A Complete Bibliography of Electronic Communications in Probability

Total Page:16

File Type:pdf, Size:1020Kb

A Complete Bibliography of Electronic Communications in Probability A Complete Bibliography of Electronic Communications in Probability Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 20 May 2021 Version 1.13 Title word cross-reference (1 + 1) [CB10]. (d; α, β) [Zho10]. (r + ∆) [CB10]. 0 [Sch12, Wag16]. 1 [Duc19, HL15b, Jac14, Li14, Sch12, SK15, Sim00, Uch18]. 1=2 [KV15]. 1=4 [JPR19]. 2 [BDT11, GH18b, Har12, Li14, RSS18, Sab21, Swa01, VZ11, vdBN17]. 2D [DXZ11]. 2M − X [Bau02, HMO01, MY99]. 3 [AB14, PZ18, SK15]. [0;t] [MLV15]. α [DXZ11, Pat07]. α 2 [0; 1=2) [Sch12]. BES0(d) [Win20]. β [Ven13]. d [H¨ag02, Mal15, Van07, Zho20]. d = 2 [KO06]. d>1 [Sal15]. dl2 [Wan14]. ≥ ≥ 2 + @u @mu d 2 [BR07]. d 3 [ST20]. d (0; 1) [Win20]. f [DGG 13]. @t = κm @xm [OD12]. G [NY09, BCH+00, FGM11]. H [Woj12, WP14]. k [AV12, BKR06, Gao08, GRS03]. k(n) [dBJP13]. kα [Sch12]. L1 1 2 1 p [CV07, MR01]. L ([0; 1]) [FP11]. L [HN09]. l [MHC13]. L [CGR10]. L1 [EM14]. Λ [Fou13, Fou14, Lag07, Zho14]. Lu = uα [Kuz00]. m(n) [dBJP13]. Cn [Tko11]. R2 [Kri07]. Rd [MN09]. Z [Sch12]. Z2 [Gla15]. Zd d 2 3 d C1 [DP14, SBS15, BC12]. Zn [ST20]. R [HL15a]. R [Far98]. Z [BS96]. 1 2 [DCF06]. N × N × 2 [BF11]. p [Eva06, GL14, Man05]. pc <pu [NP12a]. φ 2n [Kie97]. Φ2 [Hua21]. q [Bar14]. r [SC09]. S [RS07]. S2(δ) [Ost14]. SU(3) 2 2 [Ras10]. T [IR10, GG04, Gri02, MLV15]. T [DS06]. U [Arc98, RW02]. λ d 2 [Loe13]. Ξ [Fre12]. Z [DJ06, RS11a, Sin14]. Z [Pet08, Zer06]. Z+ [LK08]. ζ(2) [W¨as09]. ζ(2n) [BFY07]. * [KNN15]. -adic [Eva06]. -balayages [SC09]. -coalescent [M¨oh18]. -coalescents [Fre12, Lag07]. -connected [AB14]. -D [BDT11]. -dependent [HL15b]. -dimensional [CB10, H¨ag02, Jac14, Mal15, Van07, Zho20, Swa01]. -distance [EM14]. -divisible [AV12]. -Expectation [BCH+00]. -Hahn [Bar14]. -interaction [CB10]. -Martin [IR10]. -measures [FGM11]. -metric [Wan14, Loe13]. -mixing [Kie97]. -Monotone [Gao08]. -Norm [MR01]. -selfadjoint [WP14]. -selfadjont [Woj12]. -smooth [VZ11]. -spaces [CV07]. -spine [RSS18]. -Stable [Pat07, DXZ11]. -Statistic [GG04, Gri02]. -Statistics [DS06, Arc98, RW02]. -step [GRS03]. -superprocess [Zho10]. -transform [RS07]. -valued [BC12, MHC13]. -Variation [Man05]. -variations [GL14]. -vectors [DGG+13]. -Watanabe [Cri21]. -wise [BKR06]. 10 [MZ05a]. 2D [Kis14, vdBJV07, vdBC12, vdBC13, GPL08]. 2d-random [GPL08]. A. [KDV17]. a.k.a. [Jon13]. a.s [KSY06]. Abelian [Pri17]. Above [Jan97]. absence [IS17]. Absolute [Arc98, DM18, DGK19, SSS15, SV11b, Wag16]. Absolutely [Mac02, Mik02, AF19]. absorption [HH07]. Account [Ros02]. accuracy [MR13]. achieved [MLV15]. Acknowledgement [PN16]. Acknowledgment [MZ05a]. Activated [GGA10]. adaptive [AA07]. add [Tri19]. add-one [Tri19]. additive [EM14, NX13, Pel20]. adic [Eva06]. adjacency [BS07a]. admits [BT17]. ageing [BP10]. Aggregation [Hus08, DCLYY13]. Airy [BL13, CS14, TW03]. Aldous [BP10, War99]. algebra [LR16]. algebraic [AF06]. Algebraically [BFT13]. Algorithm [Mac02]. algorithms [AA07, RR15, RU13]. allocation [Kri07]. allocations [HM15]. Almost [App02, AN19, BS18a, Fre12, Lin09, Res01, Zho10, HR14, Li20]. Almost-sure [BS18a]. along [Hil12, KT11, NS13]. always [FGM11]. amenable [AST14, Hus08, NP12a, Tim19]. among [HK16, KSW12, McV08]. Analysis [KLS05, Kub11, FLP20]. analytic [BT20, DP18a, Unt10]. Analyticity [PS20]. Anchored [Dem20]. Andersen [ES21]. Anderson [Duc19, Dun20, GH18b, HL15a, MNX20]. Animals [Ham05, MS11]. Annealed [CG05, VM13]. annihilating [BK11, ST17, TYZ12]. Anomalous [Buc13]. Answers [BS96]. anticipated [YE13]. Application 3 [DS10, HCA17, Ruf15b, BP10, CP19b, CK12, Gau16, JK13, Sai07]. Applications [GG11, Jan97, Li99, BKS16, MU10, Pri09, TM15, dlPP09]. Approach [DZ96, Lon04, BC15, Ber17, DW12, DL09a, GH20, HvdHS08, Lac10, Lau20, Led17, LS13b]. approaching [DC13]. Approximating [BBF18, YLW15]. Approximation [BZ06, DP18b, DL08, KS97, BRT10, BC15, BJ18, BN08, CK12, Dal13, Dal17, FT07, FM12b, JTT18, JPR19, KV13, LY13, MR13, Pri15, SZ17,ˇ Sio14, VM13, WYY13]. Approximations [Pec07, CNPP16, Fan16, FM12a, KDV17, MZ18, Sab13]. Arbitrage [SV11a]. Arbitrage-free [SV11a]. Arbitrary [JK04, KK15]. arc [VY12a]. arc-sine [VY12a]. arise [MAPS14]. arising [Che21, KNN15]. Arithmetic [BYZ07, BYZ12]. Arrays [BL10, CK12, MAPS14, Van07]. asset [Rok07]. assignment [W¨as09]. Associated [BL10, Gao03, Mar10, Tan06, FF12, HRKU11, Haj15, HCS08, Ili19, Lab13, MR15a]. association [Dal13]. assumption [Ose11]. asymmetric [GRS03, MPP15]. Asymptotic [BB07, BDN10, CY13, DHR18, DHI11, DC15, EM16, GWZ21, Kar08, Rio11, SB07, Spr07, Tuc11, BS07a, GMT15, MP16]. asymptotically [GN06, Zha12]. Asymptotics [HM14, Jun11b, Li20, RW02, Rev03, Aid10, ADS20, Aou21, BS18a, Che21, DW12, EP17, Fre12, Fuk09, Jac14, Jeg09, Ma´s18, Mec09, PR15, RRZ11, Thi20, Wat12, Yin15, de 06]. Atlas [Tsa18]. attachment [CJ13, HJ18, MP14a, Mal20, Tam07]. Attracted [PV05, Uch18]. attracting [Gau16]. average [BL13]. averaged [LY16]. averages [LPP15]. averaging [CD17a, Ruf15b, Wai13]. Avoid [ABV03]. Avoidance [AHM+13]. avoiding [BP21, Gla15, Hut18]. away [Eri16]. Axis [BM05]. Az´ema [¸Cet12]. Azuma [Rio13a]. backward [AED13, Ban15, CD13, Duc19, Owo15, YE13, YRE16]. Balanced [BB10, Ste13]. balancing [JK13]. balayages [SC09]. Ball [Gao08, Li99, RZ98,_ Nua18, Sap10]. Ballistic [AAK01, Zer02, Flu08]. Balls [CP20, Jun11b, BBMT09, CP19a]. Banach [CK18a, Cha10, Kie97, MN08, VZ11]. band [BGP14, Kar09]. Barbour [KDV17]. Barnes [NY09, Ost13]. Barrier [GKH03, BS18b, MV14]. barycentric [Hou09]. based [BZ16, CL14, Rey15]. be [BDKS19, FF12]. before [MLV15]. Behavior [Lim99, CY13, FJR20, HK17, LM17, Xio04]. behaviors [MYZ21]. behaviour [Bas20, Buc13, KLL18]. Behavioural [RR14]. belong [BLL16]. Benford [DL08]. Berg [Mar10]. Bergomi [Gas19]. Bernoulli [AST14, Bob08, Cer14, Lat08, MAPS14, NP20, Pal08]. Bernstein [DS16]. Berry [GS09, NPY19]. Bertoin [Win20]. Bessel [AM18, Alt20, ESY08, HM14, KR19, KO01, PW18, PZ16]._ Best [Mar98]. bet [HW19]. Beta [MA17, PR15, DS15, LM17, M¨oh18, Ost13]. Beta-gamma [PR15]. between [BG21, BCW20, HT05, Le 08, Lou04, MW09, MW12, Pin17, SV08, vdBC13]. Beyond [BS96, Kov09]. Bi [Sau19, BT17]. bi-infinite [BT17]. Bi-log-concavity [Sau19]. bias [LG09]. biased [BCNP19, BT20, GG11]. big [MHC13]. Biggin [BM18]. Biham [AHM05]. binary [vdBKN12]. 