Erick Trevino-Aguilar1

Total Page:16

File Type:pdf, Size:1020Kb

Erick Trevino-Aguilar1 Motivation A few known results Semimartingale properties A (counter)-example References Semimartingale properties of the lower Snell envelope in optimal stopping under model uncertainty Erick Trevino-Aguilar1 1Universidad de Guanajuato, M´exico. Second Actuarial Science and Quantitative Finance. Cartagena Colombia, Junio 2016 Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References Programa 1 Motivation 2 A few known results 3 Semimartingale properties 4 A (counter)-example Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References Arbitrage prices in incomplete markets Let X be a price process of a financial market and let P be its class of martingale measures. Theorem Let H be the payoff process of an American option. Then, the set of arbitrage free prices is an interval with boundaries πinf (H) := inf sup EP [Hτ ] and πsup(H) := sup sup EP [Hτ ]: P2P τ2T P2P τ2T See El Karoui and Quenez [2], Karatzas and Kou [6], Kramkov [7]... Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References Optimal exercise under model uncertainty 1 In decision theory, Ellsberg's paradox [3], highlights how the ambiguity about the distribution are crucial in understanding human decisions under risk and uncertainty. The solution to the paradox is given by the so-called maxmin preferences axiomatized by Gilboa and Schmeidler [5]. 2 The axiomatic framework of Gilboa and Schmeidler [5] yields for each preference a family of probability measures under which utilities are quantified and the worst possible outcome is the utility assigned and under which decisions are taken. 3 In the setting of [5], time consistency in an intertemporal framework is axiomatized by Epstein and Schneider [4]. Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References Assumptions Definition Let τ 2 T be a stopping time and Q1 and Q2 be probability measures equivalent to P. The probability measure defined through Q3(A) := EQ1 [Q2[A j Fτ ]]; A 2 FT is called the pasting of Q1 and Q2 in τ. Assumption The family Q of equivalent probability measures is stable under pasting. Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References Assumptions Assumption The process H is a c`adl`agpositive F-adapted process which is of class(D) with respect to each Q 2 Q, i.e., lim sup EQ [Hτ ;Hτ ≥ x] = 0: x!1 τ2T The stochastic process H is upper semicontinuous in expectation from the left with respect to each probability measure Q 2 Q. That is, for any stopping time θ of the filtration F and an increasing sequence of stopping times fθi gi2N converging to θ, we have lim sup EQ [Hθi ] ≤ EQ [Hθ]: (1) i!1 Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References Optimal stopping times Theorem (Trevino [8]) Define Q Q τρ := inffs ≥ ρ j Hs ≥ Us g: (2) Then, the random time # n Q o τρ := ess inf τρ j Q 2 Q ; (3) is a stopping time and it is optimal: h i ess sup ess infQ2QEQ [Hτ j Fρ] = ess infQ2QEQ H # j Fρ : τ2T [ρ,T] τρ (4) The lower Snell envelope is a Q-submartingale in stochastic # intervals of the form [ρ, τρ ]. Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References The lower Snell envelope Theorem (Trevino [9]) Under mild conditions, there exists an optional right-continuous # # stochastic process U := fUt g0≤t≤T such that for any stopping time τ 2 T # Uτ = ess infQ2Qess supρ2T [τ;T]EQ [Hρ j Fτ ]; P − a:s: Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References In a recent paper, Cheng and Riedel [1] investigate the robust stopping problem # Uτ = inf sup EQ [Hρ]; Q2Q ρ2T under g-expectations with backward differential stochastic equations techniques. Their solution consists in stopping as soon as the underlying process touches its lower Snell envelope. Moreover, they obtain a structural result which describes the lower Snell envelope as the sum of a process of bounded variation and a stochastic integral with respect to Brownian motion. Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References Assumption There exists a probability measure Q 2 Q such that H is of the form Q Q Q Ht = H0 + St + Lt − Nt ; for SQ a Q-submartingale and LQ ; NQ c`adl`agnon decreasing processes with SQ = LQ = NQ = 0, and E [NQ ] < 1. 0 0 0 Q T Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References The lower Snell envelope for semimartingales Theorem (Trevino [10]) Suppose the Assumptions 2.2 and 3.1 holds true. Define Q # Q V := U + N . Let τ1; τ2 be two stopping times with 0 ≤ τ1 ≤ τ2 ≤ T. Then Q Q EQ [Vτ1 ] ≤ EQ [Vτ2 ]: Thus, V Q is a Q-submartingale. Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References sketch of the proof For δ > 0 we set (1) θδ := (τ1 + δ) ^ τ2 (2) # θδ := τ (1) ^ τ2: θδ Now for i > 2 we define recursively (i) (i−1) θδ := (θδ + δ) ^ τ2; for i odd; (i+1) # θδ := τ (i) ^ τ2; for i + 1 even: θδ T For N > δ we have N 1 X Q Q X Q Q EQ V − V = EQ V − V : θ(i+1) θ(i) θ(i+1) θ(i) i=1 δ δ i=1 δ δ Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References sketch of the proof, cont. For i + 1 even we have Q Q EQ V (i+1) − V (i) ≥ 0; (5) θδ θδ due to the Q-submartingale property of Theorem 3. For i + 2 odd we show that V Q − V Q ≥ SQ − SQ + LQ − LQ : (i+2) (i+1) (τ # +δ)^τ τ # ^τ (τ # +δ)^τ τ # ^τ θδ θδ (i) 2 (i) 2 (i) 2 (i) 2 θ θ θ θ δ δ δ δ (6) Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References Assumptions There is a \uniform-version" of Theorem 5 under the stronger condition of the next Assumption There exists a Q-submartingale fSt g0≤t≤T with S0 = 0 such that H is of the form Ht = H0 + St + Lt − Nt ; for L; N c`adl`agnon decreasing processes with L0 = N0 = 0, and EQ [NT] < 1; for each Q 2 Q. Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References Uniform decomposition of the lower Snell envelope Theorem Assume H satisfies the Assumptions 2.2 and 3.2. Then V := U# + N is a Q-submartingale. Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References Let B be a Brownian motion defined in the probability space (Ω; F; P) in this section we assume that F is the augmented filtration generated by B. Definition γ The class W consists of probability measures Q determined by density processes satisfying the Dooleans-Dade stochastic equation dZt = γt Zt dBt ; (7) with γ a progressively measurable process satisfying 1 γt ≤ 0 for t 2 [0; T], and h i 2 R T 2 E 0 γs ds < 1. Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References Theorem Take a non negative continuous deterministic function V defined in the interval [0; T]. Let H = B + V . Then, the lower Snell envelope of the process H is equal to H itself. Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References Theorem There exists no continuous uniform decomposition as the difference of a Q-submartingale and a non decreasing process for the Brownian motion B with respect to W. Semimartingale properties of the lower Snell envelope [email protected] - UG Motivation A few known results Semimartingale properties A (counter)-example References Theorem Let U be a non negative E#-supermartingale of class(D) with respect to each element Q of Q. Let Ξ be the class of finite partitions with points in D, a countable dense subset of [0; T]. Let DM(Ξ) be the class of random variables defined by n−1 X V Π = U − E#[U j F ] ; (8) T ti ti+1 ti i=0 for Π = f0 = t0 < t1 < : : : < tn = Tg a partition in Ξ. If the class DM(Ξ) is uniformly integrable with respect to a Q0 2 Q, then there exists a right-continuous non decreasing process V such that Z := U + V is a Q0-submartingale.
