SPA OSAKA 2010 Schedule Table

Total Page:16

File Type:pdf, Size:1020Kb

SPA OSAKA 2010 Schedule Table Last modified on September 12, 2010 SPA OSAKA 2010 Schedule Table On Monday, the conference office will open at 7:30 in the morning Monday, 6th Tuesday, 7th Wednesday, 8th Thursday, 9th Friday, 10th 9;56.:;11 8 Opening (Life Hall) :;11.:;56 :;11.:;56 :;11.:;56 :;11.:;56 :;11.:;56 Lawler Wilson Sturm Miermont Hino 9 (Doob Lecture) (Life Hall) (Life Hall) (Life Hall) (Life Hall) (Life Hall) coffee break :;66.21;51 :;66.21;51 :;66.21;51 :;66.21;51 Atar Kumagai 21;16.21;61 Biskup Tang 10 (Life Hall) (Life Hall) Lyons (IMS Medallion (Life Hall) (Life Hall) Lecture) (Life Hall) coffee break coffee break coffee break coffee break 21;61.22;26 22;16.22;61 22;16.23;41 Event of Bernoulli 22;16.22;61 22;16.22;61 Society (Life Hall) 11 Rogers SS04, SS06, SS13, Hairer Jacod (Life Hall) (Life Hall) (Life Hall) SS26, SS27, CS04, lunch CS07, CT06, CT11, CT16, CT18 23;11.23;56 (Parallel sessions) 23;11.23;56 23;11.23;56 Khoshnevisan Jeanblanc Landim 12 (Life Hall) (Life Hall) (Lévy Lecture) (Life Hall) lunch lunch 23;61. lunch lunch Excursion 25;21.26;46 14 25;31.26;56 SS09, SS12, SS14, 25;31.26;16 25;31.26;56 SS10, SS18, SS20, SS23, SS25, CS08, Taylor SS01, SS03, SS11, SS21, CS09, CS10, CS14, CT07, CT09, (Life Hall) SS15, SS16, CS03, CS12, CT02, CT03, CT12, CT19 CS05, CS11, CT04, CT10, CT15 (Parallel sessions) CT05, CT13, CT17, 26;26.27;11 15 (Parallel sessions) CT22 Seppäläinen (Parallel sessions) coffee break (Life Hall) coffee break PS I core time 27;11. 27;16.27;61 coffee break 27;26.29;21 PS II core time Closing (Life Hall) 16 Watanabe SS05, SS07, SS17, (Itô memorial lecture) 27;36.29;31 SS24, CS01, CS02, (Life Hall) SS02, SS08, SS19, CT20, CT23, CT25, SS22, CS06, CS13, CT26, CT27 28;11.28;56 CT01, CT08, CT14, (Parallel sessions) McKean CT21, CT24 17 (Itô memorial lecture) (Parallel sessions) (Life Hall) 18 29;41. Reception Party (Senri Room) 2:;11. SS: Invited Special Sessions Banquet CS: Organized Contributed Sessions 19 (Senri Room) CT: Open Contributed Sessions PS: Poster Sessions 2 Conference Schedule Monday, September 6th Tuesday, September 7th 8:45–9:00 9:00–9:45 Opening Nesting of loops in 2D loop models David Wilson Microsoft 9:00–9:45 Doob Lecture Geometric, fractal, and multifractal properties of the 9:55–10:40 Schramm-Loewner evolution (SLE) Convergence of symmetric Markov chains on Zd Gregory F. Lawler University of Chicago Takashi Kumagai Kyoto University 9:55–10:40 11:05–12:30 On the non-degenerate slowdown diffusion regime Special Sessions and Contributed Sessions Rami Atar Technion (Parallel sessions, see page 11) 11:05–11:50 14:10–15:35 Mathematical finance: the P&L Special Sessions and Contributed Sessions Chris Rogers University of Cambridge (Parallel sessions, see page 14) 12:00–12:45 16:05–16:50 On randomly-forced heat equations A review on the development of stochastic analysis Davar Khoshnevisan The University of Utah Shinzo Watanabe Kyoto University 14:20–15:45 17:00–17:45 Special Sessions and Contributed Sessions Reminiscence K. Ito.