NOAO Newsletter #101
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exoplanet Community Report
JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probeclass missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2 -
NOAO Newsletter #104
NOAO Newsletter NATIONAL OPTICAL ASTRONOMY OBSERVATORY ISSUE 104 — SEPTEMBER 2011 Science Highlights Finding Hidden Supermassive Black Holes in Distant Galaxies ........ 2 Gemini, MMT, and Hale ............................................................ 22 Star Formation Rises with Time in UV-Bright Galaxies CTIO Instruments Available for 2012A ......................................... 24 over the First Two Billion Years.................................................... 4 Gemini Instruments Available for 2012A* ................................... 25 Gemini/GMOS—Spectroscopy of a Large Sample KPNO Instruments Available for 2012A........................................ 26 of Strong Lensing Selected Galaxy Clusters ................................. 5 MMT Instruments Available for 2012A ......................................... 27 Late-Time Light Curves of Type II Supernovae: Hale Instruments Available for 2012A ......................................... 27 Physical Properties of SNe and Their Environment ....................... 7 CHARA Instruments Available for 2012 ........................................ 27 Changes Made to the ORP ........................................................... 27 System Science Capabilities Participating in the SMARTS Consortium ..................................... 28 NOAO at the Science Frontiers of the 2010 Decadal Survey ........... 10 After Twelve Years of Mosaic II… ................................................ 28 Dr. Timothy Beers to Become Associate Director for KPNO ............ 11 Phoenix Returning -
HAT-P-39B–HAT-P-41B: THREE HIGHLY INFLATED TRANSITING HOT JUPITERS∗
The Astronomical Journal, 144:139 (18pp), 2012 November doi:10.1088/0004-6256/144/5/139 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. HAT-P-39b–HAT-P-41b: THREE HIGHLY INFLATED TRANSITING HOT JUPITERS∗ J. D. Hartman1,G.A.´ Bakos1,15,B.Beky´ 2, G. Torres2, D. W. Latham2,Z.Csubry1, K. Penev1, A. Shporer3,4, B. J. Fulton3, L. A. Buchhave5,6,J.A.Johnson7, A. W. Howard8, G. W. Marcy8,D.A.Fischer9,G.Kovacs´ 10,11, R. W. Noyes2, G. A. Esquerdo2, M. Everett2, T. Szklenar´ 2,S.N.Quinn2,12, A. Bieryla2,R.P.Knox13,P.Hinz13, D. D. Sasselov2,G.Fur˝ esz´ 2, R. P. Stefanik2,J.Laz´ ar´ 14, I. Papp14,andP.Sari´ 14 1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA; [email protected] 2 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA 3 LCOGT, 6740 Cortona Drive, Santa Barbara, CA, USA 4 Department of Physics, Broida Hall, UC Santa Barbara, CA, USA 5 Niels Bohr Institute, University of Copenhagen, DK-2100, Denmark 6 Centre for Star and Planet Formation, Natural History Museum of Denmark, DK-1350 Copenhagen, Denmark 7 Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA, USA 8 Department of Astronomy, University of California, Berkeley, CA, USA 9 Astronomy Department, Yale University, New Haven, CT, USA 10 Konkoly Observatory, Budapest, Hungary 11 Department of Physics and Astrophysics, University of North Dakota, Grand Forks, ND, USA 12 Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA 13 Steward Observatory, University of Arizona, Tucson, AZ, USA 14 Hungarian Astronomical Association, Budapest, Hungary Received 2012 July 13; accepted 2012 August 30; published 2012 October 9 ABSTRACT We report the discovery of three new transiting extrasolar planets orbiting moderately bright (V = 11.1, 11.7, and 12.4) F stars. -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
Geologic Studies of Planetary Surfaces Using Radar Polarimetric Imaging 2
