Modely Stochastické Volatility

Total Page:16

File Type:pdf, Size:1020Kb

Modely Stochastické Volatility MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY MODELY STOCHASTICKÉ VOLATILITY Diplomová práce Martin Diviš Vedoucí práce: Mgr. Ondřej Pokora, Ph.D. Brno 2015 Bibliografický záznam Autor: Bc. Martin Diviš Přírodovědecká fakulta, Masarykova univerzita Ústav matematiky a statistiky Název práce: Modely stochastické volatility Studijní program: Matematika Studijní obor: Finanční matematika Vedoucí práce: Mgr. Ondřej Pokora, Ph.D. Akademický rok: 2014/2015 Počet stran: IX + 69 Klíčová slova: Evropská opce, volatilita, Blackův-Scholesův model, Wienerův proces, CIR proces, modely stochastické volatility, kalibrace Hestonova modelu, Lévyho procesy Bibliographic Entry Author Bc. Martin Diviš Faculty of Science, Masaryk University Department of Mathematics and Statistics Title of Thesis: Stochastic volatility models Degree programme: Mathematics Field of Study: Financial Mathematics Supervisor: Mgr. Ondřej Pokora, Ph.D. Academic Year: 2014/2015 Number of Pages: IX + 69 Keywords: European option, volatility, Black-Scholes model, Wiener process, CIR process, stochastic volatility models, calibration of the Heston model, Lévy process Abstrakt V diplomové práci se zabýváme oceňováním evropských opcí a jejich závislostí na volatilitě. Blackův-Scholesův model má mnoho slabin. Největší slabinou je předpoklad konstantní volatility. V diplomové práci jsou popsány typy volatilit, které se nevyvíjí konstantně. Zabýváme se zejména stochastickou volatilitou. Ta je sice matematicky nejkomplikovanější, ale také nejpřesnější. Popisujeme modely stochastické volatility, například Hestonův model, 3/2 model či SABR model. Tyto modely si dokážou poradit s častými problémy při oceňování opcí jako je například volatily smile či silné chvosty reálných pravděpodobnostních rozdělení. Nejslavnější Hestonův model kalibrujeme v Excelu. Také se zaměřujeme na Lévyho procesy, které si poradí se skoky podkladového aktiva. Abstract Throughout this diploma thesis we deal with the valuation of European options and their dependence on volatility. The Black-Scholes model has many weaknesses. The biggest weakness is the forecast of the constant volatility. In this diploma thesis, there are described several types of volatility, which do not develop constantly. We deal particularly with the stochastic volatility. On the one hand, it is the most complex from the mathematic point of view, but on the other hand the most accurate. We describe stochastic volatility model, for instance Heston model, 3/2 model or SABR model. These models are able to deal with frequent problems during the valuation of options such as volatility smile or other fat tails of real probability distributions. The most famous Heston model is calibrated in Excel. Also, we focus on Levy's processes, which deal with the jumps of an underlying asset. Poděkování Na tomto místě bych rád poděkoval doktoru Ondřeji Pokorovi za skvělé vedení diplomové práce. Vyzdvihl bych jeho ochotu, cenné rady a motivující přístup. Za výbornou výuku předmětů finanční matematiky bych chtěl poděkovat docentu Martinu Kolářovi a doktoru Pokorovi. Nabyté znalosti z jejich předmětů jsem zúročil nejen při psaní diplomové práce. Rád bych poděkoval také svým rodičům za podporu během studia. Prohlášení Prohlašuji, že jsem svoji diplomovou práci vypracoval samostatně s využitím informačních zdrojů, které jsou v práci citovány. Brno 14. prosinec 2014 ……………………………… Martin Diviš Obsah Úvod ......................................................................................................................... IX 1. Ekonomické a matematické pojmy ......................................................... 1 1.1. Finanční deriváty ................................................................................... 1 1.2. Matematické věty a definice.............................................................. 4 2. Blackův-Scholesův model ........................................................................ 12 2.1. Předpoklady Blackova-Scholesova modelu ............................. 12 2.2. Odvození Blackova-Scholesova modelu .................................... 13 2.3. Garmanův-Kohlhagenův model .................................................... 21 3. Oceňování finančních derivátů .............................................................. 23 3.1. Arbitrážní teorie oceňování ........................................................... 23 3.2. Zajištění................................................................................................... 