ˆ Some memories and some re- (Parallel sessions, see page 5) marks on his mathematical style Henry P. McKean Courant Institute of Mathematical 16:15–18:10 Sciences Special Sessions and Contributed Sessions (Parallel sessions, see page 8) 18:30– Reception Party 3 Wednesday, September 8th Thursday, September 9th 9:00–9:45 9:00–9:45 Optimal transportation, gradient flows and Wasser- Scaling limits of random planar maps stein diffusion Gregory´ Miermont Universite´ de Paris-Sud 11 Karl-Theodor Sturm University of Bonn 9:55–10:40 10:05–10:50 IMS Medallion Lecture Gradient models with non-convex interactions Rough paths Marek Biskup UCLA and University of South Bo- Terence John Lyons University of Oxford hemia 10:50–11:15 11:05–11:50 Event of Bernoulli Society Spatially rough stochastic PDEs ISI President-Elect Jae C. Lee and BS President- Martin Hairer University of Warwick Elect Edward Waymire World Statistics Day: The future of societies of 12:00–12:45 mathematical statistics & probability Construction and properties of a random time with a given Azema´ supermartingale 11:15–11:30 Monique Jeanblanc Evry University Announcement of SPA 2011 14:20–15:05 12:50–18:00 The integral geometry of random level sets Excursion Jonathan Taylor Stanford University 19:00– 15:15–16:00 Banquet Scaling exponents for 1+1-dimensional directed polymers Timo O. Seppal¨ ainen¨ University of Wisconsin- Madison 16:25–18:20 Special Sessions and Contributed Sessions (Parallel sessions, see page 17) 4 Friday, September 10th 9:00–9:45 Martingale dimensions for self-similar fractals Masanori Hino Kyoto University 9:55–10:40 On backward stochastic partial differential equa- tions Shanjian Tang Fudan University 11:05–11:50 Discretization of processes and applications to high- frequency Jean Jacod UPMC (Paris-6) 12:00–12:45 Levy´ Lecture Metastability of Markov processes Claudio Landim IMPA 14:20–15:45 Special Sessions and Contributed Sessions (Parallel sessions, see page 20) 16:00– Closing 5 Monday, September 6th 14:20–15:45 (Parallel sessions) Session title (Organizer) Room 802 SS10: Potential Theory on Jump Processes (Kim) Room 601 SS18: Random Structure in Asymptotic Representation Theory (Hora) Life Hall SS20: SLE and Related Topics (Lawler) Science Hall SS21: Spatial Random Networks (van der Hofstad) Room 604 CS09: Some Analysis Related to Exponential (Geometric) Processes (Shieh) Room 603 CS10: Stochastic Differential Equations and their Graphs Applications (Smii) Room 502 CS12: Stochastic Optimal Stopping (Ano) Room 503 CT02: Brownian Motion Room 602 CT03: BSDE and BSPDE Room 701 CT10: Mathematical Finance 1 Room 801 CT15: Mathematical Statistics 1 I SS: Invited Special Sessions I CS: Organized Contributed Sessions I CT: Open Contributed Sessions I In the Open Contributed Sessions, the last speaker chairs the first talk; after this, each speaker chairs the next talk by turns. SS10: Potential Theory on Jump Processes 14:50–15:15 Panki Kim (Seoul National University) Asymptotics of characters and large Young dia- grams Valentin Feray´ LaBRI, CNRS Universite´ Bor- 14:20–14:45 deaux 1 Heat and Weyl asymptotics for stable processes Rodrigo Banuelos˜ Purdue University 15:20–15:45 Real Wishart matrices and Haar-distributed orthog- onal matrices 14:50–15:15 Sho Matsumoto Nagoya University Dirichlet heat kernel estimates for fractional Lapla- cian perturbed by gradient operator Zhen-Qing Chen University of Washington SS20: SLE and Related Topics Gregory F. Lawler (University of Chicago) 15:20–15:45 Transition probability densities of Levy processes 14:20–14:45 Rene´ L. Schilling TU Dresden Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model