4 binomial [Hil12]. bins [CP19a, CP20]. biorthogonal [But17]. bisection [Hua18]. bivariate [MAPS14]. BK [Jon13]. BKKKL [Ros08]. block [LM17, LS18b, MP14b, M¨oh18, Ora07]. block-matrices [Ora07]. blocks [Ora07]. blowup [LX15]. Bluetooth [BDL15]. Bobkov [KPS96]. Body [LW05]. Bohman [Sen16]. Bolthausen [KP15, MP14b]. bond [Ald16, Dem20]. Boolean [For20, Pen18, VM13]. bootstrap [GP14, dBJP13]. Borel [OS16]. Bouchaud [Mui15]. Bougerol [Ass18]. Bound [Han98, JK04, RZ98,_ CG15, Fan15, Han99, Hut18, IM16, KO06, KF09, PS08, Sap10, vdBD20]. boundaries [AM18, BBF18, ESY08, Lyo19]. Boundary [CKS99, Has05, MYZ21, Wag16, vdBN17, BA14, BFP+09, BJ18, Bur19, Dok15, FJR20, GHJ16, Hon19, IR10, KM17, Kua16]. Bounded [Dem96, ESvRS09, RR14, HM15, Mar18, Ose08, Rio15, Ruf17]. Boundedly [LR16]. boundedness [Lat08]. Bounding [Roc05]. Bounds [BCG12b, BP20, CG05, DL08, GS09, GP19, Mar98, PR11, SV04, Wer96, BGHK08, BN08, CM13, Cho18, Doh13, FM12a, FM12b, GP14, KM09, Kis14, LR15, NW15, NPY19, Nua18, QM17, RR15, RS06, Tan17, Yas14, Yas15]. Bovier [GKS18]. box [Cer14, Mor08]. Branching [CGP19, FZ10, HN11, KS97, Mor05, Wan02, Aid10, BM18, BK11, BH16, CM18b, CHL21, Cra13, CP11, DGK19, DG17, DP18b, DGH20, EP17, FF12, FJR20, GH18a, GM13, GKS18, HH07, HR14, HK15, Hut11, JL08, KM17, Kri21, LT20, MYZ21, Mai13, Mal15, M¨ul08, Oz20,¨ PW11, SK15, WH19]. Brascamp [Har14]. breaking [vdBN17]. Breuer [NPY19]. Bridge [Gao03, Li17, Li16]. Bridges [Ali01, CLMR15, Con16, Alt20, BCP03]. Brownian [MW12, AG15, Ald98, Ali01, Aur11, Bar05, BBB97, BBKM00, BB06, BA14, BCSW18, BPR99, BDE13, BH16, BGT07, BFP+09, Bor10, BZ18, BN20, BM20, BO03, BN08, BC98, Bur19, CM12a, CK18a, CC98, CK08, CHL21, CSS99, DeB07, DM09, Far98, FV21, Gao03, Gao08, GKS18, GL14, GT11, GHJ16, HCA17, HH07, HK15, Has05, HT05, Hon19, Hoo99, HN09, HN10, HLN13, HSY15, IS17, Ist05, Jan19a, Jan13, JV09, KT03, KT13, Ken09, KLS05, Law96, LM06, Li17, Mai13, Mal15, Mar11, MY99, MLV15, MMB18, MS19b, MW09, NP13, NR18, NX15, NX13, NS13, O¸ca20, Oka14, Olo18, Owo15, Oz20,¨ Par17, PW11, PW18, QR11, Ros20, SV04, SW02, Spi13, Tan06, Tud09, Unt10, VA06, VY12b, VY12a, Wag16, WYY13]. Brownian [Wan15, ZN03]. BSDEs [Bah02, BCH+00, BDM01, CEK11, FPZ16, JKL17, XFT20]. buffers [AS16]. bullet [DKJ+19]. BV [Tre13a]. BV-regularity [Tre13a]. C [KS10]. c`adl`ag [CC18]. c`adl`aguity [MX19]. Calculus [GKH03, TM15]. cancellative [Swa13]. Cannibal [Kub11]. Canonical [Ali01]. Cantor [Mar17, Zhu14]. Capacity [CKS99, LLN09]. caring [BK11]. Carlo [BA01]. cascades [DW15, Nik20]. case [AN19, BI15, Def12, Gau16, IM16, Ma´s18, RS07, SW10]. cases [MYZ21]. catalytic [BH16, SS06]. catastrophes [FS19]. Cauchy [Ber00, BFY07, GN06, LS18a, MZ14a, Rie18]. Cayley [Mar17, NP12a, Pri17]. 5 cells [BDM07, HM15]. cellular [BP10]. censoring [DM14]. Center [JC04]. Central [HN10, NX13, Rok15, RX20, AN19, F´er20, GV14, GMP18, GPPdS14, HN09, Rio11, Tri19, BLL08, BR07, Cha10, DV11, DBGP03, Kar07]. Certain [Ali01, H¨ag02, MR01, BB06, JK13, MP16, RR15]. Chafee [DHI11]. Chain [BA01, Gui99, HR07, Yad09, CD17b, Lac15, LW09, SS21, YRE16]. Chains [BLL08, Ros02, Tel00, ADOS11, CP17b, CP14, DG15, Die15, HLMV20, KF09, M¨ul08, NW15, Pel20, Rao19, RR97, SB07]. chambers [KS10]. Chance [DeB07]. Chandra [KT03]. change [BY13, GG14].
Recommended publications
  • Upper and Lower Snell Envelopes and Robust Partial Hedging