24 3.3. Risk neutrální míra ............................................................................ 25 3.4. Metoda Monte Carlo .......................................................................... 27 3.4.1. Generátory náhodných čísel ................................................ 31 4. Volatilita .......................................................................................................... 33 4.1. Historická volatilita ........................................................................... 33 4.2. Implikovaná volatilita ....................................................................... 34 4.3. Deterministická volatilita ................................................................ 39 4.4. Stochastická volatilita ....................................................................... 39 4.4.1. Mean-reverting proces .......................................................... 40 4.4.2. CIR proces ................................................................................... 41 4.4.3. Ho-Lee model ............................................................................ 42 5. Metody stochastické volatility ............................................................... 43 5.1. Hestonův model .................................................................................. 44 5.1.1. Hestoův model se skoky ........................................................ 47 5.2. GARCH model ....................................................................................... 48 5.3. 3/2 model .............................................................................................. 49 5.4. Steinův model ....................................................................................... 49 5.5. CEV model .............................................................................................. 50 5.6. SABR volatility model ....................................................................... 51 5.7. Chenův model ....................................................................................... 53 5.8. Shrnutí ..................................................................................................... 54 6. Výpočet a kalibrace Hestnova modelu ............................................... 55 VII 7. Lévyho procesy ............................................................................................ 60 7.1. Mertonův jump diffusion model ................................................... 64 Závěr ....................................................................................................................... 66 Seznam použité literatury ............................................................................. 67 VIII Úvod Na počátku sedmdesátých let dvacátého století dochází k přelomu v oceňování finančních derivátů. Pánové Black, Scholes a Merton publikují Blackův-Scholesův model, za který později obdrží Myron Scholes a Robert Merton Nobelovou cenu za ekonomii. Blackův-Scholesův model je skutečně impozantní model, který většinou dokáže odhadnout správnou cenu evropské opce. Avšak v obdobích finančních krizí, kdy je na trhu vysoká volatilita, model příliš nefunguje. V diplomové práci se zaměříme na slabiny Blackova-Scholesova modelu. Hlavní slabinou je předpoklad, že volatilita se vyvíjí konstantně. Další slabinou je předpoklad lognormálních cen podkladového aktiva, který ne zcela správně popisuje reálné pravděpodobnostní rozdělení v extremních hodnotách. Blackův-Scholesův model také nedokáže popsat skoky ve vývoji podkladového aktiva. Také se zaměříme na důležitý předpoklad risk neutrality a s ním spojenou nutnost zajištění. Na začátků práce si popíšeme finanční deriváty a zadefinujeme si důležité matematické pojmy, které se využívají při oceňování finančních derivátů. V druhé kapitole si odvodíme slavný Blackův-Scholesův model. Dále si popíšeme rizikově neutrální oceňování a zajištění. Na konci třetí kapitoly se budeme věnovat numerické metodě Monte Carlo, která má veliké praktické využití nejen při oceňování finančních derivátů. Čtvrtá kapitola bude patřit volatilitě. Popíšeme si historickou, implikovanou, deterministickou a hlavně stochastickou volatilitu. Ukážeme si na grafech, proč není vhodné, aby se využívala konstantní volatilita. Tyto grafy zachycují volatility smile, skew, term structure a surface. Také se zaměříme na modelování stochastické volatility pomocí mean-reverting procesu, které ještě vylepšíme CIR procesem. Pátá kapitola je pojmenována stejně jako diplomová práce tzn. Modely stochastické volatility. Popíšeme si celkově sedm modelů. Naši pozornost zaměříme na nejslavnější Hestonův model a ukážeme si, jak si poradí se slabinami Blackova-Scholesova modelu. Také popíšeme výhody ostatních modelů stochastické volatility a zmíníme jejich praktické využití. Zaměříme se samozřejmě i na nevýhody těchto komplikovaných modelů. S matematickou složitostí a přesností bohužel souvisí i obtížná kalibrace. S ní si pokusíme poradit v předposlední kapitole při kalibraci Hestonova modelu, která