Pierre Nolin Courant Institute, New York University SS18: Random Structure in Asymptotic Rep- resentation Theory 14:50–15:15 Akihito Hora (Nagoya University) A rate of convergence for loop-erased random walk to SLE(2) Michael Kozdron University of Regina 14:20–14:45 Higher order freeness and asymptotic representa- 15:20–15:45 tions of unitary groups Gaussian free field and conformal field theory Benoˆıt VP Collins University of Ottawa Nam-Gyu Kang Seoul National University 6 SS21: Spatial Random Networks 14:50–15:15 Remco van der Hofstad (Eindhoven University of Shooting methods for numerical solution of linear Technology) and nonlinear stochastic boundary-value problems Armando Arciniega The University of Texas at San Antonio 14:20–14:45 Invariant random graphs with prescribed iid degrees 15:20–15:45 Maria Deijfen Stockholm University Maximum principle for controlled stochastic partial differential equation 14:50–15:15 AbdulRahman Soliman Al-Hussein Qassim Uni- Collective phenomena on random networks versity Cristian Giardina` Modena and Reggio Emilia Uni- versity CS12: Stochastic Optimal Stopping Katsunori Ano (Institute of Applied Mathematics) 15:20–15:45 Threshold networks with random weights and their 14:20–14:45 extension to spatial networks Pricing swing options by a dual approach Naoki Masuda University of Tokyo Yusuke Tashiro University of Tokyo 14:50–15:15 CS09: Some Analysis Related to Exponential Uncertain Markov decision processes with Bayesian (Geometric) Processes intervals Narn-Rueih Shieh (National Taiwan University) Masayuki Horiguchi Kanagawa University 14:20–14:45 15:20–15:45 Exponential (geometric) Levy´ process models in Odds theorem with multiple selection chances mathematical finance Katsunori Ano Institute of Applied Mathematics Yoshio Miyahara Nagoya City University CT02: Brownian Motion 14:50–15:15 14:20–14:45 Exponential of stationary processes textsfSkew products of one-dimensional diffusion pro- Muneya Matsui University of Tokyo cesses and a spherical Brownian motion Tomoko Takemura Kyoto University 15:20–15:45 Infinite products of exponential Levy-driven´ OU pro- 14:50–15:15 cesses On collisions of Brownian particles Narn-Rueih Shieh National Taiwan University Tomoyuki Ichiba University of California, Santa Barbara CS10: Stochastic Differential Equations and 15:20–15:45 their Graphs Applications A new chart to monitor process target and variability Boubaker Smii (King Fahd University of on dependent process steps Petroleum and Minerals) Su-Fen Yang National Chengchi University 14:20–14:45 CT03: BSDE and BSPDE Generalized Feynman graphs representation of stochastic differential equations driven by Levy´ 14:20–14:45 noise A BSDE approach to the sensitivity of the utility Boubaker Smii King Fahd University of Petroleum maximization problem and Minerals Markus Mocha Humboldt-Universitat¨ zu Berlin 7 14:50–15:15 Measure solutions of BSDEs and a Feynman-Kac formula Jianing Zhang Humboldt-Universitat¨ zu Berlin 15:20–15:45 On the Cauchy problem for degenerate backward stochastic partial differential equations in Sobolev spaces Kai Du Fudan University CT10: Mathematical Finance 1 14:20–14:45 A new approach to pricing European Union emis- sion allowance futures Anna Nazarova University of Duisburg-Essen 14:50–15:15 Market information and random fields Lane P.