    American Options in incomplete Markets: Upper and lower Snell Envelopes and robust partial Hedging DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Mathematik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät II Humboldt-Universität zu Berlin von Herr Dipl. Math. Erick Treviño Aguilar geboren am 24.03.1975 in México Präsident der Humboldt-Universität zu Berlin: Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II: Prof. Dr. Wolfgang Coy Gutachter: 1. Prof. Dr. Hans Föllmer 2. Prof. Dr. Peter Imkeller 3. Prof. Dr. Frank Riedel eingereicht am: 14. Dezember 2007 Tag der mündlichen Prüfung: 9. Juni 2008 Abstract This thesis studies American options in an incomplete financial market and in continuous time. It is composed of two parts. In the first part we study a stochastic optimization problem in which a robust convex loss functional is minimized in a space of stochastic integrals. This problem arises when the seller of an American option aims to control the shortfall risk by using a partial hedge. We quantify the shortfall risk through a robust loss functional motivated by an extension of classical expected util- ity theory due to Gilboa and Schmeidler. In a general semimartingale model we prove the existence of an optimal strategy. Under additional compactness assumptions we show how the robust problem can be reduced to a non-robust optimization problem with respect to a worst-case probability measure. In the second part, we study the notions of the upper and the lower Snell envelope associated to an American option. We construct the envelopes for stable families of equivalent probability measures, the family of local martin- gale measures being an important special case.
    [Show full text]
  • Some Mathematical Aspects of Market Impact Modeling by Alexander Schied and Alla Slynko
    EMS Series of Congress Reports EMS Congress Reports publishes volumes originating from conferences or seminars focusing on any field of pure or applied mathematics. The individual volumes include an introduction into their subject and review of the contributions in this context. Articles are required to undergo a refereeing process and are accepted only if they contain a survey or significant results not published elsewhere in the literature. Previously published: Trends in Representation Theory of Algebras and Related Topics, Andrzej Skowro´nski (ed.) K-Theory and Noncommutative Geometry, Guillermo Cortiñas et al. (eds.) Classification of Algebraic Varieties, Carel Faber, Gerard van der Geer and Eduard Looijenga (eds.) Surveys in Stochastic Processes Jochen Blath Peter Imkeller Sylvie Rœlly Editors Editors: Jochen Blath Peter Imkeller Sylvie Rœlly Institut für Mathematik Institut für Mathematik Institut für Mathematik der Technische Universität Berlin Humboldt-Universität zu Berlin Universität Potsdam Straße des 17. Juni 136 Unter den Linden 6 Am Neuen Palais, 10 10623 Berlin 10099 Berlin 14469 Potsdam Germany Germany Germany [email protected] [email protected] [email protected] 2010 Mathematics Subject Classification: Primary: 60-06, Secondary 60Gxx, 60Jxx Key words: Stochastic processes, stochastic finance, stochastic analysis,statistical physics, stochastic differential equations ISBN 978-3-03719-072-2 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks.