Recommended publications
  • Some Mathematical Aspects of Market Impact Modeling by Alexander Schied and Alla Slynko
    EMS Series of Congress Reports EMS Congress Reports publishes volumes originating from conferences or seminars focusing on any field of pure or applied mathematics. The individual volumes include an introduction into their subject and review of the contributions in this context. Articles are required to undergo a refereeing process and are accepted only if they contain a survey or significant results not published elsewhere in the literature. Previously published: Trends in Representation Theory of Algebras and Related Topics, Andrzej Skowro´nski (ed.) K-Theory and Noncommutative Geometry, Guillermo Cortiñas et al. (eds.) Classification of Algebraic Varieties, Carel Faber, Gerard van der Geer and Eduard Looijenga (eds.) Surveys in Stochastic Processes Jochen Blath Peter Imkeller Sylvie Rœlly Editors Editors: Jochen Blath Peter Imkeller Sylvie Rœlly Institut für Mathematik Institut für Mathematik Institut für Mathematik der Technische Universität Berlin Humboldt-Universität zu Berlin Universität Potsdam Straße des 17. Juni 136 Unter den Linden 6 Am Neuen Palais, 10 10623 Berlin 10099 Berlin 14469 Potsdam Germany Germany Germany [email protected] [email protected] [email protected] 2010 Mathematics Subject Classification: Primary: 60-06, Secondary 60Gxx, 60Jxx Key words: Stochastic processes, stochastic finance, stochastic analysis,statistical physics, stochastic differential equations ISBN 978-3-03719-072-2 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks.
    [Show full text]
  • 126 FM12 Abstracts
    126 FM12 Abstracts IC1 which happens in applications to barrier option pricing or Optimal Execution in a General One-Sided Limit structural credit risk models. In this talk, I will present Order Book novel adaptive discretization schemes for the simulation of stopped Lvy processes, which are several orders of magni- We construct an optimal execution strategy for the pur- tude faster than the traditional approaches based on uni- chase of a large number of shares of a financial asset over form discretization, and provide an explicit control of the a fixed interval of time. Purchases of the asset have a non- bias. The schemes are based on sharp asymptotic estimates linear impact on price, and this is moderated over time by for the exit probability and work by recursively adding dis- resilience in the limit-order book that determines the price. cretization dates in the parts of the trajectory which are The limit-order book is permitted to have arbitrary shape. close to the boundary, until a specified error tolerance is The form of the optimal execution strategy is to make an met. initial lump purchase and then purchase continuously for some period of time during which the rate of purchase is Peter Tankov set to match the order book resiliency. At the end of this Universit´e Paris-Diderot (Paris 7) period, another lump purchase is made, and following that [email protected] there is again a period of purchasing continuously at a rate set to match the order book resiliency. At the end of this second period, there is a final lump purchase.
    [Show full text]
  • 5, 2018 Room 210, Run Run Shaw Bldg., HKU
    July 3 - 5, 2018 Room 210, Run Run Shaw Bldg., HKU Program and Abstracts Institute of Mathematical Research Department of Mathematics Speakers: Jiro Akahori Ritsumeikan University Guangyue Han The University of Hong Kong Yaozhong Hu University of Alberta Davar Khoshnevisan University of Utah Arturo Kohatsu-Higa Ritsumeikan University Jin Ma University of Southern California Kihun Nam Monash University Lluís Quer-Sardanyons Universitat Autònoma Barcelona Xiaoming Song Drexel University Samy Tindel Purdue University Ciprian Tudor Université Paris 1 Tai-Ho Wang Barach College, City University of New York Jing Wu Sun Yat-Sen University Panqiu Xia University of Kansas George Yuan Soochow University & BBD Inc. Jianfeng Zhang University of Southern California Xicheng Zhang Wuhan University Organizing Committee: Guangyue Han, Jian Song, Jeff Yao (The University of Hong Kong), Xiaoming Song (Drexel University) Contact: Jian Song ([email protected]), Xiaoming Song ([email protected]) July 3 - 5, 2018 Room 210, Run Run Shaw Bldg., HKU Time / Date July 3 (Tue) July 4 (Wed) July 5 (Thur) Arturo Davar 9:30 – 10:30 Jin Ma Kohatsu-Higa Khoshnevisan 10:30 – 10:50 Tea Break 10:50 – 11:50 Xicheng Zhang George Yuan Samy Tindel Lunch Break 14:00 – 15:00 Yaozhong Hu Jianfeng Zhang Jiro Akahori Lluís 15:10 – 16:10 Tai-Ho Wang Jing Wu Quer-Sardanyons 16:10 – 16:30 Tea Break 16:30 – 17:30 Kihun Nam Ciprian Tudor Xiaoming Song 17:30 – 18:30 Guangyue Han Panqiu Xia Jul 3, 2018 9:30 – 10:30 Jin Ma, University of Southern California Time Consistent Conditional Expectation