Recommended publications
  • Upper and Lower Snell Envelopes and Robust Partial Hedging
    American Options in incomplete Markets: Upper and lower Snell Envelopes and robust partial Hedging DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Mathematik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät II Humboldt-Universität zu Berlin von Herr Dipl. Math. Erick Treviño Aguilar geboren am 24.03.1975 in México Präsident der Humboldt-Universität zu Berlin: Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II: Prof. Dr. Wolfgang Coy Gutachter: 1. Prof. Dr. Hans Föllmer 2. Prof. Dr. Peter Imkeller 3. Prof. Dr. Frank Riedel eingereicht am: 14. Dezember 2007 Tag der mündlichen Prüfung: 9. Juni 2008 Abstract This thesis studies American options in an incomplete financial market and in continuous time. It is composed of two parts. In the first part we study a stochastic optimization problem in which a robust convex loss functional is minimized in a space of stochastic integrals. This problem arises when the seller of an American option aims to control the shortfall risk by using a partial hedge. We quantify the shortfall risk through a robust loss functional motivated by an extension of classical expected util- ity theory due to Gilboa and Schmeidler. In a general semimartingale model we prove the existence of an optimal strategy. Under additional compactness assumptions we show how the robust problem can be reduced to a non-robust optimization problem with respect to a worst-case probability measure. In the second part, we study the notions of the upper and the lower Snell envelope associated to an American option. We construct the envelopes for stable families of equivalent probability measures, the family of local martin- gale measures being an important special case.
    [Show full text]
  • Optimal Stopping, Smooth Pasting and the Dual Problem
    Introduction Preliminaries Main Theorems Questions Applications Optimal Stopping, Smooth Pasting and the Dual Problem Saul Jacka and Dominic Norgilas, University of Warwick Imperial 21 February 2018 Saul Jacka and Dominic Norgilas, University of Warwick The Compensator of the Snell Envelope Introduction Preliminaries Main Theorems Questions Applications The general optimal stopping problem: Given a ltered probability space (Ω; (Ft ); F; P) and an adapted gains process G, nd def St = ess sup E[Gτ jFt ] optional τ≥t Recall, under very general conditions I S is the minimal supermartingale dominating G def I τt = inffs ≥ t : Ss = Gs g is optimal I for any t, S is a martingale on [t; τt ] I when Gt = g(Xt ) (1) for some (continuous-time) Markov Process X , St can be written as a function, v(Xt ). Saul Jacka and Dominic Norgilas, University of Warwick The Compensator of the Snell Envelope Introduction Preliminaries Main Theorems Questions Applications Remark 1.1 Condition Gt = g(Xt ) is less restrictive than might appear. With θ being the usual shift operator, can expand statespace of X by appending adapted functionals F with the property that Ft+s = f (Fs ; (θs ◦ Xu; 0 ≤ u ≤ t)): (2) The resulting process Y def= (X ; F ) is still Markovian. If X is strong Markov and F is right-cts then Y is strong Markov. e.g if X is a BM, Z t Z s 0 Yt = Xt ; Lt ; sup Xs ; exp − α(Xu)du g(Xs ) ds 0≤s≤t 0 0 is a Feller process on the ltration of X .
    [Show full text]
  • Financial Mathematics
    Financial Mathematics Rudiger¨ Kiesel February, 2005 0-0 1 Financial Mathematics Lecture 1 by Rudiger¨ Kiesel Department of Financial Mathematics, University of Ulm Department of Statistics, LSE RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 2 Aims and Objectives • Review basic concepts of probability theory; • Discuss random variables, their distribution and the notion of independence; • Calculate functionals and transforms; • Review basic limit theorems. RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 3 Probability theory To describe a random experiment we use sample space Ω, the set of all possible outcomes. Each point ω of Ω, or sample point, represents a possible random outcome of performing the random experiment. For a set A ⊆ Ω we want to know the probability IP (A). The class F of subsets of Ω whose probabilities IP (A) are defined (call such A events) should be be a σ-algebra , i.e. closed under countable, disjoint unions and complements, and contain the empty set ∅ and the whole space Ω. Examples. Flip coins, Roll two dice. RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 4 Probability theory We want (i) IP (∅) = 0, IP (Ω) = 1, (ii) IP (A) ≥ 0 for all A, (iii) If A1,A2,..., are disjoint, S P IP ( i Ai) = i IP (Ai) countable additivity.