    [Show full text]
  • 126 FM12 Abstracts
    126 FM12 Abstracts IC1 which happens in applications to barrier option pricing or Optimal Execution in a General One-Sided Limit structural credit risk models. In this talk, I will present Order Book novel adaptive discretization schemes for the simulation of stopped Lvy processes, which are several orders of magni- We construct an optimal execution strategy for the pur- tude faster than the traditional approaches based on uni- chase of a large number of shares of a financial asset over form discretization, and provide an explicit control of the a fixed interval of time. Purchases of the asset have a non- bias. The schemes are based on sharp asymptotic estimates linear impact on price, and this is moderated over time by for the exit probability and work by recursively adding dis- resilience in the limit-order book that determines the price. cretization dates in the parts of the trajectory which are The limit-order book is permitted to have arbitrary shape. close to the boundary, until a specified error tolerance is The form of the optimal execution strategy is to make an met. initial lump purchase and then purchase continuously for some period of time during which the rate of purchase is Peter Tankov set to match the order book resiliency. At the end of this Universit´e Paris-Diderot (Paris 7) period, another lump purchase is made, and following that [email protected] there is again a period of purchasing continuously at a rate set to match the order book resiliency. At the end of this second period, there is a final lump purchase.
    [Show full text]
  • 5, 2018 Room 210, Run Run Shaw Bldg., HKU
    July 3 - 5, 2018 Room 210, Run Run Shaw Bldg., HKU Program and Abstracts Institute of Mathematical Research Department of Mathematics Speakers: Jiro Akahori Ritsumeikan University Guangyue Han The University of Hong Kong Yaozhong Hu University of Alberta Davar Khoshnevisan University of Utah Arturo Kohatsu-Higa Ritsumeikan University Jin Ma University of Southern California Kihun Nam Monash University Lluís Quer-Sardanyons Universitat Autònoma Barcelona Xiaoming Song Drexel University Samy Tindel Purdue University Ciprian Tudor Université Paris 1 Tai-Ho Wang Barach College, City University of New York Jing Wu Sun Yat-Sen University Panqiu Xia University of Kansas George Yuan Soochow University & BBD Inc. Jianfeng Zhang University of Southern California Xicheng Zhang Wuhan University Organizing Committee: Guangyue Han, Jian Song, Jeff Yao (The University of Hong Kong), Xiaoming Song (Drexel University) Contact: Jian Song ([email protected]), Xiaoming Song ([email protected]) July 3 - 5, 2018 Room 210, Run Run Shaw Bldg., HKU Time / Date July 3 (Tue) July 4 (Wed) July 5 (Thur) Arturo Davar 9:30 – 10:30 Jin Ma Kohatsu-Higa Khoshnevisan 10:30 – 10:50 Tea Break 10:50 – 11:50 Xicheng Zhang George Yuan Samy Tindel Lunch Break 14:00 – 15:00 Yaozhong Hu Jianfeng Zhang Jiro Akahori Lluís 15:10 – 16:10 Tai-Ho Wang Jing Wu Quer-Sardanyons 16:10 – 16:30 Tea Break 16:30 – 17:30 Kihun Nam Ciprian Tudor Xiaoming Song 17:30 – 18:30 Guangyue Han Panqiu Xia Jul 3, 2018 9:30 – 10:30 Jin Ma, University of Southern California Time Consistent Conditional Expectation
    [Show full text]
  • Volume 52, Number 3, 2016 ISSN 0246-0203
    Volume 52, Number 3, 2016 ISSN 0246-0203 Martingale defocusing and transience of a self-interacting random walk Y. Peres, B. Schapira and P. Sousi 1009–1022 Excited random walk with periodic cookies G. Kozma, T. Orenshtein and I. Shinkar 1023–1049 Harmonic measure in the presence of a spectral gap ....I. Benjamini and A. Yadin 1050–1060 How vertex reinforced jump process arises naturally ......................X. Zeng 1061–1075 Persistence of some additive functionals of Sinai’s walk ...............A. Devulder 1076–1105 Random directed forest and the Brownian web ......R. Roy, K. Saha and A. Sarkar 1106–1143 Slowdown in branching Brownian motion with inhomogeneous variance ..............................................P. Maillard and O. Zeitouni 1144–1160 Maximal displacement of critical branching symmetric stable processes ..................................................S. P. Lalley and Y. Shao 1161–1177 On the asymptotic behavior of the density of the supremum of Lévy processes ............................................L. Chaumont and J. Małecki 1178–1195 Large deviations for non-Markovian diffusions and a path-dependent Eikonal equation ......................................J.Ma,Z.Ren,N.TouziandJ.Zhang 1196–1216 Inviscid limits for a stochastically forced shell model of turbulent flow .....................................S. Friedlander, N. Glatt-Holtz and V. Vicol 1217–1247 Estimate for Pt D for the stochastic Burgers equation G. Da Prato and A. Debussche 1248–1258 Skorokhod embeddings via stochastic flows on the space of Gaussian measures ................................................................R. Eldan 1259–1280 Liouville heat kernel: Regularity and bounds P. Maillard, R. Rhodes, V. Vargas and O. Zeitouni 1281–1320 Total length of the genealogical tree for quadratic stationary continuous-state branching processes .......................................H. Bi and J.-F. Delmas 1321–1350 Weak shape theorem in first passage percolation with infinite passage times ........................................................R.