Recommended publications
  • Upper and Lower Snell Envelopes and Robust Partial Hedging
    American Options in incomplete Markets: Upper and lower Snell Envelopes and robust partial Hedging DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Mathematik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät II Humboldt-Universität zu Berlin von Herr Dipl. Math. Erick Treviño Aguilar geboren am 24.03.1975 in México Präsident der Humboldt-Universität zu Berlin: Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II: Prof. Dr. Wolfgang Coy Gutachter: 1. Prof. Dr. Hans Föllmer 2. Prof. Dr. Peter Imkeller 3. Prof. Dr. Frank Riedel eingereicht am: 14. Dezember 2007 Tag der mündlichen Prüfung: 9. Juni 2008 Abstract This thesis studies American options in an incomplete financial market and in continuous time. It is composed of two parts. In the first part we study a stochastic optimization problem in which a robust convex loss functional is minimized in a space of stochastic integrals. This problem arises when the seller of an American option aims to control the shortfall risk by using a partial hedge. We quantify the shortfall risk through a robust loss functional motivated by an extension of classical expected util- ity theory due to Gilboa and Schmeidler. In a general semimartingale model we prove the existence of an optimal strategy. Under additional compactness assumptions we show how the robust problem can be reduced to a non-robust optimization problem with respect to a worst-case probability measure. In the second part, we study the notions of the upper and the lower Snell envelope associated to an American option. We construct the envelopes for stable families of equivalent probability measures, the family of local martin- gale measures being an important special case.
    [Show full text]
  • Optimal Stopping, Smooth Pasting and the Dual Problem
    Introduction Preliminaries Main Theorems Questions Applications Optimal Stopping, Smooth Pasting and the Dual Problem Saul Jacka and Dominic Norgilas, University of Warwick Imperial 21 February 2018 Saul Jacka and Dominic Norgilas, University of Warwick The Compensator of the Snell Envelope Introduction Preliminaries Main Theorems Questions Applications The general optimal stopping problem: Given a ltered probability space (Ω; (Ft ); F; P) and an adapted gains process G, nd def St = ess sup E[Gτ jFt ] optional τ≥t Recall, under very general conditions I S is the minimal supermartingale dominating G def I τt = inffs ≥ t : Ss = Gs g is optimal I for any t, S is a martingale on [t; τt ] I when Gt = g(Xt ) (1) for some (continuous-time) Markov Process X , St can be written as a function, v(Xt ). Saul Jacka and Dominic Norgilas, University of Warwick The Compensator of the Snell Envelope Introduction Preliminaries Main Theorems Questions Applications Remark 1.1 Condition Gt = g(Xt ) is less restrictive than might appear. With θ being the usual shift operator, can expand statespace of X by appending adapted functionals F with the property that Ft+s = f (Fs ; (θs ◦ Xu; 0 ≤ u ≤ t)): (2) The resulting process Y def= (X ; F ) is still Markovian. If X is strong Markov and F is right-cts then Y is strong Markov. e.g if X is a BM, Z t Z s 0 Yt = Xt ; Lt ; sup Xs ; exp − α(Xu)du g(Xs ) ds 0≤s≤t 0 0 is a Feller process on the ltration of X .
    [Show full text]
  • Financial Mathematics
    Financial Mathematics Rudiger¨ Kiesel February, 2005 0-0 1 Financial Mathematics Lecture 1 by Rudiger¨ Kiesel Department of Financial Mathematics, University of Ulm Department of Statistics, LSE RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 2 Aims and Objectives • Review basic concepts of probability theory; • Discuss random variables, their distribution and the notion of independence; • Calculate functionals and transforms; • Review basic limit theorems. RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 3 Probability theory To describe a random experiment we use sample space Ω, the set of all possible outcomes. Each point ω of Ω, or sample point, represents a possible random outcome of performing the random experiment. For a set A ⊆ Ω we want to know the probability IP (A). The class F of subsets of Ω whose probabilities IP (A) are defined (call such A events) should be be a σ-algebra , i.e. closed under countable, disjoint unions and complements, and contain the empty set ∅ and the whole space Ω. Examples. Flip coins, Roll two dice. RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 4 Probability theory We want (i) IP (∅) = 0, IP (Ω) = 1, (ii) IP (A) ≥ 0 for all A, (iii) If A1,A2,..., are disjoint, S P IP ( i Ai) = i IP (Ai) countable additivity.