Geologic studies of planetary surfaces using radar polarimetric imaging 2 4 Lynn M. Carter NASA Goddard Space Flight Center 8 Donald B. Campbell 9 Cornell University 10 11 Bruce A. Campbell 12 Smithsonian Institution 13 14 14 Abstract: Radar is a useful remote sensing tool for studying planetary geology because it is 15 sensitive to the composition, structure, and roughness of the surface and can penetrate some 16 materials to reveal buried terrain. The Arecibo Observatory radar system transmits a single 17 sense of circular polarization, and both senses of circular polarization are received, which allows 18 for the construction of the Stokes polarization vector. From the Stokes vector, daughter products 19 such as the circular polarization ratio, the degree of linear polarization, and linear polarization 20 angle are obtained. Recent polarimetric imaging using Arecibo has included Venus and the 21 Moon. These observations can be compared to radar data for terrestrial surfaces to better 22 understand surface physical properties and regional geologic evolution. For example, 23 polarimetric radar studies of volcanic settings on Venus, the Moon and Earth display some 24 similarities, but also illustrate a variety of different emplacement and erosion mechanisms. 25 Polarimetric radar data provides important information about surface properties beyond what can 26 be obtained from single-polarization radar. Future observations using polarimetric synthetic 27 aperture radar will provide information on roughness, composition and stratigraphy that will 28 support a broader interpretation of surface evolution. 29 2 29 1.0 Introduction 30 31 Radar polarimetry has the potential to provide more information about surface physical 32 properties than single-polarization backscatter measurements, and has often been used in remote 33 sensing observations of Solar System objects. -
FY13 High-Level Deliverables
National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................ -
Letter from Astronomy Planetary and Space Sciences In
City of Tucson Planning Commission – Citizen Sign Code Committee Joint Subcommittee on Sign Code Revision 201 North Stone Ave. Tucson, AZ 85701 November 4, 2016 [email protected] Dear Members of the Joint Subcommittee: The consortium of professional research organizations that rely on Arizona dark skies, APSS, wants to make a few points with respect to your considerations about revising the City of Tucson Sign Code: We represent a significant economic sector in Southern Arizona. We strongly urge separating the pace of the revisions necessitated by Reed v. Town of Gilbert from those of process and other major changes, out of concern for the unintended consequences of substantially increasing glare from lighted signs. We encourage you to include the protection of the dark night sky in the statement of purpose, so that it is a clear aspect of maintaining the character of Tucson. We also encourage the inclusion of the already mature language about electronic message centers, and any revisions that will have the effect of reducing the amount of artificial sky glow. Attached is a previous economic impact study for our professional research enterprise. We note that the $250M per year impact is statewide, but with a substantial concentration in Southern Arizona. It is ongoing: NASA and the Department of Energy have each recently committed tens of millions of dollars for reinvestment in Kitt Peak instrumentation, based on its being a dark sky site. The astronomy, planetary, and space science enterprise has been a strong driver for other key industry sectors, such as the Optics Industry. It also impacts the tourist industry. -
Technology Today Spring 2016
Spring 2016 HIDDEN STRUCTURES REVEALED THE METHANE SwRI WINS CYGNSS DETECTORS R&D 100 CONSTELLATION 10 CHALLENGE 18AWARDS 22TECHNOLOGYCOMPLETE TODAY 13 AVIATION FUEL TESTING To meet the needs of the Department of Defense, the Energy Institute, and the aviation industry, SwRI maintains facilities to qualify fuel filters, develop new test methods, and enhance aviation fuel technology. The coalescer-separator shown removes dirt and water contaminants from fuel in both commercial and military fuel handling systems. SwRI works with industry organizations to develop and improve quality standards. The Institute also helps industry develop advanced sensing technologies and fuel handling equipment. AVIATION FUEL FILTRATION AVIATION FUEL MONITORS AVIATION FUEL COALESCERS AVIATION FUEL ADDITIVES WATER MAPPING TEST JET FUEL ELECTRONIC SENSOR MIL PRF 52308J ELECTRONIC SENSORS