Formation Water Pressure in the Quaternary Sediments of the Great Hungarian Plain
Total Page:16
File Type:pdf, Size:1020Kb
FORMATION WATER PRESSURE IN THE QUATERNARY SEDIMENTS OF THE GREAT HUNGARIAN PLAIN PRESSION DES NAPPES AQUIFÈRES ARTÉSIENNES DANS LES SÉDIMENTS QUATERNAIRES DE LA GRANDE PLAINE HONGROISE DE. J. UEBANOSBK Hydrogeological Inspectorate, Budapest, Hungary RÉSUMÉ Ce qu'on entend par pression géohydrostatique c'est la tension due au poids de l'eau artésienne et la pression des couches du toit à laquelle l'eau artésienne est soumise. C'est la pression qui est active dans une nappe aquifère artésienne, mais qui est dans les cas les plus rares égale à la pression hydrostatique. Le gradient géohydrostatique est la valeur de l'augmentation de la pression et s'il vaut de 0,99 à 1,01 att., on parle d'un état de pression « normal », dans le cas, où il est supérieur à cette valeur-là, il s'agit d'un état « positif», s'il y est inférieur, on parle d'un état de pression « négatif». Dans le cas d'un ensemble de grains varié, la pression n'augmente pas d'une manière uniforme en fonction de la profondeur, mais les sédiments d'une granulométrie plus fine présentent un gradient de pression plus élevé. Cela est témoigné par la pression des nappes aquifères artésiennes enregistrée dans la série sédimentaire grossière de la fosse tectonique du Danube d'une part et dans la série à grain fin de la dépression des rivières Kôrôs d'autre part. L'établissement d'un état de pression « négatif » particulièrement anormal a pu être observé au territoire entre la dorsale de Nyirség et la Plaine de Szatmâr. Dans la série sédimentaire à grain fin du Pleistocene supérieur le niveau statique est proche du niveau de la nappe phréatique; le gradient de pression augmente avec la profondeur; par con séquent, un écoulement d'eau descendant est impossible, de sorte que les préoipitatison ne peuvent pas s'infiltrer dans les couches plus profondes. Une différence de pression considérable peut être enregistrée entre les deux régions, mais cette différence ne s'équi libre pas à cause de la tension limite existant dans l'ensemble des grains. Par conséquent, c'est une pression statique qui existe dans les sédiments du Pleistocene supérieur. Le Pleistocene inférieur est représenté par des graviers et le niveau statique des eaux qu'ils renferment dans le Nyirség se trouve, d'une façon « anomale », à une profondeur de 30 à 32 m. Cela est dû à ce qu'étant donné la tension limite très basse caractéristique des sédiments grossiers, la différence de pression entre la dorsale et la dépression a été com pensée déjà au cours des temps géologiques, de sorte qu'à présent un état statique peut être observé ici aussi. La pression géohydrostatique n'augmente pas uniformément avec la profondeur, mais elle varie en dépendance de la granulométrie du sédiment. La pression n'a pas été équilibrée même à l'inférieur d'une aire restreinte, ce qui indique également la présence d'une tension statique. Due to the need of increasing water supplies, communal, industrial and agricultural reasonable management of water resources is becoming a more and more urgent task to solve. This requires, however, the knowledge of the subsurface water resources and the dynamics of subsurface movements. 17 MAPI Évkônyv 258 Before discussing the results of measurements and summing up the conclusions deduceable therefrom, let us give now the interpretations of some notions that will be referred to hereinafter. The weight of a water head without the rock pressure is called the hydrostatic pressure. Qeostatic pressure is due to the own weight of the rock. In a coarse-grained sequence the weight of the overlying beds is carried by the grain set itself, in a fine-grained stratum the weight of the rock is partly taken over by the water contained in it. Geohydrostatic pressure is interpreted as a stress generated by the weight of the subsurface water plus the pressure of the fine-grained rock upon the formation water. This is the pressure that prevails in any deep-situated aquifer, agreeing in rarest cases with the hydrostatic pressure. The geohydro static pressure is indicated by the piezometric water level observed in a bore- well (the well acts as a manometer) and its value is defined by the difference in altitude between the level of water entry into the well on one hand and the piezometric level on the other. Since only the pressure conditions of Quaternary sediments are to be examined, the temperature and gas regimes, also influencing the pressure prevailing in the strata, have been ignored, as the role of these, compared to that of the geohydrostatic pressure, is unessential. The geohydrostatic pressure gradient represents the size of pressure increase which is the ratio of the height of the water