    [Show full text]
  • The Harrison-Pliska Story (And a Little Bit More)
    The Harrison-Pliska Story (and a little bit more) Stanley R Pliska Professor Emeritus Department of Finance University of Illinois at Chicago Fields Institute February 2010 Table of Contents 1. Some continuous time stock price models 2. Alternative justification of Black-Scholes formula 3. The preliminary security market model 4. Economic considerations 5. The general security market model 6. Computing the martingale measure 7. Pricing contingent claims (European options) 8. Return processes 9. Complete markets 10. Pricing American options Key References We Used • J.M. Harrison and D.M. Kreps, Martingales and arbitrage in multiperiod securities markets, J. Economic Theory 20 (1979), 381-408. • J. Jacod, Calcul Stochastique et Problèmes de Martingales, Lecture Notes in Mathematics 714, Springer, New York, 1979. • P.-A. Meyer, Un cours sur les integrales stochastiques, Seminaire de Probabilité X, Lecture Notes in Mathematics 511, Springer, New York, 1979, 91-108. 1. Some Continuous Time Stock Price Models 1a. Geometric Brownian motion dS t = µStdt + σStdW (and multi-stock extensions) Reasonably satisfactory, but… • Returns can be correlated at some frequencies • Volatility is random • Big price jumps like on October 19, 1987 1b. A point process model St = S 0 exp {bN t – µt}, where N = Poisson process with intensity λ > 0 b = positive scalar µ = positive scalar J. Cox and S. Ross, The valuation of options for alternative stochastic processes, J. Financial Economics 3 (1976), 145- 166. 1c. Some generalizations and variations • Diffusions ( µ and σ are time and state dependent) • Ito processes (µ and σ are stochastic) • General jump processes • Jump-diffusion processes • Fractional Brownian motion • Etc.
    [Show full text]
  • A Complete Bibliography of Electronic Communications in Probability
    A Complete Bibliography of Electronic Communications in Probability Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 20 May 2021 Version 1.13 Title word cross-reference (1 + 1) [CB10]. (d; α, β) [Zho10]. (r + ∆) [CB10]. 0 [Sch12, Wag16]. 1 [Duc19, HL15b, Jac14, Li14, Sch12, SK15, Sim00, Uch18]. 1=2 [KV15]. 1=4 [JPR19]. 2 [BDT11, GH18b, Har12, Li14, RSS18, Sab21, Swa01, VZ11, vdBN17]. 2D [DXZ11]. 2M − X [Bau02, HMO01, MY99]. 3 [AB14, PZ18, SK15]. [0;t] [MLV15]. α [DXZ11, Pat07]. α 2 [0; 1=2) [Sch12]. BES0(d) [Win20]. β [Ven13]. d [H¨ag02, Mal15, Van07, Zho20]. d = 2 [KO06]. d>1 [Sal15]. dl2 [Wan14]. ≥ ≥ 2 + @u @mu d 2 [BR07]. d 3 [ST20]. d (0; 1) [Win20]. f [DGG 13]. @t = κm @xm [OD12]. G [NY09, BCH+00, FGM11]. H [Woj12, WP14]. k [AV12, BKR06, Gao08, GRS03]. k(n) [dBJP13]. kα [Sch12]. L1 1 2 1 p [CV07, MR01]. L ([0; 1]) [FP11]. L [HN09]. l [MHC13]. L [CGR10]. L1 [EM14]. Λ [Fou13, Fou14, Lag07, Zho14]. Lu = uα [Kuz00]. m(n) [dBJP13]. Cn [Tko11]. R2 [Kri07]. Rd [MN09]. Z [Sch12]. Z2 [Gla15]. Zd d 2 3 d C1 [DP14, SBS15, BC12]. Zn [ST20]. R [HL15a]. R [Far98]. Z [BS96]. 1 2 [DCF06]. N × N × 2 [BF11]. p [Eva06, GL14, Man05]. pc <pu [NP12a].