aviationturbinefuels.swri.org DM018200_6585 12 SPRING 2016 • VOLUME 37, NO. 1 Executive Director of Communications ON THE COVER Tim Martin, Ph.D. Editor 2 Hidden Structures Revealed Deb Schmid Flight control surfaces include the flaps, tabs, Assistant Editor and spoilers that allow a pilot to adjust and Rob Leibold control an aircraft’s flight attitude. Using the Contributors Institute’s recently aquired powerful CT Barbara Bowen scanner, SwRI engineers imaged the aluminum Robert Crowe honeycomb control surface to visualize its Deborah Deffenbaugh D021911 internal structure. This 3-D visualization shows Maria Stothoff a bonding layer running through the structure. Design 8 New Horizons News Jessica Vidal Photography 10 The Methane Detectors Challenge Larry Walther Ian McKinney 14 Consortia News Circulation Stephanie Paredes 16 Pluto-Jupiter Infographic 18 SwRI Wins R&D 100 Awards Technology Today (ISSN 1528-431X) is published 19 TechBytes three times each year and distributed free of charge. -
Commissioning of the MMT Ground-Layer and Laser Tomography Adaptive Optics Systems
Commissioning of the MMT ground-layer and laser tomography adaptive optics systems N. Mark Milton1, Michael Lloyd-Hart1, Christoph Baranec2, Thomas Stalcup1,KeithPowell1, Don McCarthy1, Craig Kulesa1,andKeithHege1 1 Center for Astronomical Adaptive Optics, Steward Observatory, 933 N. Cherry Ave., Tucson, Arizona 85721 2 Caltech Optical Observatories, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 ABSTRACT A multi-laser adaptive optics system, at the 6.5 m MMT telescope, has been undergoing commissioning in preparation for wide-field, partially corrected as well as narrow-field, diffraction limited science observations in the thermal and near infrared. After several delays due to bad weather, we have successfully closed the full high order ground-layer adaptive optics (GLAO) control loop for the first time in February 2008 using five Rayleigh laser guide stars and a single tilt star. Characterization and automated correction of static aberrations such as non-common path errors were addressed in May 2008. Calibration measurements in preparation for laser tomography adaptive optics (LTAO) operation are planned for the fall of 2008 along with the start of shared-risk GLAO science observations. We present the results of GLAO observations with the PISCES imager, a 1 − 2.5 µm camera with a field of view of 110 arc seconds. The status of the remaining GLAO commissioning work is also reviewed. Finally, we present plans for commissioning work to implement the LTAO operating mode of the system. Keywords: adaptive optics, ground-layer adaptive optics, laser guide stars 1. INTRODUCTION Until very recently, adaptive optics (AO) systems, in operation at large astronomical telescopes, have used a single guide star to measure the atmospheric induced aberrations that degrade the long exposure imaging performance of science observations. -
Title: “Carbon Chain Depletion of 2I/Borisov” Author List: Theodore Kareta1, Jennifer Andrews2, John W
!"#$%&'!"#$%&'(")#*'(+,-.,/*&'(&0(1234&$*5&67'! ()#*+,'-".#&! 8),&9&$,(:#$,/#;<(=,''*0,$(>'9$,?51<(=&)'(@A(B&&'#';<(@#./,$(CA(D#$$*5;<(B#/)#'( EF*/)1<(G#/$*HI(JK4$*,';<(4,'L#F*'(BA(MA(E)#$I,N;<(O*5)'P(Q,99N;<(>.,55&'9$#( E-$*'RF#'';<("#55#'9$#(M,L&.N;<(:#/)$N'(O&.I;<(>.%,$/("&'$#9S<(")$*5/*#'(O,*..,/S! /&'-)01,'102'3$10%#1,4'-15+,1#+,4' 6&'7#%81,2'95.%,:1#+,4' ;&'-1,<%'="0+>)$1,'!%$%.>+?%'95.%,:1#+,4' ! @0'3,%?'A+,&'>5/$&-)N5*H#.(=&P$'#.(M,//,$5! 7)5B"##%2&'6C/D'9>#+5%,'E#*' F%G7)5B"##%2'8"#*'F%:"."+0.&'6C/D'H+:%B5%,'6/.#! ! ! (5.#,1>#&'!*%'>+B?+."#"+0'+I'>+B%#.'"0'#*%'7+$1,'74.#%B'>+B%'"0'B)$#"?$%'<,+)?.'#*+)<*#'#+' %0>+2%'"0I+,B1#"+0'15+)#'#*%",'I+,B1#"+0'"0'2"II%,%0#',%<"+0.'+I'#*%'+)#%,'?,+#+.+$1,'2".JK'!*%' ,%>%0#'2".>+:%,4'+I'#*%'.%>+02'"0#%,.#%$$1,'+5L%>#M'6@N=+,".+:M'1$$+8.'I+,'.?%>#,+.>+?">' "0:%.#"<1#"+0.'"0#+'"#.'<1.'>+0#%0#'102'1'?,%$"B"01,4'>$1.."I">1#"+0'+I'"#'8"#*"0'#*%'7+$1,'74.#%B' >+B%#'#1O+0+B"%.'#+'#%.#'#*%'1??$">15"$"#4'+I'?$10%#%."B1$'I+,B1#"+0'B+2%$.'#+'+#*%,'.#%$$1,' .4.#%B.K'P%'?,%.%0#'.?%>#,+.>+?">'102'"B1<"0<'+5.%,:1#"+0.'I,+B'6C/D'7%?#%B5%,'6C#*' #*,+)<*'9>#+5%,'6Q#*'I,+B'#*%'=+JM'RR!M'102'-=!'#%$%.>+?%.K'P%'"2%0#"I4'SH'"0'#*%'>+B%#T.' .?%>#,)B'102'.%#'?,%>".%')??%,'$"B"#.'+0'#*%'15)0210>%'+I'S6'+0'1$$'21#%.K'P%').%'1'U1.%,' B+2%$'#+'>+0:%,#'+),'"0#%<,1#%2'I$)O%.'#+'?,+2)>#"+0',1#%.'102'I"02'VWSHX'Y'ZKC'[NG'6KC'\'/C]6^' B+$N.'+0'7%?#%B5%,'6C#*'102'VWSHX'Y'W/K/'_'/KDX'\'/C]6^'B+$.N.'+0'$1#%,'21#%.M'5+#*'>+0.".#%0#' 8"#*'>+0#%B?+,10%+).'+5.%,:1#"+0.K'P%'.%#'+),'$+8%.#')??%,'$"B"#'+0'1'S6'?,+2)>#"+0',1#%M' VWS6X'`'/KQ'/C]6;'B+$.N.'+0'9>#+5%,'/C#*K'!*%'B%1.),%2',1#"+')??%,'$"B"#'I+,'#*1#'21#%' -