    [Show full text]
  • The Harrison-Pliska Story (And a Little Bit More)
    The Harrison-Pliska Story (and a little bit more) Stanley R Pliska Professor Emeritus Department of Finance University of Illinois at Chicago Fields Institute February 2010 Table of Contents 1. Some continuous time stock price models 2. Alternative justification of Black-Scholes formula 3. The preliminary security market model 4. Economic considerations 5. The general security market model 6. Computing the martingale measure 7. Pricing contingent claims (European options) 8. Return processes 9. Complete markets 10. Pricing American options Key References We Used • J.M. Harrison and D.M. Kreps, Martingales and arbitrage in multiperiod securities markets, J. Economic Theory 20 (1979), 381-408. • J. Jacod, Calcul Stochastique et Problèmes de Martingales, Lecture Notes in Mathematics 714, Springer, New York, 1979. • P.-A. Meyer, Un cours sur les integrales stochastiques, Seminaire de Probabilité X, Lecture Notes in Mathematics 511, Springer, New York, 1979, 91-108. 1. Some Continuous Time Stock Price Models 1a. Geometric Brownian motion dS t = µStdt + σStdW (and multi-stock extensions) Reasonably satisfactory, but… • Returns can be correlated at some frequencies • Volatility is random • Big price jumps like on October 19, 1987 1b. A point process model St = S 0 exp {bN t – µt}, where N = Poisson process with intensity λ > 0 b = positive scalar µ = positive scalar J. Cox and S. Ross, The valuation of options for alternative stochastic processes, J. Financial Economics 3 (1976), 145- 166. 1c. Some generalizations and variations • Diffusions ( µ and σ are time and state dependent) • Ito processes (µ and σ are stochastic) • General jump processes • Jump-diffusion processes • Fractional Brownian motion • Etc.
    [Show full text]
  • A Complete Bibliography of Electronic Communications in Probability
    A Complete Bibliography of Electronic Communications in Probability Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 20 May 2021 Version 1.13 Title word cross-reference (1 + 1) [CB10]. (d; α, β) [Zho10]. (r + ∆) [CB10]. 0 [Sch12, Wag16]. 1 [Duc19, HL15b, Jac14, Li14, Sch12, SK15, Sim00, Uch18]. 1=2 [KV15]. 1=4 [JPR19]. 2 [BDT11, GH18b, Har12, Li14, RSS18, Sab21, Swa01, VZ11, vdBN17]. 2D [DXZ11]. 2M − X [Bau02, HMO01, MY99]. 3 [AB14, PZ18, SK15]. [0;t] [MLV15]. α [DXZ11, Pat07]. α 2 [0; 1=2) [Sch12]. BES0(d) [Win20]. β [Ven13]. d [H¨ag02, Mal15, Van07, Zho20]. d = 2 [KO06]. d>1 [Sal15]. dl2 [Wan14]. ≥ ≥ 2 + @u @mu d 2 [BR07]. d 3 [ST20]. d (0; 1) [Win20]. f [DGG 13]. @t = κm @xm [OD12]. G [NY09, BCH+00, FGM11]. H [Woj12, WP14]. k [AV12, BKR06, Gao08, GRS03]. k(n) [dBJP13]. kα [Sch12]. L1 1 2 1 p [CV07, MR01]. L ([0; 1]) [FP11]. L [HN09]. l [MHC13]. L [CGR10]. L1 [EM14]. Λ [Fou13, Fou14, Lag07, Zho14]. Lu = uα [Kuz00]. m(n) [dBJP13]. Cn [Tko11]. R2 [Kri07]. Rd [MN09]. Z [Sch12]. Z2 [Gla15]. Zd d 2 3 d C1 [DP14, SBS15, BC12]. Zn [ST20]. R [HL15a]. R [Far98]. Z [BS96]. 1 2 [DCF06]. N × N × 2 [BF11]. p [Eva06, GL14, Man05]. pc <pu [NP12a].