    [Show full text]
  • Volume 52, Number 3, 2016 ISSN 0246-0203
    Volume 52, Number 3, 2016 ISSN 0246-0203 Martingale defocusing and transience of a self-interacting random walk Y. Peres, B. Schapira and P. Sousi 1009–1022 Excited random walk with periodic cookies G. Kozma, T. Orenshtein and I. Shinkar 1023–1049 Harmonic measure in the presence of a spectral gap ....I. Benjamini and A. Yadin 1050–1060 How vertex reinforced jump process arises naturally ......................X. Zeng 1061–1075 Persistence of some additive functionals of Sinai’s walk ...............A. Devulder 1076–1105 Random directed forest and the Brownian web ......R. Roy, K. Saha and A. Sarkar 1106–1143 Slowdown in branching Brownian motion with inhomogeneous variance ..............................................P. Maillard and O. Zeitouni 1144–1160 Maximal displacement of critical branching symmetric stable processes ..................................................S. P. Lalley and Y. Shao 1161–1177 On the asymptotic behavior of the density of the supremum of Lévy processes ............................................L. Chaumont and J. Małecki 1178–1195 Large deviations for non-Markovian diffusions and a path-dependent Eikonal equation ......................................J.Ma,Z.Ren,N.TouziandJ.Zhang 1196–1216 Inviscid limits for a stochastically forced shell model of turbulent flow .....................................S. Friedlander, N. Glatt-Holtz and V. Vicol 1217–1247 Estimate for Pt D for the stochastic Burgers equation G. Da Prato and A. Debussche 1248–1258 Skorokhod embeddings via stochastic flows on the space of Gaussian measures ................................................................R. Eldan 1259–1280 Liouville heat kernel: Regularity and bounds P. Maillard, R. Rhodes, V. Vargas and O. Zeitouni 1281–1320 Total length of the genealogical tree for quadratic stationary continuous-state branching processes .......................................H. Bi and J.-F. Delmas 1321–1350 Weak shape theorem in first passage percolation with infinite passage times ........................................................R.
    [Show full text]
  • Reducing Volatility for a Linear and Stable Growth in a Cryptocurrency
    EXAMENSARBETE INOM DATATEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVERIGE 2021 Reducing volatility for a linear and stable growth in a cryptocurrency Encourage spending, while providing a stable store of value over time in a decentralized network GUSTAF SJÖLINDER CARL-BERNHARD HALLBERG KTH SKOLAN FÖR KEMI, BIOTEKNOLOGI OCH HÄLSA Reducing volatility for a linear and stable growth in a cryptocurrency Encourage spending, while providing a stable store of value over time in a decentralized network Reducering av volatilitet för en linjär och stabil tillväxt i en kryptovaluta Uppmana användning, samt tillhandahålla ett värdebevarande över tid i ett decentraliserat nätverk Gustaf Sjölinder Carl-Bernhard Hallberg Degree Project in Computer Engineering First cycle,15 ECTS Stockholm, Sverige 2021 Supervisor at KTH: Luca Marzano Examiner: Ibrahim Orhan TRITA-CBH-GRU-2021:047 KTH The School of Technology and Health 141 52 Huddinge, Sverige Sammanfattning Internet gav människor möjlighet att utbyta information digitalt och har förändrat hur vi kommunicerar. Blockkedjeteknik och kryptovalutor har gett människan ett nytt sätt att utbyta värde på internet. Med ny teknologi kommer möjligheter, men kan även medföra problem. Ett problem som uppstått med kryptovalutor är deras volatilitet, vilket betyder att valutan upplever stora prissvängningar. Detta har gjort dessa valutor till objekt för spekulation och investering, och därmed gått ifrån sin funktion som valuta. För att en valuta ska anses som ett bra betalmedel, bör den inte ha hög volatilitet. Detta är inte bara begränsat till kryptovalutor, då till exempel Venezuelas nationella valuta Bolivar är en fiatvaluta med historiskt hög volatilitet som förlorat sin köpkraft på grund av hyperinflation under de senaste åren.
