construct an equilateral triangle with length CD. (LT 1c) C D II. Construct a Regular Hexagon (LT 1c) Hexagon A six-sided polygon Regular Hexagon A six-sided polygon with all sides the same length and all interior angles the same measure Begin by constructing an equilateral with the segment below. We can construct a regular hexagon by observing that it is made up of Then construct 5 more equilateral triangles with anchor point on point R 6 adjacent (sharing a side) equilateral for one arc and anchor point on the most recent point of intersection for the second ( intersecting) arc. triangles. R III. Construct a Regular Hexagon Inscribed in a Circle Inscribed (in a Circle) All vertices of the inscribed shape are points on the circle Inscribed Hexagon Hexagon with all 6 vertex points on a circle Construct a regular hexagon with side length 퐴퐵̅̅̅̅: A B 1) Copy the length of 퐴퐵̅̅̅̅ onto the compass. 2) Place metal tip of compass on point C and construct a circle. 3) Keep the same length on the compass. 4) Mark any point (randomly) on the circle. C 5) Place the metal tip on the randomly marked • point and mark an arc on the circle. 6) Lift the compass and place the metal tip on the last arc mark, and mark new arc on the circle. 7) Repeat until the arc mark lands on the original point.
    [Show full text]
  • When Is a Tangential Quadrilateral a Kite?
    Forum Geometricorum b Volume 11 (2011) 165–174. b b FORUM GEOM ISSN 1534-1178 When is a Tangential Quadrilateral a Kite? Martin Josefsson Abstract. We prove 13 necessary and sufficient conditions for a tangential quadri- lateral to be a kite. 1. Introduction A tangential quadrilateral is a quadrilateral that has an incircle. A convex quadrilateral with the sides a, b, c, d is tangential if and only if a + c = b + d (1) according to the Pitot theorem [1, pp.65–67]. A kite is a quadrilateral that has two pairs of congruent adjacent sides. Thus all kites has an incircle since its sides satisfy (1). The question we will answer here concerns the converse, that is, what additional property a tangential quadrilateral must have to be a kite? We shall prove 13 such conditions. To prove two of them we will use a formula for the area of a tangential quadrilateral that is not so well known, so we prove it here first. It is given as a problem in [4, p.29]. Theorem 1. A tangential quadrilateral with sides a, b, c, d and diagonals p,q has the area 1 2 2 K = 2 (pq) − (ac − bd) . p Proof. A convex quadrilateral with sides a, b, c, d and diagonals p,q has the area 1 2 2 2 2 2 2 2 K = 4 4p q − (a − b + c − d ) (2) p according to [6] and [14]. Squaring the Pitot theorem (1) yields 2 2 2 2 a + c + 2ac = b + d + 2bd. (3) Using this in (2), we get 1 2 2 K = 4 4(pq) − (2bd − 2ac) p and the formula follows.
    [Show full text]
  • Cyclic Quadrilaterals
    GI_PAGES19-42 3/13/03 7:02 PM Page 1 Cyclic Quadrilaterals Definition: Cyclic quadrilateral—a quadrilateral inscribed in a circle (Figure 1). Construct and Investigate: 1. Construct a circle on the Voyage™ 200 with Cabri screen, and label its center O. Using the Polygon tool, construct quadrilateral ABCD where A, B, C, and D are on circle O. By the definition given Figure 1 above, ABCD is a cyclic quadrilateral (Figure 1). Cyclic quadrilaterals have many interesting and surprising properties. Use the Voyage 200 with Cabri tools to investigate the properties of cyclic quadrilateral ABCD. See whether you can discover several relationships that appear to be true regardless of the size of the circle or the location of A, B, C, and D on the circle. 2. Measure the lengths of the sides and diagonals of quadrilateral ABCD. See whether you can discover a relationship that is always true of these six measurements for all cyclic quadrilaterals. This relationship has been known for 1800 years and is called Ptolemy’s Theorem after Alexandrian mathematician Claudius Ptolemaeus (A.D. 85 to 165). 3. Determine which quadrilaterals from the quadrilateral hierarchy can be cyclic quadrilaterals (Figure 2). 4. Over 1300 years ago, the Hindu mathematician Brahmagupta discovered that the area of a cyclic Figure 2 quadrilateral can be determined by the formula: A = (s – a)(s – b)(s – c)(s – d) where a, b, c, and d are the lengths of the sides of the a + b + c + d quadrilateral and s is the semiperimeter given by s = 2 . Using cyclic quadrilaterals, verify these relationships.
    [Show full text]