    [Show full text]
  • Approximation of the Snell Envelope and American Options Prices in Dimension One
    ESAIM: Probability and Statistics March 2002, Vol. 6, 1–19 URL: http://www.emath.fr/ps/ DOI: 10.1051/ps:2002001 APPROXIMATION OF THE SNELL ENVELOPE AND AMERICAN OPTIONS PRICES IN DIMENSION ONE Vlad Bally1 and Bruno Saussereau2 Abstract. We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black–Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem. Mathematics Subject Classification. 49L20, 60G40, 65M15, 91B28. Received February 15, 2001. Revised November 13, 2001. Introduction The purpose of this article is to estimate the rate of convergence of the approximation scheme of an optimal stopping problem along Brownian paths, when the Brownian Motion is approximated by a random walk. F F P We consider a standard Brownian Motion (Bt)t≥0 defined on a filtered probability space (Ω, , ( t)t≥0, ) and we denote x ∈ R Xt = x + bt+ aBt, a,b,x ,a>0. Given a function h which is assumed to be (at least) Lipschitz-continuous, our aim is to compute x E x |F Yt =sup (h(τ,Xτ ) t) , τ∈Tt,T where Tt,T is the set of all the stopping times taking values in [t,T ]. This is the Snell Envelope of the process x (h(t, Xt ))t∈[0,T ]. Our results apply to standard American Options. Recall, for example, that an American Put on a stock is the right to sell one share at a specified price K (called the exercise price) at any instant until a given future date T (called the expiration date or date of maturity).
    [Show full text]
  • Optimal Stopping and Applications
    Optimal Stopping and Applications Alex Cox March 16, 2009 Abstract These notes are intended to accompany a Graduate course on Optimal stopping, and in places are a bit brief. They follow the book ‘Optimal Stopping and Free- boundary Problems’ by Peskir and Shiryaev, and more details can generally be found there. 1 Introduction 1.1 Motivating Examples Given a stochastic process Xt, an optimal stopping problem is to compute the following: sup EF (Xτ ), (1) τ where the supremum is taken over some set of stopping times. As well as computing the supremum, we will also usually be interested in finding a description of the stopping time. For motivation, we consider three applications where optimal stopping problems arise. (i) Stochastic analysis. Let Bt be a Brownian motion. Then classical results tell us that for any (fixed) T 0, ≥ πT E sup B = | s| 2 0≤s≤T r What can we say about the left-hand side if we replace the constant T with a stopping time τ? To solve this problem, it turns out that we can consider the (class of) optimal stopping problems: V (λ) = sup E sup Bs λτ . (2) τ s τ | | − 0≤ ≤ Where we take the supremum over all stopping times which have Eτ < , and λ > 0. (Note that in order to fit into the exact form described in (1), we∞ need 1 Optimal Stopping and Applications — Introduction Amg Cox 2 to take e.g. Xt = (Bt, sups≤t Bs , t)). Now suppose we can solve this problem for all λ > 0, then we can use a Lagrangian-style| | approach to get back to the original question: for any suitable stopping time τ we have E sup Bs V (λ)+ λEτ s τ | | ≤ 0≤ ≤ inf (V (λ)+ λEτ) ≤ λ>0 Now, if we suppose that the infimum here is attained, and the supremum in (2) is also attained at the optimal λ, then we see that the right-hand side is a function of Eτ, and further, we can attain equality for this bound, so that it is the smallest possible bound.
    [Show full text]
  • Discrete-Type Approximations for Non-Markovian Optimal Stopping Problems: Part I 3
    DISCRETE-TYPE APPROXIMATIONS FOR NON-MARKOVIAN OPTIMAL STOPPING PROBLEMS: PART I DORIVAL LEAO,˜ ALBERTO OHASHI, AND FRANCESCO RUSSO Abstract. In this paper, we present a discrete-type approximation scheme to solve continuous- time optimal stopping problems based on fully non-Markovian continuous processes adapted to the Brownian motion filtration. The approximations satisfy suitable variational inequalities which allow us to construct ǫ-optimal stopping times and optimal values in full generality. Explicit rates of convergence are presented for optimal values based on reward functionals of path-dependent SDEs driven by fractional Brownian motion. In particular, the methodology allows us to design concrete Monte-Carlo schemes for non-Markovian optimal stopping time problems as demonstrated in the companion paper by Bezerra, Ohashi and Russo. 1. Introduction An important and well-developed class of stochastic control problems is related to optimal stopping time. The goal is to find stopping times, at which an underlying stochastic process Z should be stopped in order to optimize the values of some given functional of interest. Essentially, the optimal stopping time problem is completely described by the so-called supermartingale Snell envelope (1.1) S(t) := ess sup E [Z(τ) |Ft] , 0 ≤ t ≤ T, τ≥t written w.r.t a given filtration F = (Ft)0≤t≤T , where esssup in (1.1) is computed over the class of all F-stopping times located on [t,T ]. The literature on probabilistic techniques in optimal stopping problems is vast. We refer for instance to the expositions of [26, 14] and other references therein for a broad overview of the techniques in this area.