    [Show full text]
  • A Complete Bibliography of Electronic Communications in Probability
    A Complete Bibliography of Electronic Communications in Probability Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 20 May 2021 Version 1.13 Title word cross-reference (1 + 1) [CB10]. (d; α, β) [Zho10]. (r + ∆) [CB10]. 0 [Sch12, Wag16]. 1 [Duc19, HL15b, Jac14, Li14, Sch12, SK15, Sim00, Uch18]. 1=2 [KV15]. 1=4 [JPR19]. 2 [BDT11, GH18b, Har12, Li14, RSS18, Sab21, Swa01, VZ11, vdBN17]. 2D [DXZ11]. 2M − X [Bau02, HMO01, MY99]. 3 [AB14, PZ18, SK15]. [0;t] [MLV15]. α [DXZ11, Pat07]. α 2 [0; 1=2) [Sch12]. BES0(d) [Win20]. β [Ven13]. d [H¨ag02, Mal15, Van07, Zho20]. d = 2 [KO06]. d>1 [Sal15]. dl2 [Wan14]. ≥ ≥ 2 + @u @mu d 2 [BR07]. d 3 [ST20]. d (0; 1) [Win20]. f [DGG 13]. @t = κm @xm [OD12]. G [NY09, BCH+00, FGM11]. H [Woj12, WP14]. k [AV12, BKR06, Gao08, GRS03]. k(n) [dBJP13]. kα [Sch12]. L1 1 2 1 p [CV07, MR01]. L ([0; 1]) [FP11]. L [HN09]. l [MHC13]. L [CGR10]. L1 [EM14]. Λ [Fou13, Fou14, Lag07, Zho14]. Lu = uα [Kuz00]. m(n) [dBJP13]. Cn [Tko11]. R2 [Kri07]. Rd [MN09]. Z [Sch12]. Z2 [Gla15]. Zd d 2 3 d C1 [DP14, SBS15, BC12]. Zn [ST20]. R [HL15a]. R [Far98]. Z [BS96]. 1 2 [DCF06]. N × N × 2 [BF11]. p [Eva06, GL14, Man05]. pc <pu [NP12a].
    [Show full text]
  • Application of SABR Model to Strategy of Accumulation of Reserves Of
    Journal of Business and Economics, ISSN 2155-7950, USA May 2013, Volume 4, No. 5, pp. 419-431 Academic Star Publishing Company, 2013 http://www.academicstar.us Application of SABR Model to Strategy of Accumulation of Reserves of Central Bank in México Guillermo Sierra Juárez (Universidad de Guadalajara, CUCEA, Departamento de Métodos Cuantitativos, Jalisco, Guadalajara México) Abstract: The purpose of this paper is to review and to calibrate the SABR volatility model in order to estimate the volatility of foreign currency (US dollar) in the case of Mexican market and applied the model to the valuation of the option premium (Oc) specifically for the case of international reserves accumulation of the Central Bank on Mexico. It was found that the estimation of volatility and the premium Oc when the historical and implied volatilities are used have different estimation respect the SABR volatility case, principally when forward price is not the same from strike price. Key words: SABR; volatility; international reserves; differential geometry JEL codes: C61, G10, G12 1. Introduction Since Black-Scholes original paper (1973) plain vanilla options have been valued using market parameters and financial assumptions. However later it was discovered that Black-Scholes model estimated the same volatility for different strike prices, a fact not observed in the real world, in other words at different strike prices produce different volatilities, this behavior is observed in the market and it is known as skew or volatility smile. Market volatilities smiles and skews1 are usually managed by using local volatility models. It was discovered that the dynamics of the market smile predicted by local volatility models is opposite of observed market behavior.