    [Show full text]
  • Approximation of the Snell Envelope and American Options Prices in Dimension One
    ESAIM: Probability and Statistics March 2002, Vol. 6, 1–19 URL: http://www.emath.fr/ps/ DOI: 10.1051/ps:2002001 APPROXIMATION OF THE SNELL ENVELOPE AND AMERICAN OPTIONS PRICES IN DIMENSION ONE Vlad Bally1 and Bruno Saussereau2 Abstract. We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black–Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem. Mathematics Subject Classification. 49L20, 60G40, 65M15, 91B28. Received February 15, 2001. Revised November 13, 2001. Introduction The purpose of this article is to estimate the rate of convergence of the approximation scheme of an optimal stopping problem along Brownian paths, when the Brownian Motion is approximated by a random walk. F F P We consider a standard Brownian Motion (Bt)t≥0 defined on a filtered probability space (Ω, , ( t)t≥0, ) and we denote x ∈ R Xt = x + bt+ aBt, a,b,x ,a>0. Given a function h which is assumed to be (at least) Lipschitz-continuous, our aim is to compute x E x |F Yt =sup (h(τ,Xτ ) t) , τ∈Tt,T where Tt,T is the set of all the stopping times taking values in [t,T ]. This is the Snell Envelope of the process x (h(t, Xt ))t∈[0,T ]. Our results apply to standard American Options. Recall, for example, that an American Put on a stock is the right to sell one share at a specified price K (called the exercise price) at any instant until a given future date T (called the expiration date or date of maturity).
    [Show full text]
  • Optimal Stopping and Applications
    Optimal Stopping and Applications Alex Cox March 16, 2009 Abstract These notes are intended to accompany a Graduate course on Optimal stopping, and in places are a bit brief. They follow the book ‘Optimal Stopping and Free- boundary Problems’ by Peskir and Shiryaev, and more details can generally be found there. 1 Introduction 1.1 Motivating Examples Given a stochastic process Xt, an optimal stopping problem is to compute the following: sup EF (Xτ ), (1) τ where the supremum is taken over some set of stopping times. As well as computing the supremum, we will also usually be interested in finding a description of the stopping time. For motivation, we consider three applications where optimal stopping problems arise. (i) Stochastic analysis. Let Bt be a Brownian motion. Then classical results tell us that for any (fixed) T 0, ≥ πT E sup B = | s| 2 0≤s≤T r What can we say about the left-hand side if we replace the constant T with a stopping time τ? To solve this problem, it turns out that we can consider the (class of) optimal stopping problems: V (λ) = sup E sup Bs λτ . (2) τ s τ | | − 0≤ ≤ Where we take the supremum over all stopping times which have Eτ < , and λ > 0. (Note that in order to fit into the exact form described in (1), we∞ need 1 Optimal Stopping and Applications — Introduction Amg Cox 2 to take e.g. Xt = (Bt, sups≤t Bs , t)). Now suppose we can solve this problem for all λ > 0, then we can use a Lagrangian-style| | approach to get back to the original question: for any suitable stopping time τ we have E sup Bs V (λ)+ λEτ s τ | | ≤ 0≤ ≤ inf (V (λ)+ λEτ) ≤ λ>0 Now, if we suppose that the infimum here is attained, and the supremum in (2) is also attained at the optimal λ, then we see that the right-hand side is a function of Eτ, and further, we can attain equality for this bound, so that it is the smallest possible bound.
    [Show full text]
  • Discrete-Type Approximations for Non-Markovian Optimal Stopping Problems: Part I 3
    DISCRETE-TYPE APPROXIMATIONS FOR NON-MARKOVIAN OPTIMAL STOPPING PROBLEMS: PART I DORIVAL LEAO,˜ ALBERTO OHASHI, AND FRANCESCO RUSSO Abstract. In this paper, we present a discrete-type approximation scheme to solve continuous- time optimal stopping problems based on fully non-Markovian continuous processes adapted to the Brownian motion filtration. The approximations satisfy suitable variational inequalities which allow us to construct ǫ-optimal stopping times and optimal values in full generality. Explicit rates of convergence are presented for optimal values based on reward functionals of path-dependent SDEs driven by fractional Brownian motion. In particular, the methodology allows us to design concrete Monte-Carlo schemes for non-Markovian optimal stopping time problems as demonstrated in the companion paper by Bezerra, Ohashi and Russo. 1. Introduction An important and well-developed class of stochastic control problems is related to optimal stopping time. The goal is to find stopping times, at which an underlying stochastic process Z should be stopped in order to optimize the values of some given functional of interest. Essentially, the optimal stopping time problem is completely described by the so-called supermartingale Snell envelope (1.1) S(t) := ess sup E [Z(τ) |Ft] , 0 ≤ t ≤ T, τ≥t written w.r.t a given filtration F = (Ft)0≤t≤T , where esssup in (1.1) is computed over the class of all F-stopping times located on [t,T ]. The literature on probabilistic techniques in optimal stopping problems is vast. We refer for instance to the expositions of [26, 14] and other references therein for a broad overview of the techniques in this area.