    [Show full text]
  • Reducing Volatility for a Linear and Stable Growth in a Cryptocurrency
    EXAMENSARBETE INOM DATATEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVERIGE 2021 Reducing volatility for a linear and stable growth in a cryptocurrency Encourage spending, while providing a stable store of value over time in a decentralized network GUSTAF SJÖLINDER CARL-BERNHARD HALLBERG KTH SKOLAN FÖR KEMI, BIOTEKNOLOGI OCH HÄLSA Reducing volatility for a linear and stable growth in a cryptocurrency Encourage spending, while providing a stable store of value over time in a decentralized network Reducering av volatilitet för en linjär och stabil tillväxt i en kryptovaluta Uppmana användning, samt tillhandahålla ett värdebevarande över tid i ett decentraliserat nätverk Gustaf Sjölinder Carl-Bernhard Hallberg Degree Project in Computer Engineering First cycle,15 ECTS Stockholm, Sverige 2021 Supervisor at KTH: Luca Marzano Examiner: Ibrahim Orhan TRITA-CBH-GRU-2021:047 KTH The School of Technology and Health 141 52 Huddinge, Sverige Sammanfattning Internet gav människor möjlighet att utbyta information digitalt och har förändrat hur vi kommunicerar. Blockkedjeteknik och kryptovalutor har gett människan ett nytt sätt att utbyta värde på internet. Med ny teknologi kommer möjligheter, men kan även medföra problem. Ett problem som uppstått med kryptovalutor är deras volatilitet, vilket betyder att valutan upplever stora prissvängningar. Detta har gjort dessa valutor till objekt för spekulation och investering, och därmed gått ifrån sin funktion som valuta. För att en valuta ska anses som ett bra betalmedel, bör den inte ha hög volatilitet. Detta är inte bara begränsat till kryptovalutor, då till exempel Venezuelas nationella valuta Bolivar är en fiatvaluta med historiskt hög volatilitet som förlorat sin köpkraft på grund av hyperinflation under de senaste åren.
    [Show full text]
  • Optimal Stopping, Smooth Pasting and the Dual Problem
    Introduction Preliminaries Main Theorems Questions Applications Optimal Stopping, Smooth Pasting and the Dual Problem Saul Jacka and Dominic Norgilas, University of Warwick Imperial 21 February 2018 Saul Jacka and Dominic Norgilas, University of Warwick The Compensator of the Snell Envelope Introduction Preliminaries Main Theorems Questions Applications The general optimal stopping problem: Given a ltered probability space (Ω; (Ft ); F; P) and an adapted gains process G, nd def St = ess sup E[Gτ jFt ] optional τ≥t Recall, under very general conditions I S is the minimal supermartingale dominating G def I τt = inffs ≥ t : Ss = Gs g is optimal I for any t, S is a martingale on [t; τt ] I when Gt = g(Xt ) (1) for some (continuous-time) Markov Process X , St can be written as a function, v(Xt ). Saul Jacka and Dominic Norgilas, University of Warwick The Compensator of the Snell Envelope Introduction Preliminaries Main Theorems Questions Applications Remark 1.1 Condition Gt = g(Xt ) is less restrictive than might appear. With θ being the usual shift operator, can expand statespace of X by appending adapted functionals F with the property that Ft+s = f (Fs ; (θs ◦ Xu; 0 ≤ u ≤ t)): (2) The resulting process Y def= (X ; F ) is still Markovian. If X is strong Markov and F is right-cts then Y is strong Markov. e.g if X is a BM, Z t Z s 0 Yt = Xt ; Lt ; sup Xs ; exp − α(Xu)du g(Xs ) ds 0≤s≤t 0 0 is a Feller process on the ltration of X .
