HAT-P-39B–HAT-P-41B: THREE HIGHLY INFLATED TRANSITING HOT JUPITERS∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
LIST of PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute
LIST OF PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute of Department of Science and Technology, Govt. of India) Manora Peak, Naini Tal - 263 129, India (1955−2020) ABBREVIATIONS AA: Astronomy and Astrophysics AASS: Astronomy and Astrophysics Supplement Series ACTA: Acta Astronomica AJ: Astronomical Journal ANG: Annals de Geophysique Ap. J.: Astrophysical Journal ASP: Astronomical Society of Pacific ASR: Advances in Space Research ASS: Astrophysics and Space Science AE: Atmospheric Environment ASL: Atmospheric Science Letters BA: Baltic Astronomy BAC: Bulletin Astronomical Institute of Czechoslovakia BASI: Bulletin of the Astronomical Society of India BIVS: Bulletin of the Indian Vacuum Society BNIS: Bulletin of National Institute of Sciences CJAA: Chinese Journal of Astronomy and Astrophysics CS: Current Science EPS: Earth Planets Space GRL : Geophysical Research Letters IAU: International Astronomical Union IBVS: Information Bulletin on Variable Stars IJHS: Indian Journal of History of Science IJPAP: Indian Journal of Pure and Applied Physics IJRSP: Indian Journal of Radio and Space Physics INSA: Indian National Science Academy JAA: Journal of Astrophysics and Astronomy JAMC: Journal of Applied Meterology and Climatology JATP: Journal of Atmospheric and Terrestrial Physics JBAA: Journal of British Astronomical Association JCAP: Journal of Cosmology and Astroparticle Physics JESS : Jr. of Earth System Science JGR : Journal of Geophysical Research JIGR: Journal of Indian -
Exoplanet Community Report
JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probeclass missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2 -
FY13 High-Level Deliverables
National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................ -
Letter from Astronomy Planetary and Space Sciences In
City of Tucson Planning Commission – Citizen Sign Code Committee Joint Subcommittee on Sign Code Revision 201 North Stone Ave. Tucson, AZ 85701 November 4, 2016 [email protected] Dear Members of the Joint Subcommittee: The consortium of professional research organizations that rely on Arizona dark skies, APSS, wants to make a few points with respect to your considerations about revising the City of Tucson Sign Code: We represent a significant economic sector in Southern Arizona. We strongly urge separating the pace of the revisions necessitated by Reed v. Town of Gilbert from those of process and other major changes, out of concern for the unintended consequences of substantially increasing glare from lighted signs. We encourage you to include the protection of the dark night sky in the statement of purpose, so that it is a clear aspect of maintaining the character of Tucson. We also encourage the inclusion of the already mature language about electronic message centers, and any revisions that will have the effect of reducing the amount of artificial sky glow. Attached is a previous economic impact study for our professional research enterprise. We note that the $250M per year impact is statewide, but with a substantial concentration in Southern Arizona. It is ongoing: NASA and the Department of Energy have each recently committed tens of millions of dollars for reinvestment in Kitt Peak instrumentation, based on its being a dark sky site. The astronomy, planetary, and space science enterprise has been a strong driver for other key industry sectors, such as the Optics Industry. It also impacts the tourist industry. -
Commissioning of the MMT Ground-Layer and Laser Tomography Adaptive Optics Systems