    [Show full text]
  • The Heston Model
    Outline Introduction Stochastic Volatility Monte Carlo simulation of Heston Additional Exercise The Heston Model Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ May 6, 2014 Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ The Heston Model Outline Introduction Stochastic Volatility Monte Carlo simulation of Heston Additional Exercise Introduction Stochastic Volatility Generalized SV models The Heston Model Vanilla Call Option via Heston Monte Carlo simulation of Heston It^o'slemma for variance process Euler-Maruyama scheme Implement in Excel&VBA Additional Exercise Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ The Heston Model Outline Introduction Stochastic Volatility Monte Carlo simulation of Heston Additional Exercise Introduction 1. Why the Black-Scholes model is not popular in the industry? 2. What is the stochastic volatility models? Stochastic volatility models are those in which the variance of a stochastic process is itself randomly distributed. Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ The Heston Model Outline Introduction Generalized SV models Stochastic Volatility The Heston Model Monte Carlo simulation of Heston Vanilla Call Option via Heston Additional Exercise A general expression for non-dividend stock with stochastic volatility is as below: p 1 dSt = µt St dt + vt St dWt ; (1) 2 dvt = α(St ; vt ; t)dt + β(St ; vt ; t)dWt ; (2) with 1 2 dWt dWt = ρdt ; where St denotes the stock price and vt denotes its variance. Examples: I Heston model I SABR volatility model I GARCH model I 3/2 model I Chen model Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ The Heston Model Outline Introduction Generalized SV models Stochastic Volatility The Heston Model Monte Carlo simulation of Heston Vanilla Call Option via Heston Additional Exercise The Heston model is a typical Stochastic Volatility model which p takes α(St ; vt ; t) = κ(θ − vt ) and β(St ; vt ; t) = σ vt , i.e.
    [Show full text]
  • Proceedings of the Finance and Economics Conference 2012
    Proceedings of the Finance and Economics Conference 2012 Munich, Germany August 1-3, 2012 The Lupcon Center for Business Research www.lcbr-online.com ISSN 2190-7927 All rights reserved. No part of this publication may be reprinted in any form (including electronically) without the explicit permission of the publisher and/or the respective authors. The publisher (LCBR)is in no way liable for the content of the contributions. The author(s) of the abstracts and/or papers are solely responsible for the texts submitted. 1 Procedural Notes about the Conference Proceedings 1) Selecting Abstracts and Papers for the Conference The basis of the acceptance decisions for the conference is the evaluation of the abstracts submitted to us before the deadline of March 15, 2012. Upon an initial evaluation in terms of general quality and thematic fit, each abstract is sent to a reviewer who possesses competence in the field from which the abstract originates. The reviewers return their comments to the Lupcon Center for Business Research about the quality and relevance of the abstracts. The opinion of at least one peer reviewer per abstract is solicited. In some cases, the opinion of additional reviewers is necessary to make an adequate decision. If the peer reviewers disagree about an abstract, a final decision can be facilitated through an evaluation of the full paper, if it is already available at the time of the submission. If the reviewers determine that their comments are useful for the author to improve the quality of the paper, LCBR may forward the comments to the author.