    [Show full text]
  • Financial Mathematics
    Financial Mathematics Rudiger¨ Kiesel February, 2005 0-0 1 Financial Mathematics Lecture 1 by Rudiger¨ Kiesel Department of Financial Mathematics, University of Ulm Department of Statistics, LSE RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 2 Aims and Objectives • Review basic concepts of probability theory; • Discuss random variables, their distribution and the notion of independence; • Calculate functionals and transforms; • Review basic limit theorems. RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 3 Probability theory To describe a random experiment we use sample space Ω, the set of all possible outcomes. Each point ω of Ω, or sample point, represents a possible random outcome of performing the random experiment. For a set A ⊆ Ω we want to know the probability IP (A). The class F of subsets of Ω whose probabilities IP (A) are defined (call such A events) should be be a σ-algebra , i.e. closed under countable, disjoint unions and complements, and contain the empty set ∅ and the whole space Ω. Examples. Flip coins, Roll two dice. RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 4 Probability theory We want (i) IP (∅) = 0, IP (Ω) = 1, (ii) IP (A) ≥ 0 for all A, (iii) If A1,A2,..., are disjoint, S P IP ( i Ai) = i IP (Ai) countable additivity.
    [Show full text]
  • The Harrison-Pliska Story (And a Little Bit More)
    The Harrison-Pliska Story (and a little bit more) Stanley R Pliska Professor Emeritus Department of Finance University of Illinois at Chicago Fields Institute February 2010 Table of Contents 1. Some continuous time stock price models 2. Alternative justification of Black-Scholes formula 3. The preliminary security market model 4. Economic considerations 5. The general security market model 6. Computing the martingale measure 7. Pricing contingent claims (European options) 8. Return processes 9. Complete markets 10. Pricing American options Key References We Used • J.M. Harrison and D.M. Kreps, Martingales and arbitrage in multiperiod securities markets, J. Economic Theory 20 (1979), 381-408. • J. Jacod, Calcul Stochastique et Problèmes de Martingales, Lecture Notes in Mathematics 714, Springer, New York, 1979. • P.-A. Meyer, Un cours sur les integrales stochastiques, Seminaire de Probabilité X, Lecture Notes in Mathematics 511, Springer, New York, 1979, 91-108. 1. Some Continuous Time Stock Price Models 1a. Geometric Brownian motion dS t = µStdt + σStdW (and multi-stock extensions) Reasonably satisfactory, but… • Returns can be correlated at some frequencies • Volatility is random • Big price jumps like on October 19, 1987 1b. A point process model St = S 0 exp {bN t – µt}, where N = Poisson process with intensity λ > 0 b = positive scalar µ = positive scalar J. Cox and S. Ross, The valuation of options for alternative stochastic processes, J. Financial Economics 3 (1976), 145- 166. 1c. Some generalizations and variations • Diffusions ( µ and σ are time and state dependent) • Ito processes (µ and σ are stochastic) • General jump processes • Jump-diffusion processes • Fractional Brownian motion • Etc.