Commissioning of the MMT ground-layer and laser tomography adaptive optics systems N. Mark Milton1, Michael Lloyd-Hart1, Christoph Baranec2, Thomas Stalcup1,KeithPowell1, Don McCarthy1, Craig Kulesa1,andKeithHege1 1 Center for Astronomical Adaptive Optics, Steward Observatory, 933 N. Cherry Ave., Tucson, Arizona 85721 2 Caltech Optical Observatories, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 ABSTRACT A multi-laser adaptive optics system, at the 6.5 m MMT telescope, has been undergoing commissioning in preparation for wide-field, partially corrected as well as narrow-field, diffraction limited science observations in the thermal and near infrared. After several delays due to bad weather, we have successfully closed the full high order ground-layer adaptive optics (GLAO) control loop for the first time in February 2008 using five Rayleigh laser guide stars and a single tilt star. Characterization and automated correction of static aberrations such as non-common path errors were addressed in May 2008. Calibration measurements in preparation for laser tomography adaptive optics (LTAO) operation are planned for the fall of 2008 along with the start of shared-risk GLAO science observations. We present the results of GLAO observations with the PISCES imager, a 1 − 2.5 µm camera with a field of view of 110 arc seconds. The status of the remaining GLAO commissioning work is also reviewed. Finally, we present plans for commissioning work to implement the LTAO operating mode of the system. Keywords: adaptive optics, ground-layer adaptive optics, laser guide stars 1. INTRODUCTION Until very recently, adaptive optics (AO) systems, in operation at large astronomical telescopes, have used a single guide star to measure the atmospheric induced aberrations that degrade the long exposure imaging performance of science observations. -
NOAO Newsletter #101
NOAO/NSO Newsletter NATIONAL OPTICAL ASTRONOMY OBSERVATORY/NATIONAL SOLAR OBSERVATORY Issue 101 — March 2010 Science Highlights CTIO Instruments Available for 2010B ......................................... 22 Kitt Peak Observations Provide Solid Ground for Kepler ................. 2 Gemini Instruments Expected to be Available for 2010B .............. 23 Early Results from the NEWFIRM Medium-Band Survey ................. 3 Keck Instruments Available for 2010B ......................................... 24 The NOAO Outer Limits Survey: Stellar Populations in the MMT Instruments Available for 2010B ......................................... 24 Extremities of the Magellanic Clouds ......................................... 4 Magellan Instruments Available for 2010B .................................. 24 Evidence that Temporal Changes in Solar Subsurface Hale Instruments Available for 2010B ......................................... 24 Helicity Precede Active Region Flaring ....................................... 6 New NOAO Survey Programs Selected ......................................... 25 McMath-Pierce Observations of the Lunar Impact Third Quarter 2010 NSO Proposal Deadline .................................. 25 Plume from the LCROSS Mission ................................................. 8 NOAO Operations & Staff System Science Capabilities Director’s News .......................................................................... 26 Creating a Roadmap for the Ground-Based O/IR System............... 10 Ongoing Celebrations of Our 50th Anniversary -
Title: “Carbon Chain Depletion of 2I/Borisov” Author List: Theodore Kareta1, Jennifer Andrews2, John W
!"#$%&'!"#$%&'(")#*'(+,-.,/*&'(&0(1234&$*5&67'! ()#*+,'-".#&! 8),&9&$,(:#$,/#;<(=,''*0,$(>'9$,?51<(=&)'(@A(B&&'#';<(@#./,$(CA(D#$$*5;<(B#/)#'( EF*/)1<(G#/$*HI(JK4$*,';<(4,'L#F*'(BA(MA(E)#$I,N;<(O*5)'P(Q,99N;<(>.,55&'9$#( E-$*'RF#'';<("#55#'9$#(M,L&.N;<(:#/)$N'(O&.I;<(>.%,$/("&'$#9S<(")$*5/*#'(O,*..,/S! /&'-)01,'102'3$10%#1,4'-15+,1#+,4' 6&'7#%81,2'95.%,:1#+,4' ;&'-1,<%'="0+>)$1,'!%$%.>+?%'95.%,:1#+,4' ! @0'3,%?'A+,&'>5/$&-)N5*H#.(=&P$'#.(M,//,$5! 7)5B"##%2&'6C/D'9>#+5%,'E#*' F%G7)5B"##%2'8"#*'F%:"."+0.&'6C/D'H+:%B5%,'6/.#! ! ! (5.#,1>#&'!*%'>+B?+."#"+0'+I'>+B%#.'"0'#*%'7+$1,'74.#%B'>+B%'"0'B)$#"?$%'<,+)?.'#*+)<*#'#+' %0>+2%'"0I+,B1#"+0'15+)#'#*%",'I+,B1#"+0'"0'2"II%,%0#',%<"+0.'+I'#*%'+)#%,'?,+#+.+$1,'2".JK'!*%' ,%>%0#'2".>+:%,4'+I'#*%'.