Fungos Presentes Em Sedimentos Marinhos E Lacustres Da Antártica: Taxonomia, Diversidade E Bioprospecção De Metabólitos Bioativos
Universidade Federal de Minas Gerais Programa de Pós-Graduação em Microbiologia Fungos presentes em sedimentos marinhos e lacustres da Antártica: taxonomia, diversidade e bioprospecção de metabólitos bioativos Mayara Baptistucci Ogaki Belo Horizonte, MG 2019 Universidade Federal de Minas Gerais Programa de Pós-Graduação em Microbiologia Fungos presentes em sedimentos marinhos e lacustres da Antártica: taxonomia, diversidade e bioprospecção de metabólitos bioativos Tese apresentada ao programa de Pós-Graduação em Microbiologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais. Orientador: Dr. Luiz Henrique Rosa Departamento de Microbiologia/ICB, UFMG Belo Horizonte, MG 2019 Colaboradores: Dr. Carlos Augusto Rosa Departamento de Microbiologia/ICB, UFMG Dr. Carlos Leomar Zani Dra. Tânia Maria de Almeida Alves Centro de Pesquisas René Rachou, FIOCRUZ/MG Dra. Rosemary Vieira Dr. Arthur Ayres Universidade Federal Fluminense, RJ Dr. Juan Manoel Lírio Instituto Antartico Argentino, Buenos Aires, Argentina 043 Ogaki, Mayara Baptistucci. Fungos presentes em sedimentos marinhos e lacustres da Antártica: taxonomia, diversidade e bioprospecção de metabólitos bioativos [manuscrito] / Mayara Baptistucci Ogaki. – 2019. 212 f. : il. ; 29,5 cm. Orientador: Dr. Luiz Henrique Rosa. Tese (doutorado) – Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas. Programa de Pós-Graduação em Microbiologia. 1. Microbiologia. 2. Regiões Antárticas. 3. Fungos. 4. Bioprospecção. 5. Biodiversidade. I. Rosa, Luiz Henrique. II. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. III. Título. CDU: 579 Ficha Catalográfica elaborada por Fabiane C. M. Reis – CRB6/ 2680 Dedicatória Aos meus maiores apoios, “minha família e amigos”. Agradecimentos Agradeço a todo corpo docente e funcionários do programa de pós-graduação em Microbiologia e ao apoio financeiro do CNPq e CAPES pela concessão de minha bolsa de estudos e pelos subsídios que permitiram a concretização desta tese. -
Swri Internal Research and Development 2017
Internal Research and Development 2017 The SwRI IR&D Program exists to broaden the Institute's technology base and to encourage staff professional growth. Internal funding of research enables the Institute to advance knowledge, increase its technical capabilities, and expand its reputation as a leader in science and technology. The program also allows Institute engineers and scientists to continually grow in their technical fields by providing freedom to explore innovative and unproven concepts without contractual restrictions and expectations. Space Science Materials Research & Structural Mechanics Intelligent Systems, Advanced Computer & Electronic Technology, & Automation Measurement & Nondestructive Evaluation of Materials & Structures Engines, Fuels, Lubricants, & Vehicle Systems Geology & Nuclear Waste Management Fluid & Machinery Dynamics Electronic Systems & Instrumentation Chemistry & Chemical Engineering Copyright© 2017 by Southwest Research Institute. All rights reserved under U.S. Copyright Law and International Conventions. No part of this publication may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without permission in writing from the publisher. All inquiries should be addressed to Communications Department, Southwest Research Institute, P.O. Drawer 28510, San Antonio, Texas 78228-0510, [email protected], fax (210) 522-3547. 2017 IR&D | IR&D Home SwRI IR&D 2017 – Space Science Augmenting a Novel Magnetohydrodynamics Code for Studying Astrophysical Plasmas and Space Weather,