    [Show full text]
  • Optimal Stopping, Smooth Pasting and the Dual Problem
    Introduction Preliminaries Main Theorems Questions Applications Optimal Stopping, Smooth Pasting and the Dual Problem Saul Jacka and Dominic Norgilas, University of Warwick Durham LMS-EPSRC Symposium, Durham 29 July 2017 Saul Jacka and Dominic Norgilas, University of Warwick The Compensator of the Snell Envelope Introduction Preliminaries Main Theorems Questions Applications The general optimal stopping problem: Given a ltered probability space (Ω; (Ft ); F; P) and an adapted gains process G nd def ess sup St = optional τ≥t E[Gτ jFt ] Recall, under very general conditions I S is the minimal supermartingale dominating G def I τt = inffs ≥ t : Ss = Gs g is optimal I for any t, S is a martingale on [t; τt ] I when Gt = g(Xt ) (1) for some (continuous-time) Markov Process X , St can be written as a function, v(Xt ). Saul Jacka and Dominic Norgilas, University of Warwick The Compensator of the Snell Envelope Introduction Preliminaries Main Theorems Questions Applications Remark 1.1 Condition Gt = g(Xt ) is less restrictive than might appear. With θ being the usual shift operator, can expand statespace of X by appending adapted functionals F with the property that Ft+s = f (Fs ; (θs ◦ Xu; 0 ≤ u ≤ t)): (2) The resulting process Y def= (X ; F ) is still Markovian. If X is strong Markov and F is right-cts then Y is strong Markov. e.g if X is a BM, t s 0 Z Z Yt = (Xt ; Lt ; sup Xs ; exp(− α(Xu)du)g(Xs )ds 0≤s≤t 0 0 is a Feller process on the ltration of X .
    [Show full text]
  • Functional Convergence of Snell Envelopes: Applications to American Options Approximations
    Finance Stochast. 2, 311–327 (1998) c Springer-Verlag 1998 Functional convergence of Snell envelopes: Applications to American options approximations Sabrina Mulinacci1, Maurizio Pratelli2 1 Istituto di Econometria e Matematica per le Decisioni Economiche, Universita` Cattolica del S. Cuore, Via Necchi 9, I-20131 Milano, Italy 2 Dipartimento di Matematica, Universita` di Pisa, Via Buonarroti 2, I-56100 Pisa, Italy Abstract. The main result of the paper is a stability theorem for the Snell en- velope under convergence in distribution of the underlying processes: more pre- cisely, we prove that if a sequence (X n ) of stochastic processes converges in distribution for the Skorokhod topology to a process X and satisfies some addi- tional hypotheses, the sequence of Snell envelopes converges in distribution for the Meyer–Zheng topology to the Snell envelope of X (a brief account of this rather neglected topology is given in the appendix). When the Snell envelope of the limit process is continuous, the convergence is in fact in the Skorokhod sense. This result is illustrated by several examples of approximations of the Ameri- can options prices; we give moreover a kind of robustness of the optimal hedging portfolio for the American put in the Black and Scholes model. Key words: American options, Snell envelopes, convergence in distribution, optimal stopping times JEL classification: G13 Mathematics Subject Classification (1991): 90A09, 60F17, 60G40 1 Introduction If (St ) is the risky asset price in the Black and Scholes model, it is well known (see e.g. [7] or [26]) that the discounted price at time t of the American put option with strike price K is given by Manuscript received: January 1996; final version received: July 1997 312 S.