%>+02'"0#%,.#%$$1,'+5L%>#M'6@N=+,".+:M'1$$+8.'I+,'.?%>#,+.>+?">' "0:%.#"<1#"+0.'"0#+'"#.'<1.'>+0#%0#'102'1'?,%$"B"01,4'>$1.."I">1#"+0'+I'"#'8"#*"0'#*%'7+$1,'74.#%B' >+B%#'#1O+0+B"%.'#+'#%.#'#*%'1??$">15"$"#4'+I'?$10%#%."B1$'I+,B1#"+0'B+2%$.'#+'+#*%,'.#%$$1,' .4.#%B.K'P%'?,%.%0#'.?%>#,+.>+?">'102'"B1<"0<'+5.%,:1#"+0.'I,+B'6C/D'7%?#%B5%,'6C#*' #*,+)<*'9>#+5%,'6Q#*'I,+B'#*%'=+JM'RR!M'102'-=!'#%$%.>+?%.K'P%'"2%0#"I4'SH'"0'#*%'>+B%#T.' .?%>#,)B'102'.%#'?,%>".%')??%,'$"B"#.'+0'#*%'15)0210>%'+I'S6'+0'1$$'21#%.K'P%').%'1'U1.%,' B+2%$'#+'>+0:%,#'+),'"0#%<,1#%2'I$)O%.'#+'?,+2)>#"+0',1#%.'102'I"02'VWSHX'Y'ZKC'[NG'6KC'\'/C]6^' B+$N.'+0'7%?#%B5%,'6C#*'102'VWSHX'Y'W/K/'_'/KDX'\'/C]6^'B+$.N.'+0'$1#%,'21#%.M'5+#*'>+0.".#%0#' 8"#*'>+0#%B?+,10%+).'+5.%,:1#"+0.K'P%'.%#'+),'$+8%.#')??%,'$"B"#'+0'1'S6'?,+2)>#"+0',1#%M' VWS6X'`'/KQ'/C]6;'B+$.N.'+0'9>#+5%,'/C#*K'!*%'B%1.),%2',1#"+')??%,'$"B"#'I+,'#*1#'21#%' -
Nexstar 8 & 11 GPS Star List
Double SAO # RA (hr) RA (min) Dec Deg Dec Amin Mag Const Sep HD 225020 2 0 2.8 80 16.9 7.7,9.9 Cep Sep AB:16 HD 5679 U Cep 168 1 2.3 81 52.5 6.9,11.2,12.9 Cep Sep AB:14, Sep AC:21 HD 7471 218 1 19.1 80 51.7 7.2,8 Cep Sep AB:130 HD 8890 Alpha UMi; 1 UMi; Polaris 308 2 31.6 89 15.9 2,9,13,12 UMi Sep AB:18, Sep AC:45, Sep AD:83 HD 105943 OS 117 1991 12 11.0 81 42.6 6,8.3 Cam Sep AB:67 HD 106798 2009 12 16.2 80 7.5 7.2,7.8 Cam Sep AB:14 HD 112028 2102 12 49.2 83 24.8 5.4,5.9 Cam Sep AB:22 HD 112651 2112 12 54.2 82 31.1 7.1,10.5 Cam Sep AB:10 HD 131616 2433 14 33.3 85 56.3 7.1,10.1 UMi Sep AB:3 HD 139777 Pi 1 Umi 2556 15 29.3 80 26.8 6.6,7.3,11 UMi Sep AB:31, Sep AC:154 HD 153751 Epsilon UMi 2770 16 46.0 82 2.2 4.2,11.2 UMi Sep AB:77 HD 166926 24 Umi 2940 17 30.7 86 58.1 8.5,9 UMi Sep AB:31 HD 184146 3209 19 15.1 83 27.8 6.5,10.6 Dra Sep AB:6 HD 196787 3408 20 28.2 81 25.4 5.6,11.1,6.9 Dra Sep AB:110, Sep AC:198 HD 196925 3413 20 29.4 81 5.3 6.1,9.3 Dra Sep AB:214 HD 209942 3673 21 58.3 82 52.2 6.9,7.5 Cep Sep AB:14 HD 919 4062 0 14.0 76 1.6 7.2,7.7 Cep Sep AB:76 HD 3366 4165 0 37.8 72 53.7 7,12.7 Cas Sep AB:32 HD 3553 4176 0 40.0 76 52.3 6.7,8.6 Cas Sep AB:116 HD 4161 H N 122; YZ Cas 4216 0 45.6 74 59.3 5.7,9.4 Cas Sep AB:36 HD 7406 4360 1 16.6 74 1.6 7.1,7.9 Cas Sep AB:61 HD 9774 40 Cas 4453 1 38.5 73 2.4 5.3,11.3 Cas Sep AB:53 HD 11316 4512 1 55.4 76 13.5 7.4,8.4 Cas Sep AB:3 HD 12013 4550 2 2.1 75 30.1 6.3,8.2,8.8 Cas Sep AB:1.3, Sep AC:117 HD 12111 48 Cas 4554 2 2.0 70 54.4 4.6,12.6 Cas Sep AB:51 HD 12173 4559 2 3.2 73 51.0 6.1,8.6 Cas -
Multiple-Mirror Telescope Videohistory Collection, 1989
Multiple-Mirror Telescope Videohistory Collection, 1989 Finding aid prepared by Smithsonian Institution Archives Smithsonian Institution Archives Washington, D.C. Contact us at [email protected] Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Historical Note.................................................................................................................. 1 Introduction....................................................................................................................... 3 Descriptive Entry.............................................................................................................. 3 Names and Subjects ...................................................................................................... 3 Container Listing ............................................................................................................. 5 Multiple-Mirror Telescope Videohistory Collection https://siarchives.si.edu/collections/siris_arc_217710 Collection Overview Repository: Smithsonian Institution Archives, Washington, D.C., [email protected] Title: Multiple-Mirror Telescope Videohistory Collection Identifier: Record Unit 9542 Date: 1989 Extent: 7 videotapes (Reference copies). 25 digital .wmv files and .rm files (Reference copies). Creator:: Language: English Administrative Information -
Spectroscopic Parameters for Solar-Type Stars with Moderate-To-High Rotation New Parameters for Ten Planet Hosts?,??