    [Show full text]
  • The SABR Model Calibrated for Swaption’S Volatility Smile
    Mälardalens Högskola School of Education, Culture and Communication Division of Applied Mathematics Bachelor Degree Project in Applied Mathematics Spring 2014 The SABR Model Calibrated for Swaption’s Volatility Smile Tran, H. Nguyen Weigardh, Anton Date: 9/3/2014 Supervisors: Jan Röman Anatoliy Malyarenko ii Abstract Title: The SABR Model - Calibrated for Swaption’s Volatility Smile Date: 9/3/2014 Level: Degree Project in Applied Mathematics (MMA390), 15 credits Authors: Nguyen H. Tran Anton Weigardh [email protected] [email protected] Mobile: 070-0160303 Mobile: 073-7065166 Tutors: Jan Röman, Lecturer, School of Education, Culture and Communication Anatoliy Malyarenko, Associate Professor, School of Education, Culture and Communication Examiner: Linus Carlsson, Senior Lecturer, School of Education, Culture and Communica- tion Keywords: SABR, Volatility smile, Swaption, Stochastic volatility, Black-Scholes model. Problem: The standard Black-Scholes framework cannot incorporate the volatility smiles usually observed in the markets. Instead, one must consider alternative stochastic volatility models such as the SABR. Little research about the suitability of the SABR model for Swedish market (swaption) data has been found. Purpose: The purpose of this paper is to account for and to calibrate the SABR model for swaptions trading on the Swedish market. We intend to alter the calibration techniques and parameter values to examine which method is the most consistent with the market. Method: In MATLAB, we investigate the model using two different minimization techniques to estimate the model’s parameters. For both techniques, we also implement refinements of the original SABR model. Results and Conclusion: The quality of the fit relies heavily on the underlying data.
    [Show full text]
  • Extracting Volatility Smiles from Historical Spot Data
    Extracting volatility smiles from historical spot data Master's Thesis Emil Larsson Lund, 2017 Financial Economics Lund University Abstract The Black-Scholes model has been the fundamental framework for option pricing since its publication 1973, but it is known to have shortcomings. To correct for this, plenty of research in option pricing theory has been focused on calibrating a stochastic process to match asset behavior in the financial markets better than the geometric Brownian motion that Black-Scholes assume describe asset behaviour justly. A model that has gained popularity in the industry is the SABR volatility model. In this thesis we develop a numerical option pricing algorithm using the Hedged Monte Carlo method, for which we explore various modifications and additions. Due to its numerical nature, it can be used to price options without assuming a statistical process for the underlying asset. Instead, it estimates op- tion prices based solely on historical data. We evaluate the algorithm with sim- ulated data from the classic Black-Scholes framework and the SABR volatility model to see that the price estimates from our algorithm matches the theoret- ically correct values. Having validated the algorithm, we apply it on historical FX spot data and obtain empirical volatility smiles that lie close to the smiles observed in the current market. Keywords: Monte Carlo option pricing, empirical volatility smile JEL classification: G12 1 Acknowledgement First of all, I have to thank quantitative strategists Nicolas Hutchings, Mark Baker and especially Tor Gillberg at Bank of America Merrill Lynch without whom this thesis would never have happened. Thank you for putting of time for me, feeding me with ideas and helping me overcome all the obstacles I have faced.
    [Show full text]
  • Miikka Rytty AFFINE MULTI-FACTOR SHORT-RATE MODELS in TERM STRUCTURE MODELING Master's Thesis Department of Finance May 2019
    OULU BUSINESS SCHOOL Miikka Rytty AFFINE MULTI-FACTOR SHORT-RATE MODELS IN TERM STRUCTURE MODELING Master’s Thesis Department of Finance May 2019 UNIVERSITY OF OULU ABSTRACT OF THE MASTER'S THESIS Oulu Business School Unit Department of Finance Author Supervisor Miikka Rytty Professor Jukka Perttunen Title Affine multi-factor short-rate models in term structure modeling Subject Type of the degree Time of publication Number of pages Finance Master’s Thesis May 2019 177 Abstract This thesis gives an overview of short-rate models in term structure modeling of interest rates. The focus is in simple preference-free models with affine term structures. The thesis also shows how these models can be extended to cover credit spreads over the risk-free interest rate. The empirical section analyzes how well these models can be applied to recent interest rate data. While short-rate models are still used, more recent market models have eclipsed them in pricing of complex derivatives. The previous literature in short-rate modeling has been mainly conducted before the financial crisis of 2007-08 and there is very little literature on comparing how well these models perform in the current market structure which features negative interest rates. The first chapters give an overview of arbitrage-free pricing methodology of contingent claims and short-rate modeling of interest rates and credit spreads. These chapters present analytical pricing formulas for zero-coupon bonds with and without credit risk and semi-analytical pricing method for options on zero-coupon bonds in simple preference-free affine multi-factor short-rate models.
    [Show full text]