head measured in the well to the column of water flowing into the well. The terms "normal", "positive" and "negative" pressure state, which have already found general use in the literature and which refer essentially to the pressure gradient, are products of an artificial categorization and their usage may be omitted. Accordingly, a gradient in the range of 0.99 to 1.01 would be normal; one lower than that would be negative and one higher than that would be positive. The occurrence of a hydrostatic pressure state in the formation-water bearing space is exceptional, being possible only in a set of unstratified, homogeneous, coarse grains, where the weight of the rock is carried only by sediment grains. This state is approximated by the gravel and coarse-grained sandstone sequence, almost 300 m thick, deposited at Asvânyrâro in the Little Hungarian Plain, where during the testing of one well at five different depths the static water head settled at almost one and the same altitude, though not hydrostatically even there, but at 0.1 to 0.4 m above the topo graphic level (Fig. 1). (The well-logging and geological profiles of the nearby water bore-well of Lipot presented herewith, are to confirm the admitted presence of a coarse-grained sequence, by instrumental measurements.) Differing from the afore-mentioned "normal" pressure conditions, the geohydrostatic pressure is brought about in a stratified sequence of different grain size, where, independently of the degree of consolidation, both the grain set and the water will take over the weight of the overburden. And, as a natural consequence of this, the less consolidated rock (clay, loamy clay, loamy fine sand) is, the higher the load applied to the interstitial water and the higher the pressure accumulated in the rock. In the opposite case, in turn, it is the pressure that is lower. In the Danube's graben (e.g. at Szeged, South Hungary), where the share of sands is 40 to 80%, the geohydrostatic pressure is lower than in the depression of the Kôros river system (e.g. at Békéscsaba), where 259 LfPÔT ASVANYRÂRÔ K.7. exploratory borehole 2?2 PS m 10 mV 320 Mil 0- ohm m o o 0 O o o o ooo o 50- o o o o o e « 0 8 100- o o o o 0 0 o o O 0 150- O O 200- OOOOOOOOO OOOOOOOOO O O 0 o o o o 250- o • • • • • e • e e 300 e • o • Fig. 1. Geohydrostatic pressure state of the formation water of a gravel sequence 1. Gravel, gravelly sand, 2. coarse- and medium-grained sands, 3. middle-, small- and fine-grained sands (loamy) the share of porous sediments is as low as 10 — 15—20% (Fig. 2). The pressure in both areas increases as a function of depth, but the rate of this increase is different. Let us call attention, however, to the fact that the depth-dependent increase of pressure is never uniform. Notably, the rate of increase of the pressure will vary, even in one and the same profile, according to the proportion of the coarser and finer grain fractions, being higher in the finer grain fraction and lower in the coarser one. This can be read off the behaviour of the pressure graph of Fig. 2. Notably, at Békéscsaba, in the more sandy sequence of —150 to —250 m altitude, the pressure increase is lower; at Szeged, in turn, in the — 75 to —150 m interval of diversified lithology not affected by any tectonic stress, the pressure increase varies in accordance with the variation of the grain set. As evident from the information thus far available and from their- representation, the geohydrostatic pressure will increase with depth and the rate of increase is in a causal relationship with the grain size composition, respectively with the consolidation of the grain set concerned. The fact that the different pressures were not balanced in the course of geological time is indicative of the presence of a static strain. ii" 260 Let us examine now the problem of the so-called "negative" formation- water pressure which is differently interpreted by various research workers. The divergency of opinions indicates that the problem has not yet been settled. To account for it, let us start with an analysis of the pressure conditions of the subsurface water-bearing spaces beneath the Nyirség Ridge and the Szatmâr Plain and their possible interaction. The geological section of Fig. 3 shows the structural pattern and lithology beneath the Szatmâr Plain's ridge and marginal depressions. In addition, the piezometric (isoatt) surfaces have also been indicated. Generally speaking, the geological make-up of the territory is characterized by the fact that the Upper and Middle Pleistocene is made up of medium-, small- and fine-grained sands of loamy character and that the porous strata are interlain by impervious layers which are, again, of different SZE6ED BEKESCSABA static water level static water level m +95 +90 +85 +80 m a.s.l.