    [Show full text]
  • SPA OSAKA 2010 Schedule Table
    Last modified on September 12, 2010 SPA OSAKA 2010 Schedule Table On Monday, the conference office will open at 7:30 in the morning Monday, 6th Tuesday, 7th Wednesday, 8th Thursday, 9th Friday, 10th 9;56.:;11 8 Opening (Life Hall) :;11.:;56 :;11.:;56 :;11.:;56 :;11.:;56 :;11.:;56 Lawler Wilson Sturm Miermont Hino 9 (Doob Lecture) (Life Hall) (Life Hall) (Life Hall) (Life Hall) (Life Hall) coffee break :;66.21;51 :;66.21;51 :;66.21;51 :;66.21;51 Atar Kumagai 21;16.21;61 Biskup Tang 10 (Life Hall) (Life Hall) Lyons (IMS Medallion (Life Hall) (Life Hall) Lecture) (Life Hall) coffee break coffee break coffee break coffee break 21;61.22;26 22;16.22;61 22;16.23;41 Event of Bernoulli 22;16.22;61 22;16.22;61 Society (Life Hall) 11 Rogers SS04, SS06, SS13, Hairer Jacod (Life Hall) (Life Hall) (Life Hall) SS26, SS27, CS04, lunch CS07, CT06, CT11, CT16, CT18 23;11.23;56 (Parallel sessions) 23;11.23;56 23;11.23;56 Khoshnevisan Jeanblanc Landim 12 (Life Hall) (Life Hall) (Lévy Lecture) (Life Hall) lunch lunch 23;61. lunch lunch Excursion 25;21.26;46 14 25;31.26;56 SS09, SS12, SS14, 25;31.26;16 25;31.26;56 SS10, SS18, SS20, SS23, SS25, CS08, Taylor SS01, SS03, SS11, SS21, CS09, CS10, CS14, CT07, CT09, (Life Hall) SS15, SS16, CS03, CS12, CT02, CT03, CT12, CT19 CS05, CS11, CT04, CT10, CT15 (Parallel sessions) CT05, CT13, CT17, 26;26.27;11 15 (Parallel sessions) CT22 Seppäläinen (Parallel sessions) coffee break (Life Hall) coffee break PS I core time 27;11.
    [Show full text]
  • Optimal Stopping, Smooth Pasting and the Dual Problem
    Introduction Preliminaries Main Theorems Questions Applications Optimal Stopping, Smooth Pasting and the Dual Problem Saul Jacka and Dominic Norgilas, University of Warwick Durham LMS-EPSRC Symposium, Durham 29 July 2017 Saul Jacka and Dominic Norgilas, University of Warwick The Compensator of the Snell Envelope Introduction Preliminaries Main Theorems Questions Applications The general optimal stopping problem: Given a ltered probability space (Ω; (Ft ); F; P) and an adapted gains process G nd def ess sup St = optional τ≥t E[Gτ jFt ] Recall, under very general conditions I S is the minimal supermartingale dominating G def I τt = inffs ≥ t : Ss = Gs g is optimal I for any t, S is a martingale on [t; τt ] I when Gt = g(Xt ) (1) for some (continuous-time) Markov Process X , St can be written as a function, v(Xt ). Saul Jacka and Dominic Norgilas, University of Warwick The Compensator of the Snell Envelope Introduction Preliminaries Main Theorems Questions Applications Remark 1.1 Condition Gt = g(Xt ) is less restrictive than might appear. With θ being the usual shift operator, can expand statespace of X by appending adapted functionals F with the property that Ft+s = f (Fs ; (θs ◦ Xu; 0 ≤ u ≤ t)): (2) The resulting process Y def= (X ; F ) is still Markovian. If X is strong Markov and F is right-cts then Y is strong Markov. e.g if X is a BM, t s 0 Z Z Yt = (Xt ; Lt ; sup Xs ; exp(− α(Xu)du)g(Xs )ds 0≤s≤t 0 0 is a Feller process on the ltration of X .