A&A 570, A80 (2014) Astronomy DOI: 10.1051/0004-6361/201424257 & c ESO 2014 Astrophysics Spectroscopic parameters for solar-type stars with moderate-to-high rotation New parameters for ten planet hosts?;?? M. Tsantaki1;2, S. G. Sousa1;2, N. C. Santos1;2, M. Montalto1, E. Delgado-Mena1, A. Mortier1, V. Adibekyan1, and G. Israelian3 1 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 3 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain Received 22 May 2014 / Accepted 25 July 2014 ABSTRACT Context. Planetary studies demand precise and accurate stellar parameters as input for inferring the planetary properties. Different methods often provide different results that could lead to biases in the planetary parameters. Aims. In this work, we present a refinement of the spectral synthesis technique designed to treat fast rotating stars better. This method is used to derive precise stellar parameters, namely effective temperature, surface gravity, metallicity, and rotational velocity. The procedure is tested for FGK stars with low and moderate-to-high rotation rates. Methods. The spectroscopic analysis is based on the spectral synthesis package Spectroscopy Made Easy (SME), which assumes Kurucz model atmospheres in LTE. The line list where the synthesis is conducted is comprised of iron lines, and the atomic data are derived after solar calibration. Results. The comparison of our stellar parameters shows good agreement with literature values, both for slowly and for fast rotating stars. -
Telescope Research Corporation Is the Fulfillment of The
RESEARCH CORPORATION 2001 ANNUAL REPORT RESEARCH CORPORATION AND THE LARGE BINOCULAR TELESCOPE RESEARCH CORPORATION IS THE FULFILLMENT OF THE UNIQUE PHILANTHROPIC CONCEPT OF FREDERICK GARDNER COTTRELL, SCIENTIST, INVENTOR AND PHILANTHROPIST, WHO ESTABLISHED THE FOUNDATION IN NEW YORK IN 1912 WITH CHARLES DOOLITTLE WALCOTT, SECRETARY OF THE SMITHSONIAN INSTITUTION. NE OF THE FIRST PHILANTHROPIC FOUNDATIONS IN OTHE UNITED STATES, RESEARCH CORPORATION WAS CHARTERED “TO MAKE INVENTIONS AND PATENT RIGHTS MORE AVAILABLE AND EFFECTIVE IN THE USEFUL ARTS AND MANUFACTURES,” AND TO DEVOTE NET EARNINGS OF THE CORPORATION TO PROVIDE “MEANS FOR SCIENTIFIC RESEARCH AND EXPERIMENTATION” AT SCHOLARLY INSTI- TUTIONS. RESEARCH CORPORATION HAS CONTINUED ITS PHILANTHROPIC MANDATE THROUGH ITS ENDOWMENTS FOLLOWING THE SEPARATION OF ITS TECHNOLOGY TRANSFER OPERATIONS TO RESEARCH CORPORATION TECHNOLOGIES. RESEARCH CORPORATION 2001 ANNUAL REPORT CONTENTS President’s Message 2 Research Corporation and the Large Binocular Telescope 5 JOHN P. SCHAEFER The Large Binocular Telescope: A brief history of innovation 6 PETER A. STRITTMATTER 2001 Program Review 20 Awards Approved 22 Independent Auditor’s Report 28 Financial Statements 29 Officers and Directors, Program Advisory Committee, Staff 39 - 1 - 2001 ANNUAL REPORT PRESIDENT’S MESSAGE “All technology, that which programs, and building vital science departments, remain as we prize and that which enduring concerns of the founda- troubles us, originates tion. But the world abounds in problems — hunger, disease, directly and inexorably pollution, global warming, from basic research.” drought, overpopulation, to name but a few. And lingering funda- he year 2001 marked the the support of “. scientific mental questions — the origin of ninetieth year of operation investigation, research and experi- the universe and its destination, T for Research Corporation. -
FY12 High-Level Deliverables
National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2012 (1 October 2011 – 30 September 2012) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 21 December 2012 NOAO is operated by the Association of Universities for Research in Astronomy under cooperative agreement with the National Science Foundation Contents NOAO MISSION PROFILE ................................................................................................. IV 1 EXECUTIVE SUMMARY ................................................................................................ 1 2 NOAO ACCOMPLISHMENTS ....................................................................................... 3 2.1 Achievements ..................................................................................................... 3 2.2 Status of Vision and Goals ................................................................................. 4 2.2.1 Status of FY12 High-Level Deliverables ............................................ 5 2.2.2 FY12 Planned vs. Actual Spending and Revenues .............................. 7 2.3 Challenges and Their Impacts .......................................................................... 10 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 12 3.1 Cerro Tololo Inter-American Observatory ....................................................... 12 3.2 Kitt Peak National Observatory ......................................................................