    [Show full text]
  • Modely Stochastické Volatility
    MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY MODELY STOCHASTICKÉ VOLATILITY Diplomová práce Martin Diviš Vedoucí práce: Mgr. Ondřej Pokora, Ph.D. Brno 2015 Bibliografický záznam Autor: Bc. Martin Diviš Přírodovědecká fakulta, Masarykova univerzita Ústav matematiky a statistiky Název práce: Modely stochastické volatility Studijní program: Matematika Studijní obor: Finanční matematika Vedoucí práce: Mgr. Ondřej Pokora, Ph.D. Akademický rok: 2014/2015 Počet stran: IX + 69 Klíčová slova: Evropská opce, volatilita, Blackův-Scholesův model, Wienerův proces, CIR proces, modely stochastické volatility, kalibrace Hestonova modelu, Lévyho procesy Bibliographic Entry Author Bc. Martin Diviš Faculty of Science, Masaryk University Department of Mathematics and Statistics Title of Thesis: Stochastic volatility models Degree programme: Mathematics Field of Study: Financial Mathematics Supervisor: Mgr. Ondřej Pokora, Ph.D. Academic Year: 2014/2015 Number of Pages: IX + 69 Keywords: European option, volatility, Black-Scholes model, Wiener process, CIR process, stochastic volatility models, calibration of the Heston model, Lévy process Abstrakt V diplomové práci se zabýváme oceňováním evropských opcí a jejich závislostí na volatilitě. Blackův-Scholesův model má mnoho slabin. Největší slabinou je předpoklad konstantní volatility. V diplomové práci jsou popsány typy volatilit, které se nevyvíjí konstantně. Zabýváme se zejména stochastickou volatilitou. Ta je sice matematicky nejkomplikovanější, ale také nejpřesnější. Popisujeme modely stochastické volatility, například Hestonův model, 3/2 model či SABR model. Tyto modely si dokážou poradit s častými problémy při oceňování opcí jako je například volatily smile či silné chvosty reálných pravděpodobnostních rozdělení. Nejslavnější Hestonův model kalibrujeme v Excelu. Také se zaměřujeme na Lévyho procesy, které si poradí se skoky podkladového aktiva. Abstract Throughout this diploma thesis we deal with the valuation of European options and their dependence on volatility.
    [Show full text]
  • Approximation of the Snell Envelope and American Options Prices in Dimension One
    ESAIM: Probability and Statistics March 2002, Vol. 6, 1–19 URL: http://www.emath.fr/ps/ DOI: 10.1051/ps:2002001 APPROXIMATION OF THE SNELL ENVELOPE AND AMERICAN OPTIONS PRICES IN DIMENSION ONE Vlad Bally1 and Bruno Saussereau2 Abstract. We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black–Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem. Mathematics Subject Classification. 49L20, 60G40, 65M15, 91B28. Received February 15, 2001. Revised November 13, 2001. Introduction The purpose of this article is to estimate the rate of convergence of the approximation scheme of an optimal stopping problem along Brownian paths, when the Brownian Motion is approximated by a random walk. F F P We consider a standard Brownian Motion (Bt)t≥0 defined on a filtered probability space (Ω, , ( t)t≥0, ) and we denote x ∈ R Xt = x + bt+ aBt, a,b,x ,a>0. Given a function h which is assumed to be (at least) Lipschitz-continuous, our aim is to compute x E x |F Yt =sup (h(τ,Xτ ) t) , τ∈Tt,T where Tt,T is the set of all the stopping times taking values in [t,T ]. This is the Snell Envelope of the process x (h(t, Xt ))t∈[0,T ]. Our results apply to standard American Options. Recall, for example, that an American Put on a stock is the right to sell one share at a specified price K (called the exercise price) at any instant until a given future date T (called the expiration date or date of maturity).
    [Show full text]
  • Optimal Stopping and Applications
    Optimal Stopping and Applications Alex Cox March 16, 2009 Abstract These notes are intended to accompany a Graduate course on Optimal stopping, and in places are a bit brief. They follow the book ‘Optimal Stopping and Free- boundary Problems’ by Peskir and Shiryaev, and more details can generally be found there. 1 Introduction 1.1 Motivating Examples Given a stochastic process Xt, an optimal stopping problem is to compute the following: sup EF (Xτ ), (1) τ where the supremum is taken over some set of stopping times. As well as computing the supremum, we will also usually be interested in finding a description of the stopping time. For motivation, we consider three applications where optimal stopping problems arise. (i) Stochastic analysis. Let Bt be a Brownian motion. Then classical results tell us that for any (fixed) T 0, ≥ πT E sup B = | s| 2 0≤s≤T r What can we say about the left-hand side if we replace the constant T with a stopping time τ? To solve this problem, it turns out that we can consider the (class of) optimal stopping problems: V (λ) = sup E sup Bs λτ . (2) τ s τ | | − 0≤ ≤ Where we take the supremum over all stopping times which have Eτ < , and λ > 0. (Note that in order to fit into the exact form described in (1), we∞ need 1 Optimal Stopping and Applications — Introduction Amg Cox 2 to take e.g. Xt = (Bt, sups≤t Bs , t)). Now suppose we can solve this problem for all λ > 0, then we can use a Lagrangian-style| | approach to get back to the original question: for any suitable stopping time τ we have E sup Bs V (λ)+ λEτ s τ | | ≤ 0≤ ≤ inf (V (λ)+ λEτ) ≤ λ>0 Now, if we suppose that the infimum here is attained, and the supremum in (2) is also attained at the optimal λ, then we see that the right-hand side is a function of Eτ, and further, we can attain equality for this bound, so that it is the smallest possible bound.
    [Show full text]