    [Show full text]
  • A Complete Bibliography of Publications in ESAIM: Probability and Statistics
    A Complete Bibliography of Publications in ESAIM: Probability and Statistics Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 30 March 2021 Version 1.12 Title word cross-reference [129]. -statistics [151, 31, 102, 244]. -theory [242]. -time [264]. -valued [301]. -values [36]. 1 [474, 519]. 2 [31]. [0;n] [353]. α [264, 291]. 1 [66]. β [291]. `1 [530, 393, 313]. γ [451]. 1 [130]. k [540]. κ [280]. Lp [142, 495]. Lr [196]. Ls abelian [550]. ABM [544]. abrupt [54]. [196]. L [242, 94, 22, 436]. M p absorbing [435]. absorption [214]. [473, 317, 243, 127]. Lp [541]. Rd [301, 129]. actuarial [148]. Adaptive Rn [144]. Z [275]. Z+ [275]. n [129]. P [36]. [75, 339, 55, 119, 462, 215, 98, 267, 315, 304, p 2 (1; 2) [436]. R+ [445]. σ [236]. t [151]. U 422, 380, 40, 156, 505]. adaptivity [322]. [31, 102, 244]. W [524]. Z [524]. Z2 [207]. Adding [331]. additive [383, 164, 241, 101, 324, 485, 351, 212]. -dependent [127]. -deviation [94]. Admissibility [66]. Advances [115]. -estimates [243]. -estimation [473, 317]. affects [280]. age [179]. age-structured -finite [236]. -means [280]. -NN [540]. [179]. agents [311]. air [109]. Algebraic -norm [530]. -optimal [196]. -oracle [525]. algorithm [227, 280, 299]. [393, 313]. -rate-optimality [196]. algorithmes [46].
    [Show full text]
  • Stochastic Volatility Libor Modeling and Efficient Algorithms for Optimal Stopping Problems
    Stochastic volatility Libor modeling and efficient algorithms for optimal stopping problems DISSERTATION zur Erlangung des akademischen Grades Dr. rer. nat. im Fach Mathematik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät Humboldt-Universität zu Berlin von Dipl.-Math. Marcel Ladkau Präsident der Humboldt-Universität zu Berlin: Prof. Dr. Jan-Hendrik Olbertz Dekan der Mathematisch-Naturwissenschaftlichen Fakultät: Prof. Dr. Elmar Kulke Gutachter: 1. Dr. John Schoenmakers 2. Prof. Dr. Denis Belomestny 3. Prof. Dr. Dirk Becherer eingereicht am: 20.01.2015 Tag der mündlichen Prüfung: 23.07.2015 Zusammenfassung Die vorliegende Arbeit beschäftigt sich mit verschiedenen Aspekten der Finanzmathema- tik. Ein allgemeiner Rahmen wird erarbeitet in welchem stochastische Prozesse existieren mit deren Hilfe Finanzinstrumente modelliert werden können. Die risikoneutrale Bewer- tung solcher Instrumente wird erläutert, wobei der Schwerpunkt auf Zinsvorwärtsraten, sogenannten Liboren liegt. Danach wird ein erweitertes Libor Markt Modell betrachtet, welches genug Flexibilität bietet um akkurat an verschiedene Marktdaten von Caplets und Swaptions zu kalibrie- ren. Dafür werden analytische Preisformeln für solche Instrumente für eine effiziente Kalibrierung benötigt. In diesem Modell erhalten wir solche Preisformeln nach einer Ap- proximation unter Zuhilfenahme des Konzeptes der Schnellen Fourier Transformierten. Weiterhin sind wir interessiert an der Bewertung komplexerer Finanzderivate, zum Beispiel durch Simulation. In einem Modell mit hohen Dimensionen können solche Si- mulationen sehr zeitaufwendig sein. Wir zeigen mögliche Verbesserungen bezüglich der Komplexität der Simulation auf. Faktorreduktion identifiziert die Haupfaktoren des Mo- dells und kann zu einer signifikanten Komplexitätsverringerung führen. Zusätzlich er- weitern wir ein Simulationsschema, eingeführt in Andersen[2007], von einer auf mehrere Dimensionen, wobei wir das Konzept des „Momentmatchings“ zur Approximation des Volaprozesses in einem Heston Modell nutzen.
    [Show full text]