    [Show full text]
  • Functional Convergence of Snell Envelopes: Applications to American Options Approximations
    Finance Stochast. 2, 311–327 (1998) c Springer-Verlag 1998 Functional convergence of Snell envelopes: Applications to American options approximations Sabrina Mulinacci1, Maurizio Pratelli2 1 Istituto di Econometria e Matematica per le Decisioni Economiche, Universita` Cattolica del S. Cuore, Via Necchi 9, I-20131 Milano, Italy 2 Dipartimento di Matematica, Universita` di Pisa, Via Buonarroti 2, I-56100 Pisa, Italy Abstract. The main result of the paper is a stability theorem for the Snell en- velope under convergence in distribution of the underlying processes: more pre- cisely, we prove that if a sequence (X n ) of stochastic processes converges in distribution for the Skorokhod topology to a process X and satisfies some addi- tional hypotheses, the sequence of Snell envelopes converges in distribution for the Meyer–Zheng topology to the Snell envelope of X (a brief account of this rather neglected topology is given in the appendix). When the Snell envelope of the limit process is continuous, the convergence is in fact in the Skorokhod sense. This result is illustrated by several examples of approximations of the Ameri- can options prices; we give moreover a kind of robustness of the optimal hedging portfolio for the American put in the Black and Scholes model. Key words: American options, Snell envelopes, convergence in distribution, optimal stopping times JEL classification: G13 Mathematics Subject Classification (1991): 90A09, 60F17, 60G40 1 Introduction If (St ) is the risky asset price in the Black and Scholes model, it is well known (see e.g. [7] or [26]) that the discounted price at time t of the American put option with strike price K is given by Manuscript received: January 1996; final version received: July 1997 312 S.
    [Show full text]
  • A Complete Bibliography of Publications in ESAIM: Probability and Statistics
    A Complete Bibliography of Publications in ESAIM: Probability and Statistics Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 30 March 2021 Version 1.12 Title word cross-reference [129]. -statistics [151, 31, 102, 244]. -theory [242]. -time [264]. -valued [301]. -values [36]. 1 [474, 519]. 2 [31]. [0;n] [353]. α [264, 291]. 1 [66]. β [291]. `1 [530, 393, 313]. γ [451]. 1 [130]. k [540]. κ [280]. Lp [142, 495]. Lr [196]. Ls abelian [550]. ABM [544]. abrupt [54]. [196]. L [242, 94, 22, 436]. M p absorbing [435]. absorption [214]. [473, 317, 243, 127]. Lp [541]. Rd [301, 129]. actuarial [148]. Adaptive Rn [144]. Z [275]. Z+ [275]. n [129]. P [36]. [75, 339, 55, 119, 462, 215, 98, 267, 315, 304, p 2 (1; 2) [436]. R+ [445]. σ [236]. t [151]. U 422, 380, 40, 156, 505]. adaptivity [322]. [31, 102, 244]. W [524]. Z [524]. Z2 [207]. Adding [331]. additive [383, 164, 241, 101, 324, 485, 351, 212]. -dependent [127]. -deviation [94]. Admissibility [66]. Advances [115]. -estimates [243]. -estimation [473, 317]. affects [280]. age [179]. age-structured -finite [236]. -means [280]. -NN [540]. [179]. agents [311]. air [109]. Algebraic -norm [530]. -optimal [196]. -oracle [525]. algorithm [227, 280, 299]. [393, 313]. -rate-optimality [196]. algorithmes